• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      整合素α2β1與藥物性牙齦增生相關(guān)性的研究進(jìn)展

      2017-03-01 11:04:59康穎竹郭淑娟劉程程丁一
      華西口腔醫(yī)學(xué)雜志 2017年1期
      關(guān)鍵詞:整合素亞基膠原

      康穎竹 郭淑娟 劉程程 丁一

      口腔疾病研究國(guó)家重點(diǎn)實(shí)驗(yàn)室 華西口腔醫(yī)院牙周病科(四川大學(xué)),成都 610041

      整合素α2β1與藥物性牙齦增生相關(guān)性的研究進(jìn)展

      康穎竹 郭淑娟 劉程程 丁一

      口腔疾病研究國(guó)家重點(diǎn)實(shí)驗(yàn)室 華西口腔醫(yī)院牙周病科(四川大學(xué)),成都 610041

      藥物性牙齦增生(DIGO)是指長(zhǎng)期服用某些藥物而引起的牙齦組織的纖維性增生和體積增大。牙齦細(xì)胞增多與胞外基質(zhì)尤其是膠原蛋白的大量沉積是其主要病理表現(xiàn)。近年來(lái)研究表明,整合素α2β1與膠原吞噬作用密切相關(guān),在DIGO的發(fā)生發(fā)展中發(fā)揮了重要作用。本文就整合素α2β1與DIGO相關(guān)性的研究進(jìn)展進(jìn)行綜述。

      藥物性牙齦增生; 整合素α2β1; 膠原代謝; 膠原吞噬

      藥物性牙齦增生(drug-induced gingival overgrowth,DIGO)是指長(zhǎng)期服用某些藥物而引起的牙齦組織纖維性增生和體積增大,臨床表現(xiàn)為牙齦外形的肥大[1]。長(zhǎng)期服用抗癲癇藥物苯妥英鈉、鈣通道阻滯劑硝苯地平和免疫抑制劑環(huán)孢菌素是DIGO發(fā)生的主要原因,但具體發(fā)生機(jī)制目前尚不清楚。有學(xué)者[2-3]認(rèn)為,DIGO的發(fā)生可能與結(jié)締組織膠原代謝失衡有關(guān)。近年發(fā)現(xiàn),整合素α2β1與DIGO的發(fā)生發(fā)展密切相關(guān)。整合素是一類(lèi)細(xì)胞膜表面跨膜糖蛋白分子,主要參與介導(dǎo)細(xì)胞外基質(zhì)和細(xì)胞內(nèi)肌動(dòng)蛋白骨架之間的雙向聯(lián)絡(luò)。整合素還可以作為基質(zhì)分子受體,參與細(xì)胞內(nèi)的信號(hào)轉(zhuǎn)導(dǎo)與活化,從而影響細(xì)胞遷移、細(xì)胞增殖和細(xì)胞凋亡等過(guò)程。因此,有關(guān)整合素α2β1和DIGO關(guān)系的研究不但具有重要的理論意義,也有望為DIGO的治療提供新的靶點(diǎn)。

      1 整合素α2β1的結(jié)構(gòu)和功能

      1.1 整合素α2β1的結(jié)構(gòu)

      整合素是一類(lèi)廣泛分布于細(xì)胞表面的黏附分子受體,由α和β兩個(gè)亞基以非共價(jià)鍵連接形成。在哺乳動(dòng)物中共表達(dá)18種α亞基和8種β亞基,可組成24種不同的整合素分子。每個(gè)亞基均由細(xì)胞外結(jié)構(gòu)域、跨膜結(jié)構(gòu)域和細(xì)胞內(nèi)結(jié)構(gòu)域三部分組成,分別在整合素與特異性配體結(jié)合,錨定細(xì)胞表面以及與骨架蛋白和信號(hào)分子相互作用中發(fā)揮重要作用[4]。

      整合素α2β1是首先被鑒定為膠原和層粘連蛋白的細(xì)胞外基質(zhì)受體,由α2和β1亞基組成,也被稱(chēng)為遲現(xiàn)抗原-2(very late appearing antigen-2,VLA-2)或淋巴細(xì)胞抗原CD49b。整合素α2β1具有高度保守的Ⅰ結(jié)構(gòu)域,由220個(gè)氨基酸組成,其保守位點(diǎn)金屬離子結(jié)合位點(diǎn)(metal ion-dependent adhesion site,MIDAS)對(duì)Mg2+/Mn2+有明顯的傾向性。MIDAS的功能是介導(dǎo)整合素特異性配體結(jié)合,是膠原識(shí)別的關(guān)鍵[5]。

