龍智云,楊家軒,楊曉航,賈若琨,趙 明,馬 軍
(1.城市水資源與水環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室(哈爾濱工業(yè)大學(xué)),哈爾濱 150090;2.哈爾濱工業(yè)大學(xué) 市政環(huán)境工程學(xué)院,哈爾濱 150090;3.東北電力大學(xué) 化學(xué)工程學(xué)院,吉林 吉林 132012)
飲用水水質(zhì)生物穩(wěn)定性評(píng)價(jià)方法研究進(jìn)展
龍智云1,2,楊家軒1,2,楊曉航3,賈若琨3,趙 明1,2,馬 軍1,2
(1.城市水資源與水環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室(哈爾濱工業(yè)大學(xué)),哈爾濱 150090;2.哈爾濱工業(yè)大學(xué) 市政環(huán)境工程學(xué)院,哈爾濱 150090;3.東北電力大學(xué) 化學(xué)工程學(xué)院,吉林 吉林 132012)
飲用水生物穩(wěn)定性評(píng)價(jià)對(duì)保障水質(zhì)安全具有重要意義.本文概述了飲用水水質(zhì)生物穩(wěn)定性主要評(píng)價(jià)指標(biāo)及其傳統(tǒng)、新興測(cè)定方法,并對(duì)比了不同評(píng)價(jià)手段的優(yōu)缺點(diǎn).傳統(tǒng)的水質(zhì)生物穩(wěn)定性評(píng)價(jià)方法操作繁瑣、周期長(zhǎng)、再現(xiàn)性差,難以準(zhǔn)確地反映水質(zhì)穩(wěn)定性.流式細(xì)胞術(shù)與分子生物學(xué)技術(shù)的應(yīng)用促進(jìn)了水質(zhì)生物穩(wěn)定性評(píng)價(jià)方法的發(fā)展.基于流式細(xì)胞術(shù)改進(jìn)的AOC、TCC、ATP評(píng)價(jià)方法不僅操作簡(jiǎn)單、快速準(zhǔn)確,而且較為經(jīng)濟(jì),有望在水質(zhì)監(jiān)測(cè)和工程應(yīng)用中推廣.DGGE和焦磷酸測(cè)序等新興分子生物學(xué)評(píng)價(jià)手段可以深入了解水處理及管網(wǎng)輸配過(guò)程水環(huán)境中微生物組成變化,為從根本上探究水質(zhì)生物穩(wěn)定性指明了方向.
生物穩(wěn)定性;評(píng)價(jià)方法;流式細(xì)胞儀;分子生物學(xué);飲用水;水質(zhì)
水質(zhì)生物穩(wěn)定性關(guān)系到飲用水水質(zhì)安全.在給水管網(wǎng)系統(tǒng)中,不受控制的生物再生過(guò)程會(huì)導(dǎo)致水質(zhì)惡化,衛(wèi)生指標(biāo)超標(biāo)、口感不佳,還會(huì)導(dǎo)致過(guò)濾器堵塞、管道生物腐蝕等[1].出廠水水質(zhì)若不穩(wěn)定還會(huì)為致病菌增殖提供相對(duì)豐富的微環(huán)境,惡化管網(wǎng)水質(zhì),危害人體健康[2].因此,提高飲用水水質(zhì)的生物穩(wěn)定性、控制微生物再繁殖具有重要意義.
傳統(tǒng)的飲用水水質(zhì)生物穩(wěn)定性評(píng)價(jià)方法主要集中于評(píng)價(jià)水體的微生物生長(zhǎng)潛能.現(xiàn)行飲用水水質(zhì)標(biāo)準(zhǔn)對(duì)生物穩(wěn)定性方面提出更嚴(yán)格的要求,同時(shí),新興分析方法尤其是分子生物學(xué)方面分析技術(shù)的崛起促進(jìn)了生物穩(wěn)定性評(píng)價(jià)方法的發(fā)展.本文針對(duì)生物穩(wěn)定性評(píng)價(jià)方法進(jìn)行了綜述與分析,包括生物穩(wěn)定性評(píng)價(jià)指標(biāo)及傳統(tǒng)評(píng)價(jià)方法、基于流式細(xì)胞術(shù)改進(jìn)的新興評(píng)價(jià)方法、變性梯度凝膠電泳和焦磷酸測(cè)序等新興分子生物學(xué)評(píng)價(jià)方法.從測(cè)定原理及應(yīng)用實(shí)例等方面歸納總結(jié)了不同評(píng)價(jià)方法的優(yōu)缺點(diǎn)以及今后的發(fā)展趨勢(shì).
目前,國(guó)內(nèi)外用于評(píng)價(jià)飲用水水質(zhì)生物穩(wěn)定性的指標(biāo)主要有基于培養(yǎng)法的異養(yǎng)菌平板計(jì)數(shù)(heterotrophic plate counts, HPC)、可生物降解有機(jī)碳(biodegradable dissolved organic carbon, BDOC)、可生物同化有機(jī)碳(assimilable organic carbon, AOC),不依賴培養(yǎng)的總細(xì)胞濃度(total cell concentration, TCC)和三磷酸腺苷計(jì)數(shù)(adenosine tri-phosphate, ATP)等.
1.1 異養(yǎng)菌平板計(jì)數(shù)
異養(yǎng)菌平板計(jì)數(shù)(HPC)是指在特定條件下培養(yǎng)細(xì)菌,利用顯微鏡觀察細(xì)菌數(shù)來(lái)評(píng)價(jià)水體的微生物生長(zhǎng)潛能.HPC作為微生物參數(shù)來(lái)評(píng)估和監(jiān)測(cè)飲用水水質(zhì)已有100余年的歷史,目前仍是國(guó)際上評(píng)價(jià)水質(zhì)微生物量的標(biāo)準(zhǔn)方法[3-5].
傳統(tǒng)的HPC測(cè)定采用傾倒接種法,以平板計(jì)數(shù)瓊脂(plate count agar, PCA)為培養(yǎng)基,培養(yǎng)接種細(xì)菌并觀察細(xì)菌生長(zhǎng)數(shù)量.該方法技術(shù)穩(wěn)定,但PCA具有選擇性,不能檢出產(chǎn)色素菌,而且傾倒法存在熱沖擊、轉(zhuǎn)種培養(yǎng)不便等缺點(diǎn)[6].改進(jìn)后的R2A培養(yǎng)基營(yíng)養(yǎng)成分較PCA豐富且含量低,適合產(chǎn)色素菌生長(zhǎng),還能夠促進(jìn)受損細(xì)菌的恢復(fù)性再生長(zhǎng)、提高飲用水中細(xì)菌總數(shù)檢出率,已成功用于檢測(cè)飲用水水樣、管道內(nèi)壁生物膜、污損反滲透膜內(nèi)的異養(yǎng)菌數(shù)量[7].濾膜計(jì)數(shù)法以m-SPC為培養(yǎng)基,可大大提高接種量,特別適用于分析低濁度水樣,但檢測(cè)結(jié)果受濾膜質(zhì)量等因素影響[8].
