宋 鵬,李云開(kāi),李久生,裴旖婷
?
加氯及毛管沖洗控制再生水滴灌系統(tǒng)灌水器堵塞
宋 鵬1,李云開(kāi)1※,李久生2,裴旖婷1
(1. 中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京,100083;2. 中國(guó)水利水電科學(xué)研究院流域水循環(huán)模擬與調(diào)控國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京,100048)
再生水滴灌系統(tǒng)中灌水器生物堵塞與其內(nèi)部堵塞物質(zhì)-附生生物膜的形成、生長(zhǎng)有著密切關(guān)系,加氯配合毛管沖洗既可以借助加氯殺菌抑制微生物生長(zhǎng),又可以利用毛管沖洗的剪切力作用而促進(jìn)毛管內(nèi)部堵塞物質(zhì)的脫落而沖出系統(tǒng)外部,有望成為一種控制灌水器內(nèi)部生物膜形成與堵塞的有效措施。為此,借助周期循環(huán)式活性污泥法(cyclic activated sludge system,CASS)工藝污水處理廠現(xiàn)場(chǎng)再生水滴灌系統(tǒng)灌水器堵塞試驗(yàn),研究毛管沖洗、加氯、加氯配合毛管沖洗3種模式對(duì)再生水滴灌系統(tǒng)灌水器堵塞控制效果。研究發(fā)現(xiàn)加氯配合毛管沖洗可有效降低灌水器內(nèi)附生生物膜中微生物的數(shù)量,較單獨(dú)的毛管沖洗、加氯以及未進(jìn)行任何處理?xiàng)l件下微生物磷脂脂肪酸(phospholipid fatty acids,PLFAs)含量分別降低了52.2%、44.2%、73.2%,微生物分泌的黏性胞外聚合物(extracellular polymeric substances,EPS)含量也分別降低了約28.0%、22.9%、63.9%,在微生物及其分泌的黏性多聚物的共同作用下,使得灌水器內(nèi)部堵塞物質(zhì)總量分別降低了47.4%、43.1%、69.1%,進(jìn)而使得灌水器相對(duì)平均流量和灌水均勻度最高分別提升了40.0%、53.0%,灌水均勻度(coefficient of uniformity,CU)達(dá)到了70%以上。同時(shí)表明在推遲加氯起始時(shí)間后(即灌水器相對(duì)平均流量(discharge ratio variation,Dra)降至80%開(kāi)始加氯),加氯仍可以達(dá)到滿意的堵塞控制效果。但加氯配合毛管沖洗也會(huì)顯著增加微生物活性,分別提升了36.5%、29.0%、15.7%,這也使得對(duì)灌水器堵塞的恢復(fù)效果逐漸降低。
灌溉;微生物;加氯;灌水器堵塞;再生水;毛管沖洗
污水處理再生后回用灌溉是緩解全球性水資源緊缺問(wèn)題的有效途徑之一,滴灌因其精量、可控、高效等優(yōu)點(diǎn)是節(jié)水灌溉的方向,同時(shí)也成為再生水灌溉的有效可靠方式[1-2]。由于再生水水質(zhì)的復(fù)雜性,其中含有豐富的微生物群落以及微生物生長(zhǎng)所需的營(yíng)養(yǎng)物質(zhì)、懸浮顆粒物等均能通過(guò)過(guò)濾器,并進(jìn)入到滴灌系統(tǒng)。事實(shí)上,水環(huán)境中細(xì)菌等微生物很少會(huì)以游離態(tài)存在,90%以上的微生物通常會(huì)附著到固體基質(zhì)表面以生物膜的形式存在,微生物幾乎可以附生在任何與水接觸的固體表面[3-4],這也意味著進(jìn)入再生水滴灌系統(tǒng)中的微生物也將在系統(tǒng)各部位形成附生生物膜。大量研究顯示再生水滴灌系統(tǒng)灌水器生物堵塞與生物膜的形成、生長(zhǎng)有著密切關(guān)系[2,5-6]。因此,通過(guò)抑制滴灌灌水器內(nèi)附生生物膜的生長(zhǎng)對(duì)于控制生物堵塞具有重要意義。
再生水滴灌系統(tǒng)的加氯控制模式經(jīng)驗(yàn)取自飲用水氯消毒技術(shù),自20世紀(jì)初,氯作為消毒劑應(yīng)用于飲用水中滅活致病菌和病毒已有一個(gè)世紀(jì)。常用的加氯原料為氯氣和次氯酸鹽(次氯酸鈉NaClO或次氯酸鈣Ca(ClO)2),氯的強(qiáng)氧化作用可以殺死或抑制微生物(細(xì)菌)的繁殖和生長(zhǎng),防止黏液和塊狀物的形成,從而能夠有效地減輕滴灌灌水器生物堵塞問(wèn)題[7],國(guó)內(nèi)外學(xué)者通過(guò)研究提出的加氯方式、濃度、頻率、加氯持續(xù)時(shí)間等不盡相同[8-13],目前尚未形成普遍可以執(zhí)行的施用技術(shù)標(biāo)準(zhǔn),加氯濃度范圍從1~20 mg/L到100~500 mg/L[14-18],甚至有研究發(fā)現(xiàn)低濃度的氯使原來(lái)沉積在管壁上的微生物懸浮在水體中,反而增加了堵塞的可能性[19]。