      1.2 整合素α2β1的生物學(xué)功能

      整合素一方面介導(dǎo)細(xì)胞與細(xì)胞以及細(xì)胞與細(xì)胞外基質(zhì)(extracellular matrix,ECM)間的黏附,另一方面具有信號(hào)傳遞功能。研究[6]表明,整合素通過(guò)調(diào)控細(xì)胞黏附、細(xì)胞形態(tài)、細(xì)胞極性和細(xì)胞分化等細(xì)胞功能在組織形態(tài)生成中起著重要作用。其中,整合素α2β1對(duì)Ⅰ型膠原具有高親和力,是Ⅰ型膠原的主要受體[7]。生理情況下,整合素α2β1與膠原結(jié)合,Ca2+閥門(mén)開(kāi)放,Ca2+內(nèi)流,導(dǎo)致黏著斑蛋白激酶(focal adhesion kinase,F(xiàn)AK)通路磷酸化,進(jìn)而激活細(xì)胞絲裂原活化蛋白激酶(mitogen activated protein kinase,MAPKs)、胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERKs)、Rho激酶、溶膠蛋白等一系列信號(hào)分子,引發(fā)細(xì)胞骨架肌動(dòng)蛋白和肌絲蛋白重組。細(xì)胞骨架的改變導(dǎo)致細(xì)胞膜內(nèi)陷形成膠原吞噬泡,完成膠原在細(xì)胞內(nèi)的降解[8-10]。因此,整合素α2β1與膠原結(jié)合是膠原吞噬的第一步,在膠原吞噬中發(fā)揮著關(guān)鍵作用。

      2 藥物引起牙齦增生的機(jī)制

      DIGO可由服用環(huán)孢菌素、硝苯地平及苯妥英鈉等藥物引起,但病理上均表現(xiàn)為牙齦結(jié)締組織中膠原束增多增粗[1]。成纖維細(xì)胞是牙齦結(jié)締組織中最主要的細(xì)胞成分,能夠合成膠原纖維、彈性纖維以及無(wú)定形的ECM,比如糖蛋白和糖胺多糖。成纖維細(xì)胞異常增殖和膠原代謝紊亂是導(dǎo)致膠原和其他ECM大分子(氨基葡糖多聚糖等)過(guò)度積累的主要原因[11-13]。有研究[14-15]報(bào)道,一些程序性細(xì)胞死亡基因在藥物性增生的牙齦組織中表達(dá)下調(diào),如p53、B淋巴細(xì)胞瘤-2基因(B-cell lymphonma gene 2,bcl-2)等。這些基因的表達(dá)下調(diào)可抑制細(xì)胞凋亡,導(dǎo)致牙齦細(xì)胞的異常增殖,引起牙齦體積增大。膠原代謝紊亂會(huì)導(dǎo)致牙齦結(jié)締組織的過(guò)度沉積。膠原代謝平衡主要是通過(guò)成纖維細(xì)胞的膠原合成和吞噬,基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)以及相關(guān)細(xì)胞因子來(lái)調(diào)節(jié)。膠原的合成受到多種促纖維生長(zhǎng)因子的調(diào)節(jié),如轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor,TGF)、內(nèi)皮素-1(endothelin-1,ET-1)、血管緊張素Ⅱ(angiotension Ⅱ,Ang Ⅱ)、結(jié)締組織生長(zhǎng)因子(connective tissue growth factor,CCN2/CTGF)、胰島素樣生長(zhǎng)因子(insulin like growth factor,IGF)和血小板衍生生長(zhǎng)因子(platelet-derived growth factor,PDGF)等[16]。膠原降解主要通過(guò)MMPs和膠原吞噬來(lái)實(shí)現(xiàn)。MMPs是一組鋅依賴(lài)性?xún)?nèi)肽酶,主要在細(xì)胞外基質(zhì)降解過(guò)程中發(fā)揮作用,其激活和抑制通過(guò)組織基質(zhì)金屬蛋白酶抑制劑(tissue matrix metalloproteinase inhibitors,TIMPs)來(lái)實(shí)現(xiàn)[17]。DIGO可導(dǎo)致牙齦成纖維細(xì)胞膠原吞噬能力下降,整合素α2β1在成纖維細(xì)胞識(shí)別膠原并吞噬消化的過(guò)程中發(fā)揮著重要作用。整合素α2β1對(duì)Ⅰ型膠原具有高親和力,而藥物可降低牙齦成纖維細(xì)胞中整合素α2β1的表達(dá)[18-21],從而抑制成纖維細(xì)胞膠原吞噬能力。