然而,越來(lái)越多的研究指出,HPC方法檢測(cè)所得的微生物量只占實(shí)際微生物量的一小部分,難以準(zhǔn)確反映水體中微生物量的變化[9-12].這是因?yàn)樘烊凰h(huán)境中的大多數(shù)微生物不能用平板法進(jìn)行培養(yǎng),而且水體中還可能存在大量的自養(yǎng)菌.此外,HPC方法的分析結(jié)果受培養(yǎng)基的種類、培養(yǎng)時(shí)間、培養(yǎng)溫度影響較大.但HPC方法操作簡(jiǎn)單,檢測(cè)成本低,且已被廣泛接受,因此,仍被廣泛用于飲用水水質(zhì)微生物風(fēng)險(xiǎn)評(píng)估[12].
1.2 可生物降解有機(jī)碳
可生物降解有機(jī)碳(BDOC)是溶解性有機(jī)碳(dissolved organic carbon, DOC)的一部分,指水體中能被異養(yǎng)菌代謝和利用的溶解性有機(jī)碳,是20世紀(jì)末評(píng)估水質(zhì)生物穩(wěn)定性的主要指標(biāo)之一[13].BDOC的測(cè)定方法由Servais等[14]發(fā)明,將待測(cè)水樣經(jīng)2m的濾膜過(guò)濾去除水樣中微生物后接種一定量同源細(xì)菌,在恒溫條件下培養(yǎng)并測(cè)定培養(yǎng)前后DOC的差值.
Servais等[15]認(rèn)為當(dāng)出廠水BDOC≤0.16 mg/L時(shí),即使管網(wǎng)中沒(méi)有消毒劑殘余也會(huì)保證其水質(zhì)生物穩(wěn)定性.Volk等[16]認(rèn)為水溫分別在20和15 ℃時(shí),對(duì)應(yīng)的BDOC值不高于0.15和0.3 mg/L時(shí),都能保證水質(zhì)生物穩(wěn)定性.van der Kooij等[17]卻認(rèn)為BDOC指標(biāo)不能用于預(yù)測(cè)管網(wǎng)水的微生物再繁殖水平,因?yàn)锽DOC參數(shù)與異養(yǎng)菌計(jì)數(shù)參數(shù)幾乎沒(méi)有相關(guān)性.Kaplan等[18]認(rèn)為BDOC側(cè)重于預(yù)測(cè)出廠水需氯量及消毒副產(chǎn)物的潛在生成量,可生物同化有機(jī)碳(AOC)更能夠評(píng)價(jià)微生物的再生水平.
事實(shí)上,BDOC的檢測(cè)方法限制了其作為生物穩(wěn)定性評(píng)價(jià)指標(biāo)的應(yīng)用.BDOC的檢出限由總有機(jī)碳分析儀決定,其測(cè)得的初始總有機(jī)碳(total organic carbon, TOC)值和最終TOC值非常相近,使得BDOC的檢出限偏高(0.1~0.2 mg/L),遠(yuǎn)低于AOC的測(cè)定精度[19].另外,BDOC最終礦化成CO2或同化成生物碳,因此,只有部分BDOC用于微生物再繁殖.目前,BDOC主要用來(lái)預(yù)測(cè)和衡量水處理單元特別是生物處理單元對(duì)有機(jī)物的去除效率,以及預(yù)測(cè)出廠水需氯量和消毒副產(chǎn)物的潛在生成量.
1.3 可生物同化有機(jī)碳
可生物同化有機(jī)碳(AOC)是指溶解性有機(jī)碳中能被微生物同化成自身菌體的部分,代表了最容易被生物降解的有機(jī)碳[20],是近20年來(lái)國(guó)內(nèi)外評(píng)價(jià)飲用水水質(zhì)生物穩(wěn)定性的主要指標(biāo)之一.van der Kooij等[17]發(fā)現(xiàn)出廠水AOC濃度與管網(wǎng)中的異養(yǎng)菌數(shù)有很大的相關(guān)性,最先提出以AOC作為水質(zhì)生物穩(wěn)定性評(píng)價(jià)指標(biāo),并得到一個(gè)指導(dǎo)性的結(jié)論:當(dāng)AOC質(zhì)量濃度低于10 μg/L乙酸碳時(shí),異養(yǎng)細(xì)菌幾乎不能生長(zhǎng),飲用水水質(zhì)生物穩(wěn)定性良好.LeChevallier 等[21]認(rèn)為在余氯質(zhì)量濃度大于0.5 mg/L或者氯胺質(zhì)量濃度大于1 mg/L的管網(wǎng)系統(tǒng)中,當(dāng)AOC質(zhì)量濃度低于50~100 μg/L時(shí),大腸桿菌的生長(zhǎng)受到限制.
最早的AOC測(cè)定方法由van der Kooij提出,即在巴氏滅菌后的待測(cè)水樣中接種50~500 cfu/mL熒光假單胞菌P17,于15 ℃恒溫培養(yǎng)期間通過(guò)平板計(jì)數(shù)獲得培養(yǎng)的細(xì)菌數(shù),再根據(jù)生長(zhǎng)因子換算成乙酸碳濃度[22- 23].之后, Kooij又增加一種可利用草酸的螺旋菌NOX作為測(cè)試菌種,將AOC的測(cè)定精度提高到微克級(jí),但 Kooij 的測(cè)定方法操作復(fù)雜、實(shí)驗(yàn)周期長(zhǎng).LeChevallier 等[24]將培養(yǎng)溫度提高到25 ℃,接種濃度增加至104cfu/mL,兩種測(cè)試菌在培養(yǎng) 2~3 d后達(dá)到穩(wěn)定期,改進(jìn)后的培養(yǎng)方法大大地縮短了培養(yǎng)時(shí)間,在AOC 測(cè)定中被廣泛采用.