毛管沖洗是常用的滴灌系統(tǒng)維護(hù)方法。滴灌系統(tǒng)必須有良好和持續(xù)的過(guò)濾、水處理、沖洗和維修計(jì)劃,以確保其長(zhǎng)期使用[20]。毛管沖洗是借助水力剪切力將毛管內(nèi)壁附生生物膜脫落、沖出滴灌系統(tǒng)體外而降低對(duì)灌水器堵塞的方法,長(zhǎng)期定期進(jìn)行沖洗可以有效控制顆粒物和毛管內(nèi)壁附生生物膜的形成[1]。然而生物膜由于其低比重與高黏附特性,單純的化學(xué)加氯或毛管沖洗對(duì)生物膜去除率有限[20],如果將二者結(jié)合,充分發(fā)揮各自優(yōu)勢(shì),有望顯著提升抑制灌水器內(nèi)生物膜的生長(zhǎng)以及控堵效果,但目前還未見(jiàn)相關(guān)的研究報(bào)道。
為此,開(kāi)展了周期循環(huán)式活性污泥法(cyclic activated sludge system,CASS)工藝再生水現(xiàn)場(chǎng)滴灌系統(tǒng)灌水器堵塞試驗(yàn),測(cè)試、分析了化學(xué)加氯配合毛管沖洗對(duì)灌水器內(nèi)附生生物膜中微生物數(shù)量與種類、活性及黏性胞外多聚物的影響,進(jìn)而明確其對(duì)灌水器內(nèi)部附生生物膜總量與灌水器堵塞的控制效應(yīng),旨在建立適宜的再生水滴灌系統(tǒng)灌水器堵塞控制模式:化學(xué)加氯配合毛管沖洗。
1.1 試驗(yàn)處理
主要設(shè)計(jì)了加氯+毛管沖洗、單純的加氯、單純的毛管沖洗3種處理,不進(jìn)行任何堵塞控制措施作為對(duì)照。加氯根據(jù)李久生等[7]提出的滴灌加氯控堵適宜的余氯濃度為5.00 mg/L進(jìn)行加氯(標(biāo)記為C5),毛管沖洗根據(jù)閆大壯等[21]研究提出的再生水滴灌系統(tǒng)灌水器控堵適宜的毛管沖洗流速為0.45 m/s(標(biāo)記為F0.45),不加氯標(biāo)記為C0,不沖洗處理標(biāo)記為F0,為此3個(gè)處理分別標(biāo)記為C5+F0.45、C5+F0、C0+F0.45,對(duì)照標(biāo)記為C0+F0。每個(gè)處理設(shè)置2個(gè)重復(fù)。
1.2 試驗(yàn)裝置
試驗(yàn)在北七家污水處理廠出水池附近空地進(jìn)行,試驗(yàn)裝置如圖1所示。水源為再生水出水池,采用自吸泵(1.5 kW,額定流量10 m3/h,揚(yáng)程45 m)供水,每個(gè)處理首部設(shè)置回水處理防止水泵空轉(zhuǎn)、穩(wěn)定水流等故障,同時(shí)設(shè)置“日”或“目”字循環(huán)管路防止通水初期造成水錘或水擊;首部設(shè)置0.125 mm孔徑疊片過(guò)濾器,安裝精度為0.4%、量程為0.16 MPa的壓力表,保證滴灌管首部供水壓力為0.1 MPa。每條毛管鋪設(shè)長(zhǎng)度為12 m,40個(gè)灌水器,具體參數(shù)如表1。系統(tǒng)采用時(shí)序調(diào)控器實(shí)現(xiàn)自動(dòng)開(kāi)關(guān),每周周一至周五運(yùn)行,每天運(yùn)行5 h,加氯與沖洗頻率均為2周一次(即時(shí)間間隔為50 h)。試驗(yàn)第一階段從2012年5月7日開(kāi)始,到2012年11月20日結(jié)束,累計(jì)運(yùn)行600 h,為防止凍壞將滴灌管收入室內(nèi)放置;第二階段從2013年4月8日開(kāi)始,至2013年5月5日結(jié)束,屆時(shí)對(duì)照組基本完全堵塞(相對(duì)平均流量discharge ratio variation,Dra=25%),第二階段累計(jì)運(yùn)行100 h,系統(tǒng)累計(jì)運(yùn)行700 h。
表1 灌水器特征參數(shù)
1.3 加氯、沖洗處理方式