      3 整合素α2β1介導(dǎo)DIGO的相關(guān)機(jī)制

      3.1 整合素α2β1表達(dá)水平

      Ⅰ型膠原是牙齦組織中分布最廣且含量最高的膠原成分。整合素α2β1作為Ⅰ型膠原的主要受體,直接參與成纖維細(xì)胞與膠原的結(jié)合,是調(diào)節(jié)膠原細(xì)胞吞噬作用的關(guān)鍵。牙齦中整合素α2β1表達(dá)降低,從而導(dǎo)致膠原吞噬減少是DIGO的發(fā)病機(jī)制之一。Bolcato-Bellemin等[19]檢測(cè)正常人牙齦組織、牙周炎患者的牙齦組織及環(huán)孢菌素A誘導(dǎo)的增生牙齦組織中整合素α2β1表達(dá)情況,發(fā)現(xiàn)整合素α2β1 mRNA的表達(dá)水平在環(huán)孢菌素A誘導(dǎo)的增生牙齦組織中顯著降低;免疫組織化學(xué)實(shí)驗(yàn)結(jié)果顯示,α2β1表達(dá)在3種組織的上皮層并無(wú)明顯差異,而在結(jié)締組織中環(huán)孢菌素A組表達(dá)下降。Kataoka等[20]通過(guò)小鼠動(dòng)物模型實(shí)驗(yàn)證實(shí),環(huán)孢菌素A對(duì)小鼠牙齦成纖維細(xì)胞中整合素α2β1 mRNA和蛋白的表達(dá)均有抑制作用,并且能夠抑制成纖維細(xì)胞的膠原吞噬作用。Sardarian等[21]用不同質(zhì)量濃度的環(huán)孢菌素A刺激人牙齦上皮細(xì)胞,發(fā)現(xiàn)藥物質(zhì)量濃度為0.1、1、10、1 μg·mL-1時(shí)β1的表達(dá)受抑制,而α2在質(zhì)量濃度大于1 μg·mL-1時(shí)表達(dá)受到抑制。同時(shí)環(huán)孢菌素A刺激可導(dǎo)致谷胱甘肽氧化酶活性增強(qiáng),還原酶活性降低,提示氧化應(yīng)激作用與整合素α2β1表達(dá)的改變是環(huán)孢菌素A誘導(dǎo)的牙齦增生的可能發(fā)病機(jī)制。此外,苯妥英鈉刺激可使牙齦成纖維細(xì)胞中整合素α2β1表達(dá)降低[18]。以上研究結(jié)果提示,藥物可能通過(guò)抑制牙齦中整合素α2β1的表達(dá)干擾膠原吞噬。由于各項(xiàng)研究采用的藥物濃度及細(xì)胞或組織類(lèi)型不同,各種藥物對(duì)不同牙齦細(xì)胞中整合素α2β1的抑制作用是否具有差異以及此種抑制作用是否具有濃度依賴(lài)性尚需進(jìn)一步研究。