但是,近年來(lái)有學(xué)者質(zhì)疑AOC作為評(píng)價(jià)生物穩(wěn)定性指標(biāo)的客觀性.研究表明,每消耗10 μg/L的有機(jī)碳,會(huì)導(dǎo)致每毫升水體中104~105個(gè)細(xì)菌生長(zhǎng)[10,25-26].即當(dāng)AOC濃度低于檢出限時(shí),仍然可能有大量的微生物增長(zhǎng).且AOC只是被異養(yǎng)菌消耗,當(dāng)水體中由于自養(yǎng)菌(如一些反硝化細(xì)菌和大多數(shù)氨氧化細(xì)菌)的繁殖而引起水質(zhì)生物穩(wěn)定性失衡時(shí),AOC指標(biāo)便失去指導(dǎo)意義[27].事實(shí)上,AOC依然是控制及優(yōu)化某些特定水處理過(guò)程的有效評(píng)價(jià)參數(shù),同時(shí)也是出廠水進(jìn)入管網(wǎng)前的主要評(píng)價(jià)指標(biāo).Lautenschlager等[27]認(rèn)為將AOC與總細(xì)胞濃度(TCC)、三磷酸腺苷(ATP)等評(píng)價(jià)指標(biāo)結(jié)合,多參數(shù)評(píng)價(jià)水質(zhì)生物穩(wěn)定性,在保證水質(zhì)安全和穩(wěn)定方面更具指導(dǎo)意義.
1.4 其他綜合評(píng)價(jià)指標(biāo)
總細(xì)胞濃度(TCC)指單位體積水體中存在的細(xì)菌數(shù)量,是表征微生物數(shù)量的直接參數(shù),通過(guò)細(xì)菌直接計(jì)數(shù)測(cè)得.與表征可培養(yǎng)細(xì)菌總數(shù)的HPC相比,TCC還包括了“活的不可培養(yǎng)”的細(xì)菌數(shù),因而能更為全面地評(píng)價(jià)水體中的微生物水平.早期TCC的測(cè)定主要借助顯微鏡來(lái)進(jìn)行細(xì)胞觀察計(jì)數(shù),隨后落射熒光顯微術(shù)的日趨成熟推動(dòng)了細(xì)菌直接計(jì)數(shù)技術(shù)的發(fā)展,但仍存在儀器操作、顯微鏡使用復(fù)雜,多種染色程序、數(shù)字圖像分析耗時(shí)等缺點(diǎn)[28],限制了TCC作為生物穩(wěn)定性評(píng)價(jià)指標(biāo)的大規(guī)模應(yīng)用.
三磷酸腺苷(ATP)是微生物細(xì)胞的“能量貨幣”,存在于所有活細(xì)胞中.研究表明,水中ATP含量與活細(xì)胞數(shù)量呈正相關(guān)關(guān)系,通過(guò)測(cè)定ATP含量可間接反映水環(huán)境中的活性生物量[29].ATP計(jì)數(shù)法即利用生物發(fā)光技術(shù)來(lái)測(cè)定微生物中的ATP量,測(cè)試原理是在待測(cè)水樣中加入一定比例的細(xì)胞裂解液,細(xì)胞裂解后釋放出ATP,在酶、氧氣、ATP的參與下發(fā)生酶促反應(yīng),放出光子并產(chǎn)生固定波長(zhǎng)的熒光,再利用熒光檢測(cè)儀檢測(cè)熒光信號(hào)獲得相對(duì)光單位(relative light units,RLU)數(shù)值.利用已知的ATP校準(zhǔn)曲線即可將RLU值轉(zhuǎn)換成ATP濃度.該方法不需要生物培養(yǎng)過(guò)程,檢測(cè)快、操作簡(jiǎn)便、成本較低[30],而且可以檢測(cè)水樣中不能培養(yǎng)的微生物,相較于HPC法具有明顯的優(yōu)勢(shì).但由于測(cè)得的ATP濃度難以直觀地表達(dá)活菌數(shù),需要通過(guò)轉(zhuǎn)換因子——單位細(xì)胞的ATP量(ATP-per-cell)或單位細(xì)胞體積的ATP量(ATP-per-biovolume)換算得到待測(cè)水體中的生物量[31].而轉(zhuǎn)換因子的確定方式復(fù)雜且尚存爭(zhēng)議,這使得傳統(tǒng)的ATP計(jì)數(shù)法在實(shí)驗(yàn)研究和常規(guī)檢測(cè)中受到一定的限制.
流式細(xì)胞術(shù)是一種對(duì)快速直線流動(dòng)狀態(tài)的單列細(xì)胞或生物顆粒進(jìn)行逐個(gè)、多參數(shù)、快速地定性、定量分析或分選的分析方法,具有檢測(cè)速度快、測(cè)量參數(shù)多、采集數(shù)據(jù)量大、分選純度高、分析全面、方法靈活等特點(diǎn)[32].流式細(xì)胞儀(flow cytometer,F(xiàn)CM) 是以流式細(xì)胞術(shù)為核心技術(shù)發(fā)展的分析測(cè)試儀器,其應(yīng)用于飲用水水質(zhì)微生物檢測(cè)使得快速測(cè)定水樣中細(xì)菌數(shù)得以實(shí)現(xiàn),可以用于測(cè)定水樣總細(xì)胞濃度,還能計(jì)數(shù)活性細(xì)胞和抗體細(xì)胞[33].
流式細(xì)胞儀由液流系統(tǒng)、光學(xué)系統(tǒng)、信號(hào)收集與轉(zhuǎn)換系統(tǒng)和分析系統(tǒng)組成.圖1為4參數(shù)流式細(xì)胞儀的工作原理[34].如圖1所示,染色后的細(xì)胞或顆粒懸浮液進(jìn)入液流系統(tǒng),在鞘液的包被下細(xì)胞或顆粒單行排列,依次進(jìn)入檢測(cè)區(qū),聚焦激光束垂直照射樣品流,產(chǎn)生散射光和激發(fā)熒光,被前向光電二極管(photodiode, PD)和側(cè)向90°方向的光電倍增管(photomultiplier tube, PMT)接收.前向光電二極管獲得前散射信號(hào)(forward light scatter, FSC),側(cè)向光電倍增管獲得側(cè)散射信號(hào)(side light scatter, SSC)和熒光信號(hào)(FL1, FL3等).FSC能夠反映細(xì)胞或顆粒的尺寸和折射率,SSC反映細(xì)胞內(nèi)部結(jié)構(gòu),熒光信號(hào)則反映被標(biāo)記細(xì)胞的生物特異性.測(cè)得不同參數(shù)的信號(hào)強(qiáng)度可用于區(qū)分各樣品的亞種群,例如分析白血球樣品時(shí),散射光信號(hào)可以用來(lái)區(qū)分單核細(xì)胞、淋巴細(xì)胞和粒性白細(xì)胞,再通過(guò)熒光信號(hào)分析細(xì)胞表面的抗原進(jìn)一步區(qū)分細(xì)胞[34].另外,不同染料與待測(cè)樣品中細(xì)胞特異性結(jié)合后,可獲得細(xì)胞總數(shù)、大小、活性、DNA含量等信息[9, 35].該方法測(cè)定水中細(xì)菌的檢測(cè)范圍為1×103~2×105cells/mL,濃度超過(guò)該范圍時(shí)對(duì)樣品進(jìn)行稀釋即可[36].