當(dāng)?shù)喂嘞到y(tǒng)運(yùn)行至灌水器相對(duì)平均流量下降至Dra=80%左右時(shí)開(kāi)始進(jìn)行加氯與毛管沖洗處理,加氯原料采用次氯酸鈉溶液,為了增強(qiáng)加氯處理的殺菌效果,加氯開(kāi)始前向再生水中加入適量的鹽酸(HCl),使再生水的pH值控制在6左右。加入鹽酸的劑量通過(guò)在加酸過(guò)程中監(jiān)測(cè)再生水的pH值(SevenGo pro, Mettler Toledo, Switzerland)來(lái)實(shí)時(shí)調(diào)節(jié)。通常情況下一次加氯處理試驗(yàn)1 m3水中加入240 mL鹽酸。每次加氯持續(xù)1 h,加氯過(guò)程中每10 min在毛管末端取水樣測(cè)試余氯濃度(EXTECH-CL200 Extech Instruments Corporation, United States),通過(guò)實(shí)時(shí)調(diào)整可調(diào)式比例泵(MixRite 2504, Tefen, Israel)調(diào)節(jié)加氯濃度,使滴灌系統(tǒng)末端余氯濃度與設(shè)計(jì)值一致。加氯結(jié)束后系統(tǒng)停止運(yùn)行12 h,使得余氯特別是HClO小分子充分地進(jìn)行殺菌作用。毛管沖洗處理在加氯持續(xù)12 h后進(jìn)行,沖洗時(shí)打開(kāi)系統(tǒng)尾部沖洗閥門,將沖洗微調(diào)閥門全開(kāi),同時(shí)通過(guò)主管道閥門配合電磁流量計(jì)控制沖洗流速,每次沖洗持續(xù)時(shí)間為5 min,沖洗完成后關(guān)閉沖洗閥門,將壓力調(diào)至系統(tǒng)運(yùn)行壓力(0.1 MPa)。
1.4 試驗(yàn)用再生水水質(zhì)
試驗(yàn)用再生水采用的處理工藝為周期循環(huán)式活性污泥法(CASS),是在間歇式活性污泥法(sequencing batch reactor activated sludge process,SBR)的基礎(chǔ)上演變而來(lái)的。試驗(yàn)期間水質(zhì)每日監(jiān)測(cè)化學(xué)需氧量(chemical oxygen demand,COD)、固體懸浮物(suspended substance,SS)、氨氮(NH4+-N)、總磷(total phosphorus,TP)、pH值和溫度等水質(zhì)參數(shù),統(tǒng)計(jì)結(jié)果如表2所示。
表2 水質(zhì)參數(shù)統(tǒng)計(jì)值
1.5 灌水器堵塞評(píng)價(jià)方法與堵塞物質(zhì)取樣
通過(guò)灌水器流量測(cè)試來(lái)評(píng)估加氯與毛管沖洗處理對(duì)堵塞的影響。對(duì)照組每2周測(cè)試1次,沿著每條毛管布置方向,每個(gè)灌水器下面放置雨量筒。采用稱重法對(duì)每個(gè)灌水器流量進(jìn)行測(cè)試,測(cè)試歷時(shí)3 min。加氯處理組在加氯前、加氯后分別進(jìn)行流量測(cè)試。毛管沖洗處理組也在沖洗處理(沖洗持續(xù)時(shí)間5 min)結(jié)束后再測(cè)試一次。依據(jù)Pei等[22]所提出的方法來(lái)進(jìn)行灌水器實(shí)測(cè)流量校正,消除水溫、壓力、相鄰灌水器堵塞所造成的影響。灌水器堵塞評(píng)價(jià)指標(biāo)采用相對(duì)平均流量(discharge ratio variation,Dra)、灌水均勻度(coefficient of uniformity,CU),參考Li 等[23]所使用的計(jì)算方法進(jìn)行評(píng)估。
試驗(yàn)中共取樣2次,第一次取樣是在加氯+毛管沖洗處理組灌水均勻度下降到80%時(shí)進(jìn)行,此時(shí)系統(tǒng)累計(jì)運(yùn)行500 h;第2次取樣為灌水器相對(duì)平均流量下降至75%時(shí)進(jìn)行,此時(shí)系統(tǒng)累計(jì)運(yùn)行600 h,2次取樣主要是參考ISO(International Organization for Standardization)提出的堵塞判斷標(biāo)準(zhǔn)[24]。由于以往試驗(yàn)表明毛管在首(1-3)、中(19-21)、尾(38-40)3處鄰近位置灌水器表現(xiàn)較為一致[23],取樣時(shí)分別截取每個(gè)處理的首、中、尾各3個(gè)灌水器樣本,采樣后立即封入自封袋,并放入冰箱內(nèi)4 ℃保存。后期測(cè)試時(shí)將3個(gè)灌水器樣品混合求其平均值作為該處理的最終樣品。每個(gè)處理2條毛管分別作為2次取樣用。參考Zhou 等[25]提出生物膜提取和測(cè)試方法,測(cè)試生物膜固體顆粒物(solid particles,SD)含量、磷脂脂肪酸(PLFAs)含量與分布以及胞外聚合物(EPS)含量。微生物活性(microbial activity,MA)是生物膜分析中的重要參數(shù),它表示了單位載體生物膜中所附著生長(zhǎng)的微生物進(jìn)行新陳代謝活動(dòng)的強(qiáng)度,利用黏性胞外聚合物含量與固體顆粒物含量的比值(CEPS/CSD)進(jìn)行估算參考[23]。
1.6 統(tǒng)計(jì)分析