      3.2 整合素α2基因多態(tài)性

      據(jù)研究[22-24]報(bào)道,整合素α2多態(tài)性位點(diǎn)整合素α2(+807)C/T與多種疾病的發(fā)生發(fā)展及預(yù)后相關(guān),如急性冠狀動(dòng)脈血栓、胃癌、特發(fā)性神經(jīng)性聾等。目前,整合素α2基因(+807)C/T多態(tài)性是否是藥物性牙齦增生的遺傳易患因素,爭(zhēng)議較大。Ogino等[25]發(fā)現(xiàn),服用硝苯地平人群中,DIGO患者攜帶807C/C等位基因的比例明顯高于非DIGO患者。此外,單海琴等[26]分別檢測(cè)99例服用環(huán)孢菌素A的DIGO患者和101例正常對(duì)照組整合素α2(+807)C/T 多態(tài)的基因型,發(fā)現(xiàn)C位點(diǎn)為服用環(huán)孢菌素者DIGO發(fā)生的高風(fēng)險(xiǎn)位點(diǎn),帶有C位點(diǎn)的患者發(fā)生DIGO的風(fēng)險(xiǎn)是T位點(diǎn)患者的3.61倍。然而,Gürkan等[27]和楊斐等[28]則認(rèn)為,整合素α2多態(tài)性與腎移植術(shù)后環(huán)孢菌素誘導(dǎo)牙齦增生無(wú)明顯相關(guān)性?;蚨鄳B(tài)性研究是疾病研究的重要方向,由于藥物、樣本量差異等因素,整合素α2基因多態(tài)性的研究結(jié)論尚不一致。

      3.3 整合素α2β1介導(dǎo)DIGO相關(guān)信號(hào)通路

      TGF-β是一類(lèi)生物學(xué)活性十分廣泛的細(xì)胞因子,在人類(lèi)TGF-β超家族有30多個(gè)成員,包括TGF-βs、激活素、骨形態(tài)發(fā)生蛋白(bone morphogenetic protein,BMP)等[29]。研究[30]證實(shí),TGF-β1具有成纖維細(xì)胞趨化作用,與多種基質(zhì)積累型纖維化病變密切相關(guān)。Kondo等[31]發(fā)現(xiàn),TGF-β1可通過(guò)提高腎成纖維細(xì)胞表達(dá)整合素α1和α2,增強(qiáng)細(xì)胞與膠原的黏附作用,從而刺激成纖維細(xì)胞膠原基質(zhì)的改建。Li等[32]發(fā)現(xiàn),通過(guò)小干擾RNA(small interfering RNA,siRNA)抑制TGF-β受體可降低膀胱癌T24細(xì)胞整合素α2β1基因的表達(dá)。除了腎臟、腫瘤細(xì)胞外,在牙齦成纖維細(xì)胞中也有關(guān)于TGF-β調(diào)控整合素α2β1表達(dá)的相關(guān)報(bào)道。Zhou等[33]發(fā)現(xiàn),外源性TGF-β1對(duì)遺傳性牙齦纖維瘤患者和健康人原代培養(yǎng)牙齦成纖維細(xì)胞中整合素α2β1的表達(dá)均有刺激作用。Chung等[34]通過(guò)實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)和免疫印跡實(shí)驗(yàn)證實(shí),環(huán)孢菌素A刺激可導(dǎo)致人牙齦成纖維細(xì)胞中TGF-β和音猬因子(sonic hedgehog homolog,Shh)的mRNA和蛋白表達(dá)均增加,并且TGF-β和Shh在促進(jìn)DIGO發(fā)生過(guò)程中存在串話(huà)機(jī)制,說(shuō)明TGF-β-Shh信號(hào)通路在DIGO中起重要的調(diào)節(jié)作用。TGF-β對(duì)整合素α2β1表達(dá)以及DIGO發(fā)生的調(diào)控作用也提示,TGF-β與整合素α2β1在DIGO發(fā)生發(fā)展中可能存在關(guān)聯(lián)。