圖1 流式細(xì)胞儀基本原理Fig.1 Basic principle of flow cytometer
作為一個(gè)多功能的測(cè)試儀器,流式細(xì)胞儀應(yīng)用于飲用水水質(zhì)微生物檢測(cè)方面具有極大的優(yōu)勢(shì).基于流式細(xì)胞術(shù)改進(jìn)的AOC、TCC、ATP評(píng)價(jià)方法較傳統(tǒng)方法簡(jiǎn)單快速、準(zhǔn)確度更高,受到越來(lái)越多研究者的關(guān)注,改進(jìn)的TCC測(cè)定方法已被瑞士推廣為細(xì)菌數(shù)檢測(cè)的標(biāo)準(zhǔn)方法[12].
2.1 基于流式細(xì)胞術(shù)改進(jìn)的AOC評(píng)價(jià)方法
傳統(tǒng)的AOC測(cè)定方法采用平板計(jì)數(shù)來(lái)測(cè)量水樣培養(yǎng)前后的微生物量,操作繁瑣且耗時(shí)較長(zhǎng).Hammes等[37]提出全新的AOC測(cè)定方法,如圖2所示,以天然菌作為接種液,在經(jīng)0.22 μm濾膜過(guò)濾后的水樣中培養(yǎng)至穩(wěn)定期,利用流式細(xì)胞儀測(cè)定起始細(xì)菌濃度(cell conc. 1)和培養(yǎng)3 d后的細(xì)菌濃度(cell conc. 3),兩者的差值即為細(xì)菌增長(zhǎng)量,再通過(guò)統(tǒng)一的轉(zhuǎn)換系數(shù)k來(lái)獲得AOC值.該方法具有明顯的優(yōu)勢(shì),檢測(cè)時(shí)間大大縮短,而且操作簡(jiǎn)單,不需要特殊的菌源.
圖2 基于流式細(xì)胞術(shù)改進(jìn)的AOC測(cè)定方法Fig.2 Improved AOC measurement based on flow cytometry
2.2 基于流式細(xì)胞術(shù)改進(jìn)的TCC評(píng)價(jià)方法
基于流式細(xì)胞術(shù)改進(jìn)的TCC測(cè)定過(guò)程如圖3所示,水樣用經(jīng)0.22 μm濾膜過(guò)濾后的依云(Evian)水稀釋,加入1%的染料(SYBR Green I),在30 ℃黑暗環(huán)境下培養(yǎng)15 min左右,再用流式細(xì)胞儀測(cè)定[38].
圖3 基于流式細(xì)胞術(shù)改進(jìn)的TCC測(cè)定方法Fig.3 Improved TCC measurement based on flow cytometry
流式細(xì)胞術(shù)的引入極大地促進(jìn)了TCC作為飲用水處理和管網(wǎng)系統(tǒng)中水質(zhì)生物穩(wěn)定性評(píng)價(jià)指標(biāo)的推廣.基于流式細(xì)胞術(shù)改進(jìn)的TCC評(píng)價(jià)方法具有多方面的優(yōu)勢(shì)[27, 38]:1)全面,其檢出數(shù)據(jù)比HPC高2個(gè)數(shù)量級(jí),而且能檢測(cè)不能培養(yǎng)的細(xì)菌;2)靈敏,F(xiàn)CM能夠準(zhǔn)確地檢測(cè)出TCC低至5%的變化,相當(dāng)于常規(guī)水源水體0.5~5 μg/L的有機(jī)碳消耗,且檢出限低;3)穩(wěn)定,測(cè)試結(jié)果重現(xiàn)性好;4)省時(shí),與HPC測(cè)定時(shí)間至少需要24 h相比,流式細(xì)胞儀計(jì)數(shù)僅需15 min.
Hammes等[38]以瑞士某飲用水處理廠O3-GAC-UF工藝為研究對(duì)象,通過(guò)對(duì)各個(gè)工藝進(jìn)出水取樣檢測(cè),比較HPC、TCC、ATP 3個(gè)指標(biāo)用于評(píng)價(jià)水處理工藝微生物狀況的優(yōu)劣性,認(rèn)為基于流式細(xì)胞術(shù)改進(jìn)的TCC評(píng)價(jià)方法不僅較大程度地縮短了檢測(cè)時(shí)間,而且能檢測(cè)出不能培養(yǎng)的細(xì)菌,較HPC、ATP指標(biāo)具有顯著的優(yōu)勢(shì),這與Hoefel和Phe等[39-40]的研究結(jié)果一致.Lautenschlager等[27]對(duì)瑞士某大型管網(wǎng)系統(tǒng)中不同停留時(shí)間的管網(wǎng)點(diǎn)長(zhǎng)期連續(xù)取樣檢測(cè),利用多參數(shù)評(píng)價(jià)該管網(wǎng)系統(tǒng)水質(zhì)生物穩(wěn)定性.結(jié)果顯示利用流式細(xì)胞儀測(cè)得的TCC數(shù)據(jù)可靠,不僅能夠指示水質(zhì)惡化,還可以佐證AOC、TOC及HPC數(shù)據(jù).Siebel等[41]對(duì)實(shí)際給水管網(wǎng)取樣,研究了基于流式細(xì)胞術(shù)改進(jìn)方法測(cè)得的TCC、ATP及傳統(tǒng)的HPC指標(biāo)之間的相關(guān)性,發(fā)現(xiàn)ATP和TCC數(shù)據(jù)有較好的相關(guān)性,但二者與HPC的相關(guān)性均很弱.Liu等[42]的類似研究表明,TCC與ATP及HPC之間均沒(méi)有較好的相關(guān)性,但當(dāng)ATP質(zhì)量濃度大于3 ng/L時(shí),高核酸細(xì)菌(HNA bacteria)的濃度與ATP存在一定的線性相關(guān)性,這可能是由于TCC在檢測(cè)較低濃度的生物量變化時(shí)較ATP更為靈敏.
TCC直接反映了水體中的微生物總量,對(duì)水質(zhì)穩(wěn)定性的評(píng)價(jià)具有重要意義.一些研究人員認(rèn)為基于流式細(xì)胞法的TCC指標(biāo)將會(huì)成為水處理過(guò)程及管網(wǎng)系統(tǒng)中水質(zhì)的常規(guī)監(jiān)測(cè)指標(biāo),同時(shí)可以作為某些水處理工藝的設(shè)計(jì)和優(yōu)化參數(shù)[38-39, 43-45].然而,由于TCC還可能含有失去活性的細(xì)菌,不能充分地描述紫外消毒等工藝的效能.因此,將TCC與反映活性生物量的ATP或完整細(xì)胞濃度(intact cell concentration, ICC)結(jié)合起來(lái)用于評(píng)估水質(zhì)微生物狀況更具有指導(dǎo)意義[38,41].