為了分析毛管沖洗+加氯處理與單純的毛管沖洗、單純的化學(xué)加氯及對(duì)照組灌水器內(nèi)微生物含量、黏性胞外多聚物含量之間的差異性,采用兩兩配對(duì)t檢驗(yàn)分析不同處理之間差異的顯著性,統(tǒng)計(jì)分析過(guò)程利用SPSS(Version13.0)軟件完成。
2.1 加氯配合毛管沖洗對(duì)灌水器內(nèi)附生生物膜微生物數(shù)量的影響
圖2為不同處理?xiàng)l件下毛管首、中、尾灌水器附生生物膜中微生物PLFAs含量變化。從圖中可以看出,第二次取樣時(shí)加氯+毛管沖洗處理組微生物PLFAs質(zhì)量分?jǐn)?shù)平均值為18.8g較對(duì)照組平均降低了73.2%,較單純的加氯或毛管沖洗處理微生物PLFAs含量分別降低了44.2%、52.2%。顯著性檢驗(yàn)后發(fā)現(xiàn)(<0.01,見(jiàn)表3),加氯配合毛管沖洗處理組灌水器內(nèi)微生物數(shù)量與其他3個(gè)處理組灌水器內(nèi)微生物數(shù)量差異達(dá)到極顯著水平,說(shuō)明加氯配合毛管沖洗處理對(duì)降低灌水器內(nèi)微生物含量效果顯著。相同處理不同位置的灌水器中微生物PLFAs含量表現(xiàn)出隨著毛管布置方向逐漸增加的變化趨勢(shì)。2次取樣各處理之間PLFAs含量變化較為一致。比較單純的加氯或毛管沖洗2種處理的效果,首、中、尾不同位置灌水器內(nèi)微生物PLFAs含量并未表現(xiàn)出一致的變化趨勢(shì),毛管沖洗處理首、中部灌水器內(nèi)微生物PLFAs含量要平均高于加氯處理組24.3%,而尾部則恰好相反,毛管沖洗處理的PLFAs含量較加氯處理平均降低9.2%。主要是因?yàn)槭撞考勇葰⒕Ч黠@,隨著毛管鋪設(shè)方向延長(zhǎng),生物膜含量增加,黏性增強(qiáng),剪切力效果減弱。
表3 不同處理組內(nèi)微生物數(shù)量差異性分析
注:表中以N表示差異不顯著,*表示差異顯著(<0.05),**表示差異極顯著(<0.01).
Note: In the table, N indicates no significant difference, * means significant difference (<0.05), ** means extremely significant difference (<0.01)
2.2 加氯配合毛管沖洗對(duì)灌水器內(nèi)附生生物膜微生物種類的影響
圖3顯示了不同處理?xiàng)l件下毛管首、中、尾灌水器內(nèi)部附生生物膜微生物PLFAs種類的分布情況。從中可以看出灌水器內(nèi)微生物PLFAs含有12種,主要包括細(xì)菌:10:0、14:0、a14:0、i15:0、a16:0、16:0、17:0、18:1w7t、18:0、20:0,真菌:18:2w6,9c、18:1w9c。加氯與毛管沖洗處理對(duì)灌水器內(nèi)微生物PLFAs種類的影響顯著,經(jīng)過(guò)加氯與毛管沖洗后灌水器內(nèi)微生物種類由原來(lái)的10種下降到5種,其中真菌消失,并添加了17:0這種新的菌群。單純的毛管沖洗微生物種類下降至3種,單純的加氯處理微生物種類下降至4種。灌水器內(nèi)微生物群落結(jié)構(gòu)發(fā)生變化,加氯配合毛管沖洗下微生物出現(xiàn)抗性細(xì)菌。加氯前后優(yōu)勢(shì)菌沒(méi)有發(fā)生變化,均為假單胞桿菌16:0、嗜熱解氫桿菌18:0,但各處理間所占比例差異明顯。
2.3 加氯配合毛管沖洗對(duì)灌水器內(nèi)附生生物膜中微生物活性的影響
圖4顯示了加氯配合沖洗條件下灌水器內(nèi)微生物活性MA的動(dòng)態(tài)變化情況。從中可以看出,單純的加氯或毛管沖洗條件下灌水器內(nèi)附生生物膜中微生物的活性受到了抑制,與對(duì)照組相比分別平均下降了15.2%、10.3%,而加氯+毛管沖洗處理微生物活性表現(xiàn)出相反的趨勢(shì),較對(duì)照組提高了15.7%。這主要是由于毛管沖洗或加氯導(dǎo)致毛管內(nèi)微生物數(shù)量和種類較少,微生物分泌的黏性物質(zhì)減少,固體顆粒物易沉積,微生物活性降低,而二者結(jié)合,加氯殺死微生物的同時(shí)配合毛管沖洗帶走脫落的顆粒物,這使得生物膜不斷地生長(zhǎng)-脫落,微生物產(chǎn)生抗性,抗性菌的產(chǎn)生增加了微生物活性,來(lái)適應(yīng)不斷變化的外部環(huán)境。加氯+毛管沖洗雖然可以抑制生物膜的生長(zhǎng),但不能完全避免其發(fā)生,隨著微生物活性的升高及對(duì)環(huán)境的適應(yīng),存在灌水器堵塞的潛在風(fēng)險(xiǎn)。