      整合素α2β1還受到多種物質(zhì)以及信號(hào)通路的調(diào)控,主要包括盤(pán)狀結(jié)構(gòu)域受體1(discoidin domain receptor 1,DDR1)、核心蛋白聚糖、磷酸酯酶-2A(phosphatase-2A,PP2A)信號(hào)通路等。Xu等[35]發(fā)現(xiàn),DDR1、DDR2是與整合素相似的另一類(lèi)膠原受體,DDRs結(jié)合膠原纖維的GVMGFO序列,而整合素結(jié)合Gxx’GEx’序列。DDRs的過(guò)表達(dá)或激活均可促進(jìn)整合素α2β1介導(dǎo)的低、中親和力整合素配體的細(xì)胞黏附。Staudinger等[36]認(rèn)為,在人、鼠成纖維細(xì)胞DDR1可調(diào)節(jié)整合素β1亞基糖基化作用,影響其轉(zhuǎn)錄后的修飾。DDR1過(guò)表達(dá)可提高β1亞基與膠原纖維的黏附性,從而調(diào)節(jié)膠原吞噬。進(jìn)一步研究[37]發(fā)現(xiàn),環(huán)孢菌素A可抑制膠原蛋白的結(jié)合和內(nèi)化,膠原凝膠的收縮,細(xì)胞的遷移等,都具有DDR1依賴(lài)性,且環(huán)孢菌素A能顯著降低細(xì)胞表面的β1表達(dá)。由此可見(jiàn),環(huán)孢菌素A誘導(dǎo)的牙齦增生可能與DDR1和整合素β1亞基的相互作用相關(guān)。此外,Bhide等[38]發(fā)現(xiàn),Decorin可掩蓋人牙齦成纖維細(xì)胞中整合素α2β1膠原結(jié)合位點(diǎn),導(dǎo)致細(xì)胞膠原纖維增多。整合素β1蛋白-磷酸酯酶-2A-結(jié)節(jié)硬化復(fù)合物(β1 integrin-protein phosphatase 2A-tuberous sclerosis complex,β1 Integrin-PP2A-TSC)也被證實(shí)在組織纖維化增生中起重要的調(diào)控作用。研究[39]發(fā)現(xiàn),該復(fù)合體能激活磷脂酰肌醇-3-羥激酶-蘇氨酸激酶(phosphatidyl inositol 3-kinase-threonine kinase,PI3K-Akt)信號(hào)通路,抑制下游基因S6K1的表達(dá),進(jìn)而抑制細(xì)胞的增殖。整合素α2β1表達(dá)降低還會(huì)導(dǎo)致PP2A活性降低,從而激活其下游的促纖維因子糖原合成酶激酶-3(glycogen synthase kinase-3,GSK-3)和β-連環(huán)蛋白(β-catenin)的表達(dá)[40]。

      鈣通道阻滯劑如硝苯地平、維拉帕米等均能引起DIGO。該類(lèi)藥物能選擇性阻滯細(xì)胞膜鈣通道,抑制細(xì)胞外Ca2+內(nèi)流,減少細(xì)胞內(nèi)可利用的Ca2+量。整合素是一類(lèi)金屬蛋白,受體功能依賴(lài)于Mg2+和Ca2+的相互作用,α2亞基Ⅰ域中含有3個(gè)Ca2+結(jié)合位點(diǎn)[41]。Grzesiak等[42]發(fā)現(xiàn),整合素α2β1介導(dǎo)的Ⅰ型膠原與細(xì)胞黏附具有Mg2+依賴(lài)性,Ca2+則能抑制其黏附。Arora等[9]的研究提示,膠原與細(xì)胞表面整合素α2β1結(jié)合后,細(xì)胞外Ca2+內(nèi)流,從而激活下游的rac信號(hào)通路和溶膠蛋白,GTP-rac與激活的溶膠蛋白能反饋增強(qiáng)整合素α2β1與膠原的結(jié)合力,而藥物則可通過(guò)干擾細(xì)胞鈣離子內(nèi)流而降低整合素的結(jié)合力??梢?jiàn)Ca2+在整合素α2β1介導(dǎo)的DIGO中有重要作用,而鈣通道阻滯劑是否直接作用于整合素α2β1,與此相關(guān)的信號(hào)通路等問(wèn)題仍需進(jìn)一步研究。

      綜上所述,整合素α2β1介導(dǎo)牙齦成纖維細(xì)胞膠原吞噬作用,其表達(dá)水平與基因多態(tài)性在DIGO的發(fā)生發(fā)展中起重要作用。TGF-β、DDR1、Decorin和Ca2+等可能是整合素α2β1介導(dǎo)DIGO發(fā)生過(guò)程中的關(guān)鍵信號(hào)分子。以整合素為靶點(diǎn)可望成為治療DIGO的重要途徑;但是整合素參與的各種信號(hào)轉(zhuǎn)導(dǎo)通路之間關(guān)系復(fù)雜,且各通路之間存在交互和協(xié)同作用,仍需要進(jìn)行大量的研究。

      [1] Agrawal AA. Gingival enlargements: differential diagnosis and review of literature[J]. World J Clin Cases, 2015, 3(9):779-788.

      [2] Nakib N, Ashrafi SS. Drug-induced gingival overgrowth[J]. Dis Mon, 2011, 57(4):225-230.