2.3 基于流式細(xì)胞術(shù)改進(jìn)的ATP評(píng)價(jià)方法
流式細(xì)胞儀的應(yīng)用可較為準(zhǔn)確且相對(duì)簡(jiǎn)單地確定ATP與細(xì)菌量的轉(zhuǎn)化系數(shù),克服了ATP 計(jì)數(shù)法的限制.水樣經(jīng)碘化丙啶(PI)染色后可以用FCM快速測(cè)得完整細(xì)胞濃度ICC,從而計(jì)算出ATP-per-cell,利用FCM SSC數(shù)據(jù)可以估算微生物細(xì)胞體積,進(jìn)而求得ATP-per-biovolume[31].
Hammes 等[31]在評(píng)價(jià)水環(huán)境中天然微生物群落活性時(shí),分別從湖泊、溪流、地下水、管網(wǎng)中取大量水樣,利用基于流式細(xì)胞術(shù)改進(jìn)的ATP評(píng)價(jià)方法,發(fā)現(xiàn)微生物細(xì)胞ATP濃度與ICC、完整細(xì)胞體積濃度相關(guān)性良好,但與HPC濃度沒(méi)有相關(guān)性.并擬合得出平均的ATP-per-cell為1.75×10-10nmol/cell,平均的ATP-per-cell為2.95×10-9nmol/μm3.Velten等[46]利用基于流式細(xì)胞術(shù)改進(jìn)的ATP評(píng)價(jià)方法分析飲用水顆?;钚蕴可系纳锵?,得到ATP-per-cell值為(1.3~4.5)×10-10nmol/cell,與Magic-Knezev等[47]利用傳統(tǒng)的落射熒光顯微技術(shù)與ATP計(jì)數(shù)法結(jié)合所測(cè)得的顆?;钚蕴窟^(guò)濾器中細(xì)菌的ATP-per-cell(0.41×10-10nmol/cell)數(shù)值結(jié)果基本一致.
基于流式細(xì)胞術(shù)改進(jìn)的ATP評(píng)價(jià)方法不僅簡(jiǎn)化了轉(zhuǎn)化系數(shù)的確定過(guò)程,而且提高了測(cè)量精度,解決了制約ATP計(jì)數(shù)法推廣的主要難題.但其檢出限比較高,在檢測(cè)較低濃度的細(xì)菌量變化時(shí)沒(méi)有TCC靈敏;同時(shí)對(duì)于低核酸細(xì)菌( LNA bacteria),由于其每個(gè)細(xì)胞所含的ATP數(shù)量很少,很難用ATP法檢測(cè)其增長(zhǎng)[27,48].此外,ATP檢出濃度還受細(xì)胞大小、細(xì)胞活性、細(xì)胞生存能力等影響[49].近年來(lái),ATP計(jì)數(shù)法評(píng)價(jià)指標(biāo)已開(kāi)始用于飲用水、地下水、生物濾池、管網(wǎng)生長(zhǎng)環(huán)等水環(huán)境領(lǐng)域的生物量檢測(cè)[31].有研究人員認(rèn)為[9, 50],基于流式細(xì)胞術(shù)改進(jìn)的ATP評(píng)價(jià)方法可以作為飲用水常規(guī)監(jiān)測(cè)手段,ATP評(píng)價(jià)指標(biāo)可以用于監(jiān)測(cè)飲用水工藝過(guò)程中微生物活性的改變.
測(cè)定飲用水處理工藝或管網(wǎng)系統(tǒng)中水體的AOC、TCC、ATP等指標(biāo)能獲得微生物生長(zhǎng)潛能、細(xì)菌數(shù)量、活性等信息從而評(píng)價(jià)水質(zhì)變化,但不能分析水質(zhì)變化的根本原因.基于分子生物學(xué)技術(shù)的變性梯度凝膠電泳(denaturing gradient gel electrophoresis, DGGE)和焦磷酸測(cè)序(pyrosequencing)等新興評(píng)價(jià)方法可以根據(jù)水環(huán)境中生物群落的多樣性、種屬及其豐度等信息,快速確定水質(zhì)細(xì)菌學(xué)變化,并從微生物生態(tài)學(xué)角度分析水質(zhì)變化的根本原因,更深入地評(píng)價(jià)水質(zhì)安全性和生物穩(wěn)定性.
3.1 變性梯度凝膠電泳法
變性梯度凝膠電泳(DGGE)可以通過(guò)分離DNA片段來(lái)獲得微生物群落指紋信息,是目前應(yīng)用最為廣泛的DNA指紋技術(shù).其基本原理是長(zhǎng)度相同而堿基組成不同的微生物DNA序列在線性梯度濃度的DNA變性劑聚丙烯酰胺凝膠中發(fā)生解鏈,序列不同的DNA片段解鏈行為不同而導(dǎo)致其電泳遷移率不同[51],從而在凝膠上形成一系列電泳條帶,條帶的數(shù)量對(duì)應(yīng)于微生物群落中優(yōu)勢(shì)菌群的數(shù)量,條帶的多寡、亮度和位置則可以用來(lái)監(jiān)測(cè)微生物群落的改變,半定量地估計(jì)微生物種屬豐度.
基于聚合酶鏈?zhǔn)椒磻?yīng)(polymerase chain reaction, PCR)擴(kuò)增技術(shù)的DGGE(PCR-DGGE)由于可以通過(guò)直接的DNA提取獲得水樣中微生物群落指紋而被廣泛應(yīng)用.測(cè)試過(guò)程[52]如圖4所示,提取水樣中微生物DNA,得到不同菌群的DNA混合物;以該混合物為模板,與具有特異性的DNA引物對(duì)進(jìn)行PCR擴(kuò)增,得到長(zhǎng)度相同而堿基組成不同的各生物菌群DNA擴(kuò)增子;通過(guò)DGGE技術(shù)將DNA擴(kuò)增子分開(kāi),得到一系列電泳條帶,即為待測(cè)水樣的微生物群落指紋;將電泳條帶割膠純化,在PCR擴(kuò)增后進(jìn)行測(cè)序,獲得微生物具體種屬信息[53].