2.4 加氯配合毛管沖洗對(duì)灌水器內(nèi)附生生物膜中微生物分泌的黏性EPS的影響
圖5顯示了加氯配合毛管沖洗條件下首、中、尾灌水器內(nèi)附生生物膜微生物分泌的黏性EPS含量變化情況。從中可以看出加氯+毛管沖洗處理顯著(<0.01)抑制了黏性EPS的分泌,第二次取樣時(shí)黏性EPS均值為0.47 mg/g,相比于未加任何處理措施以及單純的加氯、毛管沖洗處理的EPS含量平均降低了63.9%、22.9%、28.0%,這說(shuō)明黏性EPS得到了有效抑制,降低了吸附游離顆粒物及微生物的可能,進(jìn)而減輕了灌水器堵塞的風(fēng)險(xiǎn)。對(duì)于不同位置的灌水器,表現(xiàn)出沿毛管方向黏性EPS含量逐漸增加的變化趨勢(shì),這與微生物PLFAs含量的變化一致。比較單純的加氯與毛管沖洗抑制效果而言,不同位置灌水器內(nèi)黏性EPS含量并未表現(xiàn)出一致的變化趨勢(shì),對(duì)于首部灌水器而言毛管沖洗對(duì)黏性EPS的分泌抑制效果優(yōu)于加氯處理,黏性EPS含量平均降低了21.4%,而對(duì)于中部、尾部灌水器而言則表現(xiàn)出相反的變化規(guī)律,平均增加了21.9%。
表4 不同處理組微生物分泌的黏性EPS差異性分析
注:表中以N表示差異不顯著,*表示差異顯著(<0.05),**表示差異極顯著(<0.01)。
Note: In the table, N means no significant difference, * means significant difference (<0.05) , ** means extremely significant difference (<0.01).
本文通過(guò)CASS工藝再生水現(xiàn)場(chǎng)滴灌試驗(yàn),研究發(fā)現(xiàn)加氯可以直接殺死灌水器內(nèi)附生生物膜中的微生物,從而減少堵塞物質(zhì),而毛管沖洗雖然減少了堵塞物,但增加了毛管內(nèi)壁脫落的生物膜進(jìn)入灌水器發(fā)生再次堵塞的風(fēng)險(xiǎn)。加氯配合毛管沖洗較2種模式單獨(dú)施用具有更明顯的控堵效果。加氯配合毛管沖洗可以有效控制微生物數(shù)量與種類、降低黏性EPS的分泌能力,這主要是因?yàn)楣嗨髁鞯纼?nèi)懸浮顆粒物的粘結(jié)、附著機(jī)會(huì)降低,黏性降低也會(huì)使得堵塞物質(zhì)的生物膜更為容易脫落,進(jìn)而使堵塞物質(zhì)總量大幅降低。加氯+毛管沖洗處理的SD含量較對(duì)照組以及單純的加氯、毛管沖洗的含量分別平均下降了69.1%、43.1%、47.4%(見(jiàn)圖6)。堵塞物質(zhì)含量的減少也意味著可以進(jìn)一步減緩灌水器的堵塞程度,相對(duì)平均流量(Dra)、灌水均勻度(CU)分別較對(duì)照組提升了40.0%、53.0%;較單純的加氯與毛管沖洗處理的Dra也分別提升了7.4%、7.8%,CU也分別提升了12.4%、10.3%(見(jiàn)圖7)。
毛管首、中、尾3部分PLFAs、EPS及SD含量變化并未表現(xiàn)出一致性,其中首、中部PLFAs和SD含量變化趨勢(shì)相同,且含量均低于尾部,這與Ravina等[2,26]發(fā)現(xiàn)堵塞一般是從毛管末端的灌水器開(kāi)始的,末端的灌水器較容易堵塞相一致;Puig-Bargués等[27]也發(fā)現(xiàn)灌水器堵塞主要受灌水器在毛管中的位置影響,毛管尾部的灌水器容易堵塞的研究結(jié)果相似。說(shuō)明在滴灌系統(tǒng)正常運(yùn)行時(shí)首部剪切力的作用效果高于營(yíng)養(yǎng)物質(zhì)的供給,而營(yíng)養(yǎng)匱乏的尾部灌水器上,沖洗帶來(lái)灌水器生物膜的營(yíng)養(yǎng)供給對(duì)生物膜生長(zhǎng)的影響逐漸高于剪切力的影響;氯的強(qiáng)氧化性作用對(duì)首部黏性EPS的抑制分泌效果高于剪切力,中、尾部微生物活性增加,沖洗將豐富的營(yíng)養(yǎng)物質(zhì)帶到毛管尾部,促進(jìn)了尾部灌水器生物膜的生長(zhǎng),削弱了剪切力對(duì)尾部灌水器堵塞的控制。
以往研究表明,針對(duì)不同的加氯頻率與加氯濃度處理,在系統(tǒng)運(yùn)行開(kāi)始后便定期進(jìn)行加氯處理,整個(gè)系統(tǒng)運(yùn)行期間,灌水均勻度可保持在大于90%的良好水平[28],而對(duì)于田間番茄試驗(yàn),整個(gè)生育期進(jìn)行加氯處理,對(duì)灌水器具有一定得防堵效果,由于時(shí)間較短,流量降幅無(wú)明顯差異[28]。考慮到加氯對(duì)土壤存在風(fēng)險(xiǎn),會(huì)使作物根系受到傷害及破壞滴灌管線系統(tǒng)[29-30]。將加氯起始水平推遲到Dra=80%時(shí)進(jìn)行,在系統(tǒng)運(yùn)行至700 h時(shí),仍可將系統(tǒng)灌水均勻度保持在70%以上,可以滿足大田灌溉系統(tǒng)對(duì)于灌水均勻度的控制要求,以降低大量加氯對(duì)于土壤環(huán)境和作物生長(zhǎng)的影響。
