張國鵬+付輝+楊開林+趙林明+王孟文
摘要:高緯度沿海地區(qū)的核電廠冬季運行時常會遇到取水口結冰問題,影響正常運行,一種解決方案是通過多孔排水管將電廠循環(huán)水引至泵站前池,提高水溫,防止取水水域冰塞的發(fā)生。建立了虹吸井多孔排水管物理模型,研究了多孔排水管的水力特性,包括沿程壓力分布特點,壓差變化規(guī)律等,提出了多孔短管內部壓力變化的無量綱公式,各試驗工況計算值和實測值的最大平均誤差為0.88%。研究表明:(1)多孔排水管壓力恢復現(xiàn)象是流速水頭向壓力水頭轉化的結果,且流速水頭越大,壓力恢復現(xiàn)象越明顯。(2)出水管壓力水頭在下游出現(xiàn)突升現(xiàn)象,是多孔管中流線在出水管處發(fā)生偏移,部分水流對下游沖擊造成的。試驗結果為類似多孔排水管的設計及應用提供參考依據(jù)。
關鍵詞:多孔排水管;多孔出流;模型試驗;壓力分布;壓差;短管;虹吸井
中圖分類號:TV933文獻標志碼:A文章編號:1672-1683(2017)01-0186-07
Abstract:Intakes of nuclear power plant in high-latitude coastal regions generally have ice problems that will affect their normal operation.One solution is to transport warm water to the forebay of pump stations through perforated drain-pipes.This method can raise water temperature and prevent ice jam.A physical model of perforated drain-pipe was used to study its hydraulic characteristics,including pressure distribution and velocity distribution.A non-dimensional formula of pressure distribution within the perforated drain-pipe was proposed and the maximum average error was 0.88%.The study shows that the pressure recovery within the perforated drain-pipe is caused by transformation from velocity to pressure.The larger the velocity,the more obvious the pressure recovery.The pressure of the downstream drain-pipe is larger than that of the upstream because the streamline is skewed near the outlet.The study results can provide references for the design and application of perforated drain-pipes.
Key words:perforated drain-pipe;multiple-outlet;model test;pressure distribution;pressure difference;nozzle stub;siphon well
多孔管在化工、電力、通風供熱、水利噴灌、污水排放等工程中多有應用。當多孔管作為一種均勻分布裝置使用時,其配水的均勻度就成了主要關注要素,伍欽[1]等通過能量和質量衡算關系導出了等直徑流量分配管的計算式,配液均勻度的表達式,為均勻分流提供了一種理論計算方法。王峻曄[2]等提出了多孔管摩擦系數(shù)和動量交換系數(shù)的解析表達式,方便了對多孔管結構的優(yōu)化。劉文華[3]等研究了坡度、壓力水頭、孔距、管長4個參數(shù)對沿程壓力分布的影響,總結了多孔管沿程壓力隨壓力水頭和孔距的增大而增大,隨管長的減小而增大的規(guī)律。賀元啟[4]等建立了在已定工作水頭和輸水管管徑的條件下,不同出水口開啟狀況下各給水栓出流量的數(shù)學計算模型,探索了多孔管在自動給水栓灌溉系統(tǒng)中的設計方法。多孔短管的一個重要特征表現(xiàn)在壓頭恢復現(xiàn)象上,即末端壓頭大于始端壓頭,唐朝春[5-6]等對多孔管作用水頭和出口流量系數(shù)進行了研究,認為多孔管作用水頭是總水頭,孔口流量系數(shù)在流體力學中雖是定值,但在多孔配水問題中是個沿程增大的變量,因此造成多孔短管孔口出流量沿程增大。劉煥芳[7-9]等建立了軟管沿程水頭損失的一般方程,得出了軟管壓力水頭的計算公式,同時在單孔出流特性,偏差率上分別進行了研究,為多孔管在水利灌溉和施工管理方面的應用提供了技術支持。