圖4 PCR-DGGE測(cè)定流程示意Fig.4 Process of PCR-DGGE measurement
DGGE可以實(shí)現(xiàn)多樣品同時(shí)測(cè)定,并快速確定微生物群落結(jié)構(gòu)變化,深入分析飲用水生物穩(wěn)定性的變化及其根本原因.Sekar等[54]利用HPC和DGGE方法對(duì)比評(píng)價(jià)實(shí)際管網(wǎng)的水質(zhì)生物穩(wěn)定性,發(fā)現(xiàn)DGGE更能反映管網(wǎng)水質(zhì)隨水力條件的變化.DGGE還可分析飲用水嗅味變化、評(píng)價(jià)不同給水處理工藝出水的細(xì)菌學(xué)水質(zhì),并被推薦用于描述和評(píng)價(jià)飲用水水質(zhì)變化[55-57].
3.2 焦磷酸測(cè)序
焦磷酸測(cè)序(Pyrosequencing)方法基于邊合成邊測(cè)序原理,通過(guò)磷酸法產(chǎn)生的光學(xué)信號(hào)分析獲得堿基信息,最終得到待測(cè)水樣中微生物的DNA序列.與已知DNA序列庫(kù)對(duì)照,可獲得微生物種屬及其豐度信息.其利用DNA聚合酶、ATP硫酸化酶、熒光素酶和雙磷酸酶的協(xié)同作用,將PCR反應(yīng)中每一個(gè)堿基的延伸與一次熒光信號(hào)的釋放偶聯(lián)起來(lái),通過(guò)記錄熒光信號(hào)的有無(wú)和強(qiáng)度,達(dá)到實(shí)時(shí)測(cè)定DNA序列的目的.
利用焦磷酸測(cè)序法檢測(cè)水環(huán)境樣本,可以通過(guò)分析群落結(jié)構(gòu)變化來(lái)判斷水質(zhì)的生物穩(wěn)定性,同時(shí)根據(jù)優(yōu)勢(shì)菌屬信息確定引起管網(wǎng)水微生物再生的主要因素,還能夠利用獲得的細(xì)菌種類及豐度信息來(lái)分析水質(zhì)惡化的根源,以提出相應(yīng)的水質(zhì)優(yōu)化方案.
Defalont等[58]利用焦磷酸測(cè)序分析管網(wǎng)水體中微生物的相互關(guān)系,發(fā)現(xiàn)87.6%的變形蟲(chóng)都負(fù)載了較多數(shù)量的潛在病原體分支桿菌.Pinto等[59]利用焦磷酸測(cè)序分析水源水質(zhì)及水處理單元對(duì)管網(wǎng)細(xì)菌群落結(jié)構(gòu)的影響,發(fā)現(xiàn)快速砂濾對(duì)管網(wǎng)水環(huán)境細(xì)菌的群落結(jié)構(gòu)起主要作用,可以利用過(guò)濾單元的微環(huán)境來(lái)控制微生物種類和數(shù)量,保證管網(wǎng)水質(zhì)生物穩(wěn)定性.焦磷酸測(cè)序還可與DGGE指紋技術(shù)聯(lián)合用于評(píng)價(jià)飲用水水質(zhì)生物穩(wěn)定性.Lautenschlager 等[27]利用DGGE和焦磷酸測(cè)序結(jié)合分析實(shí)際管網(wǎng)的水質(zhì)變化,得出停留時(shí)間較長(zhǎng)的管網(wǎng)水樣水質(zhì)發(fā)生變化的根本原因是叢毛單胞菌屬的增加;同時(shí)發(fā)現(xiàn)DGGE和焦磷酸測(cè)序的分析結(jié)果與基于流式細(xì)胞術(shù)改進(jìn)的TCC數(shù)據(jù)可以相互佐證,并認(rèn)為這兩個(gè)指標(biāo)可作為評(píng)價(jià)水質(zhì)生物穩(wěn)定性的補(bǔ)充指標(biāo).
焦磷酸測(cè)序法能夠檢測(cè)豐度<1%的菌群,可提供微生物種屬及豐度信息,測(cè)試結(jié)果可靠,同時(shí),其測(cè)試過(guò)程快速且操作簡(jiǎn)單,是目前應(yīng)用最廣泛的第二代測(cè)序平臺(tái).近年來(lái),具有更高性價(jià)比的Illumina測(cè)序平臺(tái)受到研究者的關(guān)注,并有逐漸替代焦磷酸測(cè)序的潛能[12,60].
微生物群落分析專業(yè)性強(qiáng),成本較高,在評(píng)價(jià)飲用水水質(zhì)生物穩(wěn)定性方面的應(yīng)用還較少,但是基于分子生物學(xué)技術(shù)的新興生物穩(wěn)定性評(píng)價(jià)方法可以深入地了解水處理過(guò)程及管網(wǎng)輸配過(guò)程水環(huán)境中微生物組成變化,對(duì)建立更完善的飲用水生物穩(wěn)定性評(píng)價(jià)指標(biāo)體系具有重要意義,為從根本上探究水質(zhì)生物穩(wěn)定性指明了方向.
傳統(tǒng)的水質(zhì)生物穩(wěn)定性評(píng)價(jià)方法檢測(cè)成本低、操作簡(jiǎn)單,為我國(guó)相關(guān)標(biāo)準(zhǔn)推薦的方法,但其存在準(zhǔn)確性差、分析結(jié)果局限等缺點(diǎn);基于流式細(xì)胞術(shù)改進(jìn)的評(píng)價(jià)方法檢測(cè)耗時(shí)少,測(cè)定結(jié)果更為可靠,有望在水質(zhì)監(jiān)測(cè)和工程應(yīng)用中推廣.基于分子生物學(xué)的評(píng)價(jià)方法能夠準(zhǔn)確獲得水環(huán)境中微生物群落信息,從微生物生態(tài)學(xué)角度分析水質(zhì)變化的根本原因,但其儀器及檢測(cè)成本均較高,目前在水質(zhì)檢測(cè)方面應(yīng)用還較少.隨著DNA測(cè)序成本的逐漸降低以及自動(dòng)化程度的提高,高通量測(cè)序有望成為水質(zhì)分析的輔助工具,為飲用水水質(zhì)安全提供有力的保障.
[1] KOOIJ VAN DER D. Biological stability: A multidimensional quality aspect of treated water[J]. Water, Air, and Soil Pollution, 2000, 123: 25-34.
[2] VITAL M, FüCHSLIN H P, HAMMES F, et al. Growth ofVibriocholeraeO1 Ogawa Eltor in freshwater[J]. Microbiology, 2007, 153(7): 1993-2001.
[3] VITAL M, DIGNUM M, MAGIC-KNEZEV A, et al. Flow cytometry and adenosine tri-phosphate analysis: Alternative possibilities to evaluate major bacteriological changes in drinking water treatment and distribution systems[J]. Water Research, 2012, 46(15): 4665-4676.
[4] FRANCISQUE A, RODRIGUEZ M J, MIRANDA-MORENO L F, et al. Modeling of heterotrophic bacteria counts in a water distribution system[J]. Water Research, 2009, 43(4): 1075-1087.