總體而言,本文對(duì)加氯配合毛管沖洗條件下控制灌水器生物堵塞的機(jī)理與適宜模式進(jìn)行了有趣的探索,得到了一些初步的結(jié)論。為揭示再生水滴灌系統(tǒng)內(nèi)部堵塞機(jī)理及建立有效的堵塞控制模式提供了一定的理論依據(jù)。但是,本文還存在以下不足之處,需要進(jìn)一步的研究完善:1)本試驗(yàn)受測(cè)樣費(fèi)用高的限制,毛管首、中、尾灌水器內(nèi)胞外聚合物含量與微生物含量只測(cè)試1次,雖然測(cè)試樣由3個(gè)灌水器樣品混合降低了誤差,但是由于堵塞發(fā)生的隨機(jī)性問(wèn)題,還需增加二者的測(cè)樣次數(shù),通過(guò)多重復(fù)來(lái)降低誤差;2)本文的研究結(jié)論還僅僅局限于1種水質(zhì)和1種灌水器,需要驗(yàn)證研究結(jié)果在多種再生水水質(zhì)以及灌水器類型上的適用性;3)開(kāi)展不同加氯和毛管沖洗模式對(duì)灌水器堵塞物質(zhì)和堵塞的控制效果,提出比較適宜的技術(shù)應(yīng)用模式。
1)加氯配合毛管沖洗可顯著降低灌水器內(nèi)部附生生物膜的微生物數(shù)量與種類、黏性胞外多聚物的分泌,有效控制了灌水器內(nèi)附生生物膜的形成,使得灌水器內(nèi)堵塞物質(zhì)質(zhì)量平均下降69.1%;
2)加氯配合毛管沖洗控堵效果顯著,較未加任何處理措施以及單獨(dú)的加氯與毛管沖洗灌水器相對(duì)平均流量分別提升了40.0%、7.4%、7.8%,灌水均勻度分別提升了53.0%、12.4%、10.3%;
3)加氯配合毛管沖洗也會(huì)顯著增加微生物活性,較未加任何處理措施以及單獨(dú)的加氯與毛管沖洗灌水器內(nèi)部附生生物膜中微生物活性分別提升了15.7%、29.0%、36.5%,這也使得對(duì)灌水器堵塞的恢復(fù)效果逐漸降低、堵塞風(fēng)險(xiǎn)也會(huì)增加;
4)對(duì)于CASS工藝再生水滴灌而言,可以推遲至相對(duì)平均流量80%左右時(shí)才進(jìn)行加氯配合毛管沖洗處理,也能夠?qū)⒐嗨鶆蚨瓤刂圃?0%以上,降低加氯對(duì)土壤環(huán)境與作物生長(zhǎng)的影響。
[1] Adin A, Sacks M. Dripper clogging factor in wastewater irrigation[J]. Journal of Irrigation and Drainage Engineering, 1991, 117(6): 813-826.
[2] Ravina I, Paz E, Sofer Z, et al. Control of clogging in drip irrigation with stored treated municipal sewage effluent[J]. Agricultural Water Management, 1997, 33(2): 127-137.
[3] Dong D, Li Y, Hua X, et al. Relationship between chemical composition of coating and waters in natural waters[J]. Chemical Research in Chinese Universities, 2002, 54(1): 400-402.
[4] 秦松巖. 德國(guó)奧德河水中生物膜形態(tài)及其生物多樣性的研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2008.
Qin Songyan. Study on Water Oder Biofilm Morphology and Biological Diversity in Germany[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese with English abstract)
[5] Capra A, Scicolone B. Emitter and filter tests for wastewater reuse by drip irrigation[J]. Agricultural Water Management, 2004, 68(2): 135-149.