本文通過開展某電廠排水虹吸井工程[10-15]物理模型試驗,對虹吸井工程中的多孔排水管內的水流特性進行了分析研究,總結了多孔排水管沿程的壓力分布特性和壓力水頭計算方法,為類似水利工程提供參考。
1 工程簡介
我國北方某電廠一期工程1號、2號機組裝機容量2×1 250 MW,以遼東灣海水作為冷卻水源,采用直流冷卻方式。排水系統(tǒng)主要由循環(huán)水管渠、虹吸井、排水明渠等組成,圖1給出了本虹吸井工程在電廠中的示意圖。該電廠虹吸井的主要特點是通過設置的多孔排水管將部分電廠廢熱回流至泵房取水口,防止電廠冬期運行時泵房取水口發(fā)生冰塞事故。多孔排水管末端封閉,在虹吸井堰前正向取水,由于溢流堰的阻擋作用,電廠運行時虹吸井堰前水位高于外海潮位,因此多孔排水管以自流方式向泵房取水口輸水,為了均勻出流,使冷、熱水充分摻混,提高融冰效果,多孔排水管徑向設置了8個與水平方向成10°的等截面出水管,針對虹吸井工程中多孔排水管的水力性能開展了試驗研究[16]。2 模型試驗
2.1 模型設計
虹吸井工程中多孔排水管試驗按原模型15∶1
的正態(tài)比尺和重力相似準則設計,以求滿足原型與模型水體流動的相似,即滿足:
(F)r=vghr=1 (1)
各物理量的相似關系見表1。
模型采用有機玻璃制作,整體布置見圖2。圖中CEFH表示虹吸井,上游有4根進水管道,進水流量由閥門和電磁流量計控制。下游設置尾門,當外海潮位發(fā)生變化時,通過調節(jié)尾門控制虹吸井中水位。虹吸井CEFH被中隔墻對稱分成CDGH和DEFG兩個小虹吸井,每個小虹吸井配備一臺循環(huán)水泵(圖中水泵1和水泵2),水流進入虹吸井后,大部分水流躍過溢流堰排往外海,少部分水流通過1號和2號取水管匯流至U型管道,最終通過多孔排水管(U形管后接的長直管道)輸往外海泵房取水口。夏季運行條件下1號和2號取水管封堵,多孔排水管不工作,冬季運行條件下多孔排水管正常工作,模型中通過水泵3調節(jié)泵房取水口處的水位至外海潮位,以模擬真實的泵房進水條件。圖3為虹吸井剖面圖,圖4和圖5分別給出了多孔排水管測點布置圖和多孔排水管剖面圖。模型中多孔排水管全長10 m(原型為150 m),直徑0.247 m(原型為3.705 m),出水管8距多孔排水管末端0.223 m(原型為3.345 m),按照間距為0.853 m(原型為12.795 m)依次布置其余7個出水管。模型中每個出水管中心線上下游各0.1 m處布置個壓力測點,共計16個測點,編號依次為d1、d2、…、d16。試驗中多孔排水管沿程壓力水頭用測壓排測量,精度1 mm,流量用電磁流量計測量,精度0.5%。
2.2 試驗工況
正常情況下兩個小虹吸井同時工作,當虹吸井有檢修需求時,僅有單個小虹吸井工作,因此試驗方案分兩種:方案Ⅰ為一機兩泵單虹吸井方案,方案Ⅱ為一機兩泵雙虹吸井方案。試驗中方案Ⅰ是在方案Ⅱ的基礎上封堵CDGH小虹吸井實現(xiàn)的。方案Ⅰ和方案Ⅱ各包含4組試驗潮位,共計8組試驗依次進行,列于表2中。3 試驗結果分析
3.1 多孔排水管沿程壓力分布規(guī)律
壓力分布特性是研究水工建筑物水力特性的一個重要參數(shù),圖6是8組換算到原型的多孔排水管壓力水頭沿程變化過程,其中橫坐標為測點編號,縱坐標為壓力水頭,單位為m。圖中測點具體位置坐標詳見圖4。表3為換算到原型的多孔排水管流量和壓差結果。
從圖6中曲線走勢可以看出,同一工況下多孔排水管末端的壓力水頭大于首端,壓力回升現(xiàn)象明顯,這是由于在入口流量不變的情況下,管道末端封閉,流速水頭不斷向壓力水頭轉化所致。從表3中可以看出,工況Ⅰ-1到工況Ⅱ-8,多孔排水管入口流量從10.37 m3/s增大到16.993 m3/s,測點d1與d16的壓差由0.047 m增大到0.127 m,在入口流量增大約60%的情況下,測點d1與d16的壓差增大近3倍??梢婋S著多孔排水管中入口流量的增大,其首末端的壓差增大明顯。
3.2 多孔排水管上下游壓力分布規(guī)律
多孔排水管內的壓力水頭總體是沿程升高的,但是具體到單個出水管,還有各自的特點:壓力在各出水管下游測點處出現(xiàn)突升現(xiàn)象。如上圖6(f)中所示,在出水管下游測點處可見明顯的壓力突升,每個出水管下游處的壓力大于上游,同時大于相鄰的下一出水管上游的壓力。
為了解釋出現(xiàn)上述現(xiàn)象的原因,結合數(shù)值模擬手段,應用fluent軟件詳細研究了多孔排水管內的流場分布特性。對于存在轉彎及分離等具有較強的各向異性的流動,RNG k-ε紊流模型具有更好的適應性[17-21],因此本文選用了RNG k-ε紊流模型模擬計算。邊界條件為速度進口壓力出口。表4以工況Ⅱ-5為例,給出了壓力測點的實測值與模擬值對比結果。入口流量實測值15.076 m3/s,計算值15.023 m3/s,誤差0.35%。
如上述所示,數(shù)值模擬結果與模型試驗實測結果吻合較好,壓力變化規(guī)律一致,最大誤差為3.76%。說明本文所建立的數(shù)學模型是合理的。