      [3] Brown RS, Arany PR. Mechanism of drug-induced gingival overgrowth revisited: a unifying hypothesis[J]. Oral Dis, 2015, 21(1):e51-e61.

      [4] Larjava H, Koivisto L, Heino J, et al. Integrins in periodontal disease[J]. Exp Cell Res, 2014, 325(2):104-110.

      [5] Madamanchi A, Santoro SA, Zutter MM. α2β1 integrin[J]. Adv Exp Med Biol, 2014, 819:41-60.

      [6] Paul NR, Jacquemet G, Caswell PT. Endocytic traffi cking of integrins in cell migration[J]. Curr Biol, 2015, 25(22): R1092-R1105.

      [7] Heino J. Cellular signaling by collagen-binding integrins[J]. Adv Exp Med Biol, 2014, 819:143-155.

      [8] Arora PD, Conti MA, Ravid S, et al. Rap1 activation in collagen phagocytosis is dependent on nonmuscle myosin Ⅱ-A[J]. Mol Biol Cell, 2008, 19(12):5032-5046.

      [9] Arora PD, Glogauer M, Kapus A, et al. Gelsolin mediates collagen phagocytosis through a rac-dependent step[J]. Mol Biol Cell, 2004, 15(2):588-599.

      [10] Israeli-Rosenberg S, Manso AM, Okada H, et al. Integrins and integrin-associated proteins in the cardiac myocyte[J]. Circ Res, 2014, 114(3):572-586.

      [11] Chung Y, Fu E, Chin YT, et al. Role of Shh and TGF in cyclosporine-enhanced expression of collagen and α-SMA by gingival fi broblast[J]. J Clin Periodontol, 2015, 42(1): 29-36.

      [12] Corrêa JD, Queiroz-Junior CM, Costa JE, et al. Phenytoininduced gingival overgrowth: a review of the molecular, immune, and infl ammatory features[J]. ISRN Dent, 2011, 2011:497850.

      [13] Ma S, Liu P, Li Y, et al. Cyclosporine a inhibits apoptosis of rat gingival epithelium[J]. J Periodontol, 2014, 85(8): 1126-1134.

      [14] Mitic K, Popovska M, Pandilova M, et al. The role of infl ammation and apoptosis in cyclosporine A-induced gingival overgrowth[J]. Bosn J Basic Med Sci, 2013, 13(1): 14-20.

      [15] Arunachalam LT, Rao S. Immunolocalization of Bcl-2 oncoprotein in amlodipine-induced gingival overgrowth[J]. Indian J Dent Res, 2013, 24(2):255-260.

      [16] Subramani T, Rathnavelu V, Alitheen NB. The possible potential therapeutic targets for drug induced gingival overgrowth[J]. Mediators Infl amm, 2013, 2013:639468.

      [17] Li WL, Wu CH, Yang J, et al. Local Infl ammation alters MMP-2 and MMP-9 gelatinase expression associated with the severity of nifedipine-induced gingival overgrowth: a rat model study[J]. Infl ammation, 2015, 38(4):1517-1528.

      [18] Kato T, Okahashi N, Kawai S, et al. Impaired degradation of matrix collagen in human gingival fi broblasts by the antiepileptic drug phenytoin[J]. J Periodontol, 2005, 76(6): 941-950.

      [19] Bolcato-Bellemin AL, Elkaim R, Tenenbaum H. Expression of RNAs encoding for alpha and beta integrin subunits in periodontitis and in cyclosporin A gingival overgrowth[J]. J Clin Periodontol, 2003, 30(11):937-943.

      [20] Kataoka M, Seto H, Wada C, et al. Decreased expression of alpha2 integrin in fi broblasts isolated from cyclosporin A-induced gingival overgrowth in rats[J]. J Periodont Res, 2003, 38(5):533-537.

      [21] Sardarian A, Andisheh Tadbir A, Zal F, et al. Altered oxidative status and integrin expression in cyclosporine A-treated oral epithelial cells[J]. Toxicol Mech Methods, 2015, 25(2): 98-104.

      [22] Dayakar S, Reddy TP, Rao SP, et al. Role of platelet glycoprotein receptor Ⅲa PI(A2) and traditional risk factors in the etiology of coronary thrombosis[J]. Thromb Res, 2011, 128 (6):595-597.