[6] Liu H J, Huang G H. Laboratory experiment on drip emitter clogging with fresh water and treated sewage effluent[J]. Agricultural Water Management, 2009, 96(5): 745-756.
[7] 李久生,陳磊,栗巖峰. 加氯處理對(duì)再生水滴灌系統(tǒng)灌水器堵塞及性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(5):7-13.
Li Jiusheng, Chen Lei, Li Yanfeng. Effect of chlorination on emitter clogging and system performance for drip irrigation with sewage effluent[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(5): 7-13. (in Chinese with English abstract)
[8] Junaid N C, Allah B, Niaz A et al. Optimizing chlorine use for improving performance of drip irrigation system under biologically contaminated water source[J]. Scientia Agricultura Sinica, 2015, 52(3): 829-835.
[9] Tajrishy M A, Hills D J, Tchobanoglous G. Pretreatment of secondary effluent for drip irrigation[J]. Journal of Irrigation and Drainage Engineering, 1994, 120(4): 716-731.
[10] Yuan Z, Waller P M, Choi C Y. Effects of organic acids on salt precipitation in drip emitters and soil[J]. Transactions of the ASAE, 1998, 41(6): 1689-1696.
[11] Hills D J, Tajrishy M A, Tchobanoglous G. The influence of filtration on ultraviolet disinfection of secondary effluent for microirrigation[J]. Transactions of the ASAE, 2000, 43(6): 1499-1505.
[12] Hills D J, Brenes M J. Microirrigation of wastewater effluent using drip tape[J]. Applied Engineering in Agriculture, 2001, 17(3): 303-308.
[13] Miyamoto K, Ahmad B O, Yamamoto T, et al. The effect of chlorine on emitter clogging induced by algae and protozoa and the performance of drip irrigation[J]. Transactions of the Asae, 2005, 48(2):519-527.
[14] Puig-Bargues J, Barragan J, de Cartagena F R. Filtration of effluents for microirrigation systems[J]. Transactions of the American Society of Agricultural Engineers, 2005, 48(3): 969-978.
[15] Feigin A, Ravina I, Shalhere J. Irrigation with treated sewage effluent. Management for environmental protection[J]. Advanced Series in Agricultural Sciences, 1991, 17: 1-216.
[16] Cararo D C, Botrel T A, Hills D J, et al. Analysis of clogging in drip emitter during wastewater irrigation[J]. Applied Engineering in Agriculture, 2006, 22(2): 251-257.
[17] Li J S, Li Y F, Zhang H. Tomato yield and quality and emitter clogging as affected by chlorination schemes of drip irrigation systems applying sewage effluent[J]. Journal of Integrative Agriculture, 2012, 11(10): 1744-1754.
[18] Li Y F, Li J S, Zhang H. Effects of chlorination on soil chemical properties and nitrogen uptake for tomato drip irrigated with secondary sewage effluent[J]. Journal of Integrative Agriculture, 2014, 13(9): 2049-2060.
[19] Cheryl D N, Mark W, Lechevallier. A pilot study of bacteriological population changes through potable water treatment and distribution[J]. Applied and Environmental Microbiology, 2000, 66(1): 268-276.
[20] Lamm F R, Ayars J E, Nakayama F S. Microirrigation for Crop Production: Design, Operation, and Management[M]. Amsterdam: Elsevier, 2007.
[21] 閆大壯. 再生水滴灌下生物膜對(duì)滴頭堵塞誘發(fā)機(jī)理及其控制模式研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2010.
Yan Dazhuang. Inducing Mechanism of Biofilm on Dripper Clogging Under Reclaimed Wastewater Irrigation and its Anti-Clogging Control Mode[D]. Beijing: China Agricultural University, 2010. (in Chinese with English abstract)
[22] Pei Y T, Li Y K, Liu Y Z et al. Eight emitters clogging characteristics and its suitability evaluation under on-site reclaimed water drip irrigation[J]. Irrigation Science, 2014, 32(2): 41-157.
[23] Li Y K, Song P, Pei Y T, et al. Effects of lateral flushing on emitter clogging and biofilm components in drip irrigation systems with reclaimed water[J]. Irrigation Science, 2015, 33(3): 235-245.
[24] ISO. ISO/TC 23/SC 18/WG 5 N 4. Clogging test methods for emitters[S]. 2003-07-15.
[25] Zhou B, Li Y K, Pei Y T, et al. Quantitative relationship between biofilms components and emitter clogging under reclaimed water drip irrigation[J]. Irrigation Science, 2013, 31(6): 1251-1263.
[26] Ravina I, Paz E, Sofer Z, et al. Control of emitter clogging in drip irrigation with reclaimed wastewater[J]. Irrigation Science, 1992, 13(3): 129-139.
[27] Puig-Bargués J, Arbat G, Barragán J, et al. Hydraulic performance of drip irrigation subunits using WWTP effluents[J]. Agricultural Water Management, 2005, 77(1/2/3): 249-262.
[28] 栗巖峰,李久生. 再生水加氯對(duì)滴灌系統(tǒng)堵塞及番茄產(chǎn)量與氮素吸收的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(2):18-24.