計算得到了多孔排水管的三維流場流線分布,圖7截取了出水管1至出水管3部分。發(fā)現(xiàn):出水管出流造成的流線改變是出水管下游壓力突升的主要原因。當水流沿流動方向靠近出水管時,流線向出水管傾斜改變,一部分水流從出水管流出,另一部分水流越過出水管后向下游壁面附近沖擊,流速水頭轉化成了壓強水頭,造成出水管下游出現(xiàn)壓力突升現(xiàn)象。
表5為各工況下出水管上下游的壓差表,可見,隨著入口流量由10.37 m3/s增大到16.993 m3/s,出水管上下游壓差的平均值由0.002 m增加到0.021 m,其隨流量的增大而增大。將同一出水管,不同工況下的壓差進行比較可以發(fā)現(xiàn):多孔排水管中前半段平均壓差大于后半段平均壓差,說明多孔排水管在壓力回升的過程中,前段比后段回升效果更明顯。
3.3 多孔排水管壓力分布的計算公式
本項研究中只關心多孔排水管內的壓力變化規(guī)律,在推導管內無量綱壓力公式時無須考慮多孔管孔口出流方式,用上下游壓力測點的平均值表示出水管處的壓力水頭。以多孔排水管中出水管1的壓力水頭為基準值,位置為起始位置,分別計算各出水管的hi/h1值和Xi/X0值,其中hi為出水管處的壓力水頭,i=1,2,…,8表示出水管編號,結果反映了多孔排水管中各出水管處壓力水頭與出水管1處的比值關系;X0=12.795 m為原型中出水管間距;Xi為每個出水管到起始位置的距離,單位m,結果反映了多孔排水管中各出水管到起始位置的距離與出水管間距的比值關系。
圖8給出了不同試驗工況下hi/h1值的統(tǒng)計結果,圖中以Xi/X0為橫坐標,hi/h1為縱坐標建立坐標系,統(tǒng)計了8組試驗下hi/h1隨Xi/X0的變化規(guī)律。從圖中可以看出,在不同方案工況下無論管道進口流量,水頭如何變化,多孔排水管中hi/h1的值均呈現(xiàn)出沿程增大的規(guī)律不變。通過對各試驗工況的hi/h1結果進行擬合,可以發(fā)現(xiàn)沿程的壓力變化可用式(2)表示:
表6提取了圖8中直線方程的系數(shù)k和b值,并統(tǒng)計求出平均值。
利用確定了系數(shù)的公式(2)對模型試驗結果開展計算值與實測值的誤差分析,將誤差分析結果列于表7中,從中可以發(fā)現(xiàn),對于單個出水管誤差最大的一組工況出現(xiàn)在Ⅰ-4單井校核高潮位工況,最大誤差為1.49%,不同工況下最大平均誤差出現(xiàn)在Ⅱ-6雙井設計低潮位工況,為0.88%。表明當K和b取平均值時,推導出的公式(2) 的計算結果同實測結果吻合良好,公式可用作多孔排水管沿程壓力水頭的計算,對類似實際工程的設計計算具有一定的參考意義。
4 結論
本文依托我國北方某濱海核電廠虹吸井冬季運行實際開展試驗研究,通過對試驗結果的分析,研究了多孔排水管沿程壓力分布規(guī)律,出口上下游壓差變化規(guī)律,得到以下結論。
(1)建立了多孔排水管沿程任一位置與壓力水頭的無量綱函數(shù)關系,其理論計算值與實測值最大誤差為1.49%,各試驗工況平均誤差最大為0.88%。
(2)多孔排水管中的壓力水頭由于流速水頭的轉化呈現(xiàn)沿程升高現(xiàn)象,隨著流量的增大,升高幅度越大,且多孔排水短管的壓力升高效果前段比后段更明顯。
(3)多孔排水管的出流運行,流線在出水管處發(fā)生偏移,使得水流對出水管下游產生沖擊,出水管下游壓力水頭出現(xiàn)突升現(xiàn)象。
參考文獻(References):
[1] 伍欽,蔡梅琳,曾朝霞,等.等直徑流量分配管的計算[J].華南理工大學學報,2000(28):7-13.(WU Qin,CAI Mei-lin,ZENG Zhao-xia,et al.The calculation of equal-diameter flow rate distribution pipe[J].Journal of South China University of Technology,2000(28):7-13.(in Chinese))
[2] 王峻曄,章明川,吳東棣.流體在多孔管分支系統(tǒng)中的流動機理研究[J].水動力學研究與進展(A輯),1999(1):36-46.(WANG Jun-ye,ZHANG Ming-chuan,WU Dong-di.Flow performance in porous pipe mani folds[J].Journal of Hydrodynamics(A),1999(1):36-46.(in Chinese))
[3] 劉文華,劉煥芳,黃興國,等.多孔管的壓力分布特性試驗[J].水利水電科技進展,2009(5):13-15.(LIU Wen-hua,LIU Huan-fang,HUANG Xing-guo,et al.The experiment of pressure distribution features in perforated pipe[J].Advances in Science and Technology of Water Resources,2009(5):13-15.(in Chinese))