      [23] Chen J, Liu NN, Li JQ, et al. Association between ITGA2 C807T polymorphism and gastric cancer risk[J]. World J Gastroenterol, 2011, 17(23):2860-2866.

      [24] Ballesteros F, Tassies D, Reverter JC, et al. Idiopathic sudden sensorineural hearing loss: classic cardiovascular and new genetic risk factors[J]. Audiol Neurootol, 2012, 17(6):400-408.

      [25] Ogino M, Kido J, Bando M, et al. Alpha 2 integrin+807 polymorphism in drug-induced gingival overgrowth[J]. J Dent Res, 2005, 84(12):1183-1186.

      [26] 單海琴, 任雨, 吳寅, 等. 整合素α2基因+807位基因多態(tài)性與腎移植后環(huán)孢素誘導(dǎo)牙齦增生的相關(guān)性研究[J]. 現(xiàn)代實(shí)用醫(yī)學(xué), 2014, 26(1):11-12, 35.

      Shan HQ, Ren Y, Wu Y, et al. Integrin α2 gene+807 polymorphism in renal transplant patients with cyclosporine induced gingival overgrowth[J]. Modern Pract Med, 2014, 26(1):11-12, 35.

      [27] Gürkan A, Emingil G, Afacan B, et al. Alpha 2 integrin gene (ITGA2) polymorphism in renal transplant recipients with and without drug induced gingival overgrowth[J]. Arch Oral Biol, 2014, 59(3):283-288.

      [28] 楊斐, 阮宏, 余優(yōu)成, 等. 腎移植患者中整合素α2+807單核苷酸多態(tài)性(SNP)與環(huán)孢素A(CsA)所致藥物性牙齦增生(GO)的相關(guān)性[J]. 復(fù)旦學(xué)報(bào)(醫(yī)學(xué)版), 2014, 41(4):470-475.

      Yang F, Ruan H, Yu YC, et al. Association between integrin α2+807 single nucleotide polymorphisms (SNP) and cyclosporin a (CsA)-induced gingival overgrowth (GO) in renal transplant patients[J]. Fudan Univ J Med Sci, 2014, 41(4): 470-475.

      [29] Piersma B, Bank RA, Boersema M. Signaling in fi brosis: TGF-β, WNT, and YAP/TAZ converge[J]. Front Med, 2015, 2:59.

      [30] Pisoschi CG, St?nciulescu CE, Andrei AM, et al. Role of transforming growth factor β-connective tissue growth factor pathway in dihydropyridine calcium channel blockers-induced gingival overgrowth[J]. Rom J Morphol Embryol, 2014, 55 (2):285-290.

      [31] Kondo S, Kagami S, Urushihara M, et al. Transforming growth factor-beta1 stimulates collagen matrix remodeling through increased adhesive and contractive potential by human renal fi broblasts[J]. Biochim Biophys Acta, 2004, 1693(2):91-100.

      [32] Li Y, Yang K, Mao Q, et al. Inhibition of TGF-beta receptorⅠ by siRNA suppresses the motility and invasiveness of T24 bladder cancer cells via modulation of integrins and matrix metalloproteinase[J]. Int Urol Nephrol, 2010, 42(2): 315-323.

      [33] Zhou J, Meng LY, Ye XQ, et al. Increased expression of integrin alpha2 and abnormal response to TGF-beta1 in hereditary gingival fi bromatosis[J]. Oral Dis, 2009, 15(6):414-421.

      [34] Chung Y, Fu E. Crosstalk between Shh and TGF-β signaling in cyclosporine-enhanced cell proliferation in human gingival fi broblasts[J]. PLoS ONE, 2013, 8(7):e70128.

      [35] Xu H, Bihan D, Chang F, et al. Discoidin domain receptors promote α1β1- and α2β1-integrin mediated cell adhesion to collagen by enhancing integrin activation[J]. PLoS ONE, 2012, 7(12):e52209.

      [36] Staudinger LA, Spano SJ, Lee W, et al. Interactions between the discoidin domain receptor 1 and β1 integrin regulate attachment to collagen[J]. Biol Open, 2013, 2(11):1148-1159.

      [37] Staudinger LA, Spano SJ, Lee WS, et al. Role of discoidin domain receptor 1 in dysregulation of collagen remodeling by cyclosporin A[J]. Int J Biochem Cell Biol, 2015, 62:80-87.