Li Yanfeng, Li Jiusheng. Effect of chlorination on yield and nitrogen uptake of tomato and emitter clogging in a drip irrigation system with sewage effluent[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 18-24. (in Chinese with English abstract)
[29] Pizarro F. High frequency localized irrigation[M]. Madrid: Ed. Mundi Prensa, 1996.
[30] Coelho R D, Ronaldo R S. Biological clogging of Netafim’s drippers and recovering process through chlorination impact treatment[C]//ASAE, St Joseph Mich: 2001: 012231.
Chlorination with lateral flushing controling drip irrigation emitter clogging using reclaimed water
Song Peng1, Li Yunkai1※, Li Jiusheng2, Pei Yiting1
(1.,100083,; 2.,100048)
Emitter bio-clogging has a close relation with the formation and growth of its internal clogging substances – the biofilms attached in the reclaimed water drip irrigation system. Chlorination with lateral flushing is one of the most effective measures to control the formation of biofilms within emitter, by using the chlorine to inhibit microbial growth and the shearing force to scour the clogging substances out of the system. Based on these, a field experiment using the reclaimed water treated with the cyclic activated sludge system (CASS) technology was carried out in the sewage treatment plant in order to study the controlling effects of 3 types of modes on emitter clogging, which were lateral flushing (flushing velocity was 0.45 m/s), chlorination (chlorination concentration was 5.00 mg/L) and chlorination with lateral flushing; chlorine and lateral flushing frequency were both once every 2 weeks (the time interval was 50 h). The result showed that chlorination with lateral flushing could effectively reduce the microbial contents in the attached biofilms within the emitters, as the phospholipid fatty acids (PLFAs) microbial content was 18.8g at the second sampling, which was decreased by 52.2%, 44.2%, 73.2% compared with lateral flushing, chlorination and CK (the control, neither lateral flushing nor chlorination) treatment, respectively, and the secreted sticky extracellular polymeric substances (EPS) content was also reduced by 28.0%, 22.9%, 63.9%, respectively. EPS content was 0.47 mg at the second sampling, so that the total amount of clogging substances within emitter decreased by 47.4%, 43.1%, 69.1% with the joint action of the microorganisms and the secreted viscous polymer, thus making the emitter discharge ratio variation (Dra) and coefficient of uniformity (CU) improved by 40.0% and 53.0% respectively at the maximum, and the CU was kept more than 70%. The PLFAs microbial content and EPS content increased from the inlet of the drip irrigation lateral for the same treatment. The results also indicated that the content of EPS in the emitter did not show the same trend in comparison with the chlorination and lateral flushing. The effect of lateral flushing on the secretion of viscous EPS was better than that of chlorination treatment for the head part of emitter, but it was opposite for the middle and end part of emitter. Chlorination and lateral flushing could kill microorganisms, the species of microorganisms marked by PLFAs decreased obviously, and the microbial community structure in the emitter changed, but the types of dominant microorganisms were not changed. Thus it was more likely to delay chlorination starting time, and when the emitter Dra was reduced to 80%, chlorination could still reach a satisfactory controlling effect. Chlorination with the lateral flushing kills microorganisms and scours away the clogging substances at the same time, which makes the biofilm continued to grow and detach. But microorganisms produce resistance, and the production of resistant bacteria increases microbial activity to adapt to the changing external environment. So chlorination with lateral flushing increased microbial activity significantly by 36.5%, 29.0% and 15.7%, respectively, compared with lateral flushing, chlorination and CK treatment. It also decreased the recovery effect on emitter clogging gradually. In general, chlorination with lateral flushing can effectively control emitter clogging for drip irrigation using the reclaimed water treated with CASS.
irrigation; microorganisms; chlorination; emitter clogging; reclaimed water; lateral flushing
10.11975/j.issn.1002-6819.2017.02.011
S275.6
A
1002-6819(2017)-02-0080-07
2016-05-11
2016-10-06
國(guó)家自然科學(xué)基金資助項(xiàng)目(51321001,51339007);水利公益性行業(yè)專項(xiàng)經(jīng)費(fèi)項(xiàng)目(201401078)
宋鵬,博士生,主要從事滴灌灌水器堵塞控制技術(shù)研究。北京 中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,100083。Email:songpeng0606@163.com
李云開(kāi),教授,主要從事節(jié)水灌溉理論與技術(shù)研究。北京 中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,100083。Email:liyunkai@126.com
宋 鵬,李云開(kāi),李久生,裴旖婷. 加氯及毛管沖洗控制再生水滴灌系統(tǒng)灌水器堵塞[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):80-86. doi:10.11975/j.issn.1002-6819.2017.02.011 http://www.tcsae.org
Song Peng, Li Yunkai, Li Jiusheng, Pei Yiting. Chlorination with lateral flushing controling drip irrigation emitter clogging using reclaimed water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 80-86. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.011 http://www.tcsae.org
農(nóng)業(yè)工程學(xué)報(bào)2017年2期