[4] 賀元啟,黃正榮.多孔非均勻出流問題數(shù)學模型研究[J].武漢大學學報,2001(5):28-31.(HE Yuan-qi,HUANG Zheng-rong.Research on mathematical model of non-uniform outflow in irrigation pipeline system with malti-hole[J].Engineering Journal of Wuhan University,2001(5):28-31.(in Chinese))
[5] 唐朝春,王全金,楊衛(wèi)權.大阻力配水系統(tǒng)的水頭變化問題探討[J].華東交通大學學報,2001(2):49-51.(TANG Chao-chun,WANG Quan-jin,YANG Wei-quan.Disscussion on change of hydraulic head in large resistance underdrain system[J].Journal of East China Jiaotong University,2001,(2):49-51.(in Chinese))
[6] 唐朝春,孫亮,馮巍,等.多孔配水管孔口出流量變化實驗研究[J].南方冶金學院學報,2004(2):54-57.(TANG Chao-chun,SUN Liang,F(xiàn)ENG Wei,et al.Experimental study on change of orifice discharge for porous pipes[J].Journal of Southern Industry of Metallurgy,2004(2):54-57.(in Chinese))
[7] 劉煥芳,孫海燕,蘇萍,等.自壓軟管沿程壓力水頭分布研究[J].水利水電科技進展,2006(1):10-12.(LIU Huan-fang,SUN Hai-yan,SU Ping,et al.Study on pressure head distribution along the gravity flexible hoses[J].Advances in Science and Technology of Water Resources,2006(1):10-12.(in Chinese))
[8] 孫海燕,劉煥芳,蘇萍,等.微壓超薄多孔軟管滴孔平均流量及偏差率研究[J].水利水電科技進展,2005(6):46-48.(SUN Hai-yan,LIU Huan-fang,SU Ping,et al.Research of average flow rate and its deviation ratio for drip holes of micropressured and superthin porous-hoses[J].Advances in Science and Technology of Water Resources,2005(6):46-48.(in Chinese))
[9] 杜濤,劉煥芳,金瑾,等.流體分布管出流特性的試驗研究[J].節(jié)水灌溉,2013(9):5-9.(DU Tao,LIU Huan-fang,JIN Jin,et al.Experimental study of fluid distribution pipe discharge characteristics[J].Water Saving Irrigation,2013(9):5-9.(in Chinese))
[10] 李奇,張榮勇,白瑋.核電站排水跌落井的設計尺寸探討[J].給水排水,2015(4):48-51.(LI Qi,ZhANG Rong-yong,BAI Wei.Design research of water discharge surge tank of nuclear power plant[J].Water&WastewaterEngineering,2015(4):48-51.(in Chinese))
[11] 王芳,侯樹強.核電廠跌落井結構設計分析[J].中國核電,2015(1):10-135.(WANG Fang,HOU Shu-qiang.Structure design of water discharge surge tank of nuclear power plant[J].China Nuclear Power,2015(1):10-135.(in Chinese))
[12] 閻麗靜,李曉愛.核電站循環(huán)水虹吸出水設計[J].廣東水利水電,2014(7):19-23(.YAN Li-jing,LI Xiao-ai.Design of circulating water siphon outlet for nuclear power station[J].Guangdong Water Resources and Hydropower,2014(7):19-23.(in Chinese))