[5] BARTRAM J, COTRUVO J, EXNER M, et al. Heterotrophic plate count measurement in drinking water safety management[J]. International Journal of Food Microbiology, 2004, 92(3): 241-247.
[6] CARTER J T, RICE E W, BUCHBERGER S G, et al. Relationships between levels of heterotrophic bacteria and water quality parameters in a drinking water distribution system[J]. Water Research, 2000, 34(5): 1495-1502.
[7] ALLEN M J, EDBERG S C, REASONER D J. Heterotrophic plate count bacteria—what is their significance in drinking water?[J]. International Journal of Food Microbiology, 2004, 92(3): 265-274.
[8] REASONER D J. Heterotrophic plate count methodology in the United States[J]. International Journal of Food Microbiology, 2004, 92(3): 307-315.
[9] BERNEY M, VITAL M, HüLSHOFF I, et al. Rapid, cultivation-independent assessment of microbial viability in drinking water[J]. Water Research, 2008, 42(14): 4010-4018.
[10]KOOIJ VAN DER D, VROUWENVELDER J S, VEENENDAAL H R. Elucidation and control of biofilm formation processes in water treatment and distribution using the unified biofilm approach[J]. Water Science and Technology, 2003, 47(5): 83-90.
[11]BURTSCHER M M, ZIBUSCHKA F, MACH R L, et al. Heterotrophic plate count vs.in situ bacterial 16S rRNA gene amplicon profiles from drinking water reveal completely different communities with distinct spatial and temporal allocations in a distribution net[J]. Water Sa, 2009, 35(4): 495-504.
[12]DOUTERELO I, BOXALL J B, DEINES P, et al. Methodological approaches for studying the microbial ecology of drinking water distribution systems[J]. Water Research, 2014, 65: 134-156.
[14]SERVAIS P, BILLEN G, HASCOЁT M. Determination of the biodegradable fraction of dissolved organic matter in waters[J]. Water Research, 1987, 21(4): 445-450.
[15]SERVAIS P, ANZIL A, VENTRESQUE C. Simple method for determination of biodegradable dissolved organic-carbon in water[J]. Applied and Environmental Microbiology, 1989, 55(10): 2732-2734.
[16]VOLK C, RENNER C, ROBERT C, et al. Comparison of two techniques for measuring biodegradable dissolved organic carbon in water[J]. Environmental Technology, 1994, 15(6): 545-556.
[17]KOOIJ VAN DER D, VISSER A, ORANJE J P. Multiplication of fluorescent pseudomonads at low substrate concentrations in tap water.[J]. Antonie Van Leeuwenhoek, 1982, 48(3): 229-243.
[18]KAPLAN L A, NEWBOLD J D. Measurement of streamwater biodegradable dissolved organic carbon with a plug-flow bioreactor[J]. Water Research, 1995, 29(12): 2696-2706.
[19]ESCOBAR I C, RANDALL A A. Assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC): Complementary measurements[J]. Water Research, 2001, 35(18): 4444-4454.
[20]LIU Wenjun, WU Hongwei, WANG Zhansheng, et al. Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system[J]. Water Research, 2002, 36(4): 891-898.
[21]LECHEVALLIER M W, WELCH N J, SMITH D B. Full-scale studies of factors related to coliform regrowth in drinking water[J]. Applied and Environmental Microbiology, 1996, 62(7): 2201-2211.
[22]KOOIJ VAN DER D. Characterization and classification of fluorescent pseudomonads isolated from tap water and surface water[J]. Antonie Van Leeuwenhoek, 1979, 45(2): 225-240.
[23]KOOIJ VAN DER D. The occurrence ofPseudomonasspp. in surface water and in tap water as determined on citrate media[J]. Antonie Van Leeuwenhoek, 1977, 43(2): 187-197.
[24]LECHEVALLIER M W, SHAW N E, KAPLAN L A, et al. Development of a rapid assimilable organic-carbon method for water[J]. Applied and Environmental Microbiology, 1993, 59(5): 1526-1531.
[25]VELTEN S, BOLLER M, K?STER O, et al. Development of biomass in a drinking water granular active carbon (GAC) filter[J]. Water Research, 2011, 45(19): 6347-6354.
[26]HAMMES F, BERGER C, K?STER O, et al. Assessing biological stability of drinking water without disinfectant residuals in a full-scale water supply system[J]. Journal of Water Supply: Research and Technology-AQUA, 2010, 59(1): 31.
[27]LAUTENSCHLAGER K, HWANG C, LIU W, et al. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks[J]. Water Research, 2013, 47(9): 3015-3025.
[28]RINTA-KANTO J M, LEHTOLA M J, VARTIAINEN T, et al. Rapid enumeration of virus-like particles in drinking water samples using SYBR green I-staining[J]. Water Research, 2004, 38(10): 2614-2618.
[29]梁濤. 可生物同化有機(jī)碳在給水處理單元過(guò)程中的變化規(guī)律[D]. 哈爾濱:哈爾濱工業(yè)大學(xué), 2009. LIANG Tao. Variation of assimilable organic carbon in drinking water treatment processes[D]. Harbin:Harbin Institute of Technology, 2010.
[30]DELAHAYE E, WELTé B, LEVI Y, et al. An ATP-based method for monitoring the microbiological drinking water quality in a distribution network[J]. Water Research, 2003, 37(15): 3689-3696.
[31]HAMMES F, GOLDSCHMIDT F, VITAL M, et al. Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments[J]. Water Research, 2010, 44(13): 3915-3923.
[32]WATSON D A, BROWN L O, GASKILL D R, et al. A flow cytometer for the measurement of Raman spectra[J]. Cytometry Part A, 2008, 73A(2): 119-128.
[33]TUNG Yichung, ZHANG Ming, LIN Chihting, et al. PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes[J]. Sensors and Actuators B: Chemical, 2004, 98(2/3): 356-367.
[34]CHO S H, GODIN J M, CHEN Chunhao, et al. Review article: Recent advancements in optofluidic flow cytometer[J]. Biomicrofluidics, 2010, 4(4): 43001.
[35]GAWAD S, SCHILD L, RENAUD P. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing[J]. Lab On a Chip, 2001, 1(1): 76.
[36]文剛,王靜怡,黃廷林,等. 流式細(xì)胞儀在水處理中的應(yīng)用現(xiàn)狀與展望[J]. 中國(guó)給水排水, 2014, 30(18): 58-62. WEN Gang, WANG Jingyi, HUANG Tinglin, et al. Application of flow cytometer to water treatment: status and perspectives[J]. China Water & Wastewater, 2014,30(18):58-62.