      [38] Bhide VM, Laschinger CA, Arora PD, et al. Collagen phagocytosis by fi broblasts is regulated by decorin[J]. J Biol Chem, 2005, 280(24):23103-23113.

      [39] Xia H, Nho R, Kleidon J, et al. Polymerized collagen inhibits fi broblast proliferation via a mechanism involving the formation of a beta1 integrin-protein phosphatase 2A-tuberous sclerosis complex 2 complex that suppresses S6K1 activity [J]. J Biol Chem, 2008, 283(29):20350-20360.

      [40] Xia H, Seeman J, Hong J, et al. Low α2β1 integrin function enhances the proliferation of fi broblasts from patients with idiopathic pulmonary fi brosis by activation of the β-catenin pathway[J]. Am J Pathol, 2012, 181(1):222-233.

      [41] Leitinger B, McDowall A, Stanley P, et al. The regulation of integrin function by Ca2+[J]. Biochim Biophys Acta, 2000, 1498(2/3):91-98.

      [42] Grzesiak JJ, Bouvet M. Activation of the alpha2beta1 integrinmediated malignant phenotype on typeⅠcollagen in pancreatic cancer cells by shifts in the concentrations of extracellular Mg2+and Ca2+[J]. Int J Cancer, 2008, 122(10):2199-2209.

      (本文編輯 吳愛(ài)華)

      Research progression of the relationship between integrin α2β1 and drug-induced gingival overgrowth


      Kang Yingzhu, Guo Shujuan, Liu Chengcheng, Ding Yi. (State Key Laboratory of Oral Diseases, Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
      Supported by: The Ministry of Health Department of Periodontics’ Clinical State Key Construction Specialist Foundation of China (2010).

      Drug-induced gingival overgrowth (DIGO) is characterized by fi brous gingival hyperplasia and increased gingival volume. DIGO is histologically associated with proliferation of cells and deposition of extracellular matrices, particularly collagen. Integrin α2β1 is related to collagen phagocytosis and involved in the occurrence and progression of DIGO. This paper reviews the progress of research on the relationship between integrin α2β1 and DIGO.

      drug-induced gingival overgrowth; integrin α2β1; collagens metabolism; collagen phagocytosis

      R 781.4

      A

      10.7518/hxkq.2017.01.016

      2016-03-15;

      2016-05-07

      衛(wèi)生部牙周科國(guó)家臨床重點(diǎn)專(zhuān)科建設(shè)項(xiàng)目(2010)

      康穎竹,碩士,E-mail: 532217500@qq.com

      丁一,教授,博士,E-mail:yiding2000@126.com

      Correspondence: Ding Yi, E-mail: yiding2000@126.com.

      猜你喜歡
      整合素亞基膠原
      心臟鈉通道β2亞基轉(zhuǎn)運(yùn)和功能分析
      整合素α7與腫瘤關(guān)系的研究進(jìn)展
      膠原無(wú)紡布在止血方面的應(yīng)用
      胰島素通過(guò)mTORC2/SGK1途徑上調(diào)肺泡上皮鈉通道α亞基的作用機(jī)制
      紅藍(lán)光聯(lián)合膠原貼治療面部尋常痤瘡療效觀察
      整合素αvβ6和JunB在口腔鱗癌組織中的表達(dá)及其臨床意義
      整合素與胃癌關(guān)系的研究進(jìn)展
      小RNA干擾蛋白酶體亞基α7抑制K562細(xì)胞增殖
      膠原ACE抑制肽研究進(jìn)展
      中介體亞基基因NtMed8在煙草花期調(diào)控中的作用
      石棉县| 固原市| 平远县| 监利县| 历史| 陆丰市| 阜康市| 北安市| 正阳县| 望谟县| 兖州市| 双流县| 舒兰市| 祁阳县| 东乡族自治县| 绩溪县| 丹江口市| 龙游县| 沙湾县| 都兰县| 凉山| 南雄市| 西青区| 离岛区| 双城市| 乐安县| 博罗县| 荔波县| 嵊州市| 新营市| 长汀县| 邹城市| 巴林左旗| 信宜市| 正阳县| 囊谦县| 五大连池市| 龙南县| 定边县| 玛多县| 新乡市|