[13] 張旭.某核電廠虹吸井設計研究[J].給水排水,2013(10):55-583.(ZHANG Xu.Study on the design of the siphon wells in a nuclear power plant[J].Water & Wastewater Engineering,2013(10):55-583.(in Chinese))
[14] 陳付山,孫海燕,陳運懷.發(fā)電廠直流冷卻水系統(tǒng)虹吸井布置方案設計和優(yōu)化[J].華電技術,2012(12):18-20,79-80.(CHEN Fu-shan,SUN Hai-yan,CHEN Yun-huai.Design and optimization of siphon well arrangement scheme of once through cooling water system in power plant[J].Huadian Technology,2012(12):18-20,79-80.(in Chinese))
[15] 黃艷君,杜涓.大型發(fā)電機組循環(huán)水系統(tǒng)虹吸井溢流堰型優(yōu)化[J].華中電力,2003(1):47-49.(HUANG Yan-jun,DU Juan.Overflow weir optimization of circulating cooling water siphon well of large power plant[J].Central China Electric Power,2003(1):47-49.(in Chinese))
[16] 付輝,郭新蕾.遼寧徐大堡核電廠一期工程虹吸井水力性能物理模型試驗研究[R].中國水利水電科學研究院,2014.(FU Hui,GUO Xin-lei.Experimental study on hydraulic model of siphon-well[R].China Institute of Water Resources and Hydropower Research,2014.(in Chinese))
[17] Charles G,Thomas B.An analysis of RNG base turbulent models for homogeneous shear flow[J].Phys Fluids,1991(3):2278-2281.
[18] 熊莉芳,林源,李世武.k-ε 湍流模型及其在FLUENT軟件中的應用[J].工業(yè)加熱,2007(4):13-15.(XIONG Li-fang,LIN Yuan,LI Shi-wu.k-ε turbulent model and its application to the fluent[J].Journal of Industrial Heating,2007(4):13-15.(in Chinese))
[19] 高改玉,張根廣.虹吸井和排水口泄流三維數(shù)值模擬及堰型優(yōu)化[J].人民黃河,2012(3):137-139.(GAO Gai-yu,ZHANG Gen-guang.Three-dimensional numerical simulation on discharge of siphon well and overflow and optimization for weir shape[J].Yellow River,2012(3):137-139.(in Chinese))
[20] 段文姣,張根廣,范仲文.南迪普電站排水口三維數(shù)值模擬及體型優(yōu)化[J].水電能源科學,2012(8):90-93.(DUAN Wen-jiao,ZHANG Gen-guang,F(xiàn)AN Zhong-wen.There-dimensional numerical simulation of outfall of nandipur power plant and shape optimization[J].Water Resources and Powe,2012(8):90-93.(in Chinese))
[21] 王新坤,許文博,趙坤,等.基于CFD的多孔管熱風數(shù)值模擬與設計方法[J].排灌機械工程學報,2011(1):82-86.(WANG Xin-kun,XU Wen-bo,ZHAO Kun,et al.Numerical simulation and design method of hot air for porous pipe based on CFD[J].Journal of Drainage and Irrigation Machinery Engineering,2011(1):82-8.(in Chinese))