[37]HAMMES F A, EGLI T. New method for assimilable organic carbon determination using flow-cytometric enumeration and a natural microbial consortium as inoculum[J]. Environmental Science & Technology, 2005, 39(9): 3289-3294.
[38]HAMMES F, BERNEY M, WANG Yingying, et al. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes[J]. Water Research, 2008, 42(1/2): 269-277.
[39]HOEFEL D, GROOBY W L, MONIS P T, et al. Enumeration of water-borne bacteria using viability assays and flow cytometry: A comparison to culture-based techniques[J]. Journal of Microbiological Methods, 2003, 55(3): 585-597.
[40]PHE M, DOSSOT M, GUILLOTEAU H, et al. Nucleic acid fluorochromes and flow cytometry prove useful in assessing the effect of chlorination on drinking water bacteria[J]. Water Research, 2005, 39(15): 3618-3628.
[41]SIEBEL E, WANG Yingying, EGLI T, et al. Correlations between total cell concentration, total adenosine tri-phosphate concentration and heterotrophic plate counts during microbial monitoring of drinking water[J]. Drinking Water Engineering and Science Discussions, 2008, 1(1): 71-86.
[42]LIU Gang, MARK van der E J, VERBERK J Q J C, et al. Flow cytometry total cell counts: A field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems[J]. BioMed Research International, 2013, 2013: 1-10.
[43]WANG Yingying, HAMMES F, ROY DE K, et al. Past, present and future applications of flow cytometry in aquatic microbiology[J]. Trends in Biotechnology, 2010, 28(8): 416-424.
[44]HO L, BRAUN K, FABRIS R, et al. Comparison of drinking water treatment process streams for optimal bacteriological water quality[J]. Water Research, 2012, 46(12): 3934-3942.
[45]PREST E I, HAMMES F, K?TZSCH S, et al. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method[J]. Water Research, 2013, 47(19): 7131-7142.
[46]VELTEN S, HAMMES F, BOLLER M, et al. Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination[J]. Water Research, 2007, 41(9): 1973-1983.
[47]MAGIC-KNEZEV A, KOOIJ VAN DER D. Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment[J]. Water Research, 2004, 38(18): 3971-3979.
[48]WANG Yingying, HAMMES F, BOON N, et al. Isolation and characterization of low nucleic acid (LNA)-content bacteria[J]. Isme Journal, 2009, 3(8): 889-902.
[49]KARL D M. Cellular nucleotide measurements and applications in microbial ecology[J]. Microbiological Reviews, 1980, 44(4):739-796.
[50]WIELEN VAN DER P W J J, KOOIJ VAN DER D. Effect of water composition, distance and season on the adenosine triphosphate concentration in unchlorinated drinking water in the Netherlands[J]. Water Research, 2010, 44(17): 4860-4867.
[51]MUYZER G, SMALLA K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology[J]. Antonie Van Leeuwenhoek, 1998, 73(1): 127-141.
[52]ERCOLINI D. PCR-DGGE fingerprinting: Novel strategies for detection of microbes in food[J]. Journal of Microbiological Methods, 2004, 56(3): 297-314.
[53]DOUTERELO I, BOXALL J B, DEINES P, et al. Methodological approaches for studying the microbial ecology of drinking water distribution systems[J]. Water Research, 2014, 65: 134-156.
[54]SEKAR R, DEINES P, MACHELL J, et al. Bacterial water quality and network hydraulic characteristics: A field study of a small, looped water distribution system using culture-independent molecular methods[J]. Journal of Applied Microbiology, 2012, 112(6): 1220-1234.
[55]OTTERHOLT E, CHARNOCK C. Identification and phylogeny of the small eukaryote population of raw and drinking waters[J]. Water Research, 2011, 45(8): 2527-2538.
[56]HO L, BRAUN K, FABRIS R, et al. Comparison of drinking water treatment process streams for optimal bacteriological water quality[J]. Water Research, 2012, 46(12): 3934-3942.
[57]LI Zonglai, HOBSON P, WEI An, et al. Earthy odor compounds production and loss in three cyanobacterial cultures[J]. Water Research, 2012, 46(16): 5165-5173.
[58]DELAFONT V, MOUGARI F, CAMBAU E, et al. First evidence of amoebae-mycobacteria association in drinking water network[J]. Environmental Science & Technology, 2014, 48(20): 11872-11882.
[59]PINTO A J, XI Chuanwu, RASKIN L. Bacterial community structure in the drinking water microbiome is governed by filtration processes[J]. Environmental Science & Technology, 2012, 46(16): 8851-8859.
[60]LUO Chengwei, TSEMENTZI D, KYRPIDES N, et al. Direct comparisons of illumina vs. roche 454 sequencing technologies on the same microbial community DNA sample[J]. Plos One, 2012, 7(e300872).
(編輯 劉 彤)
Review article: Evaluation methods of biological stability in drinking water
LONG Zhiyun1,2, YANG Jiaxuan1,2, YANG Xiaohang3, JIA Ruokun3, ZHAO Ming1,2, MA Jun1,2
(1.State Key Lab of Urban Water Resource and Environment (Harbin Institute of Technology),Harbin 150090, China; 2.School of Municipal and Environmental Engineering, Harbin Institute of Technology,Harbin 150090, China;3.College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China)
Biostability plays an important role in keeping drinking water quality and safety. Methods of biostability assessment are reviewed, including main indicators, traditional analytical methods and emerging ones. Merits and demerits of different analytical methods are discussed respectively. Time-consuming and inaccurate, traditional methods are acknowledged to be inadequate in the evaluation of drinking water quality. Improved methods, e.g. assimilable organic carbon (AOC), total cell concentration (TCC), adenosine tri-phosphate (ATP) methods based on flow cytometry (FCM), are accurate, simple and economical, and thus have shown tremendous potential in water monitoring and engineering practice. Emerging molecular biological methods, e.g. denaturing gradient gel electrophoresis (DGGE) and pyrosequencing, offer an insight into the changes of microbiology compositions in water treatments and distribution, and fundamentally reflect the biological stability of water quality.
biological stability; assessment method; flow cytometer; molecular method; drinking water; water quality
10.11918/j.issn.0367-6234.2017.02.001
2015-08-10
高等學(xué)??萍紕?chuàng)新工程重大項(xiàng)目培育資金項(xiàng)目(7050013);黑龍江省應(yīng)用研究項(xiàng)目(GA13C302)
龍智云(1990—),女,碩士研究生; 馬 軍(1962—),男,博士生導(dǎo)師,長(zhǎng)江學(xué)者特聘教授
趙 明,zhming1188@126.com; 馬 軍,majunhit@126.com
TU991.21
A
0367-6234(2017)02-0182-07