• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于大數(shù)據(jù)技術(shù)的告警日志數(shù)據(jù)分析

      2017-03-07 16:39應(yīng)俊
      移動通信 2016年23期

      應(yīng)俊

      摘要:為了更好地滿足運營商對海量非結(jié)構(gòu)化數(shù)據(jù)的處理需求,主要以網(wǎng)絡(luò)告警日志數(shù)據(jù)為例,詳細闡述如何利用Hadoop+Spark大數(shù)據(jù)技術(shù)挖掘和分析海量的數(shù)據(jù),進而提高網(wǎng)絡(luò)監(jiān)控效率。

      關(guān)鍵詞:告警數(shù)據(jù) Hadoop Spark

      1 引言

      隨著電信網(wǎng)絡(luò)的不斷演進,全省數(shù)據(jù)網(wǎng)、交換網(wǎng)、接入網(wǎng)設(shè)備單月產(chǎn)生告警原始日志近億條。以上告警通過網(wǎng)元網(wǎng)管、專業(yè)綜合網(wǎng)管、智能網(wǎng)管系統(tǒng)[1]三層收斂,監(jiān)控人員每月需處理影響業(yè)務(wù)或網(wǎng)絡(luò)質(zhì)量的告警事件為20萬條,但一些對網(wǎng)絡(luò)可能造成隱患的告警信息被過濾掉。如何從海量告警數(shù)據(jù)中獲取與網(wǎng)絡(luò)性能指標(biāo)、運維效率相關(guān)的有價值的數(shù)據(jù),對于傳統(tǒng)的關(guān)系型數(shù)據(jù)庫架構(gòu)而言,似乎是一個不可能完成的任務(wù)。

      在一般告警量情況下,ORACLE數(shù)據(jù)處理能力基本可以滿足分析需求,但當(dāng)告警分析量上升到億級,如果采用傳統(tǒng)的數(shù)據(jù)存儲和計算方式,一方面數(shù)據(jù)量過大,表的管理、維護開銷過大,要做到每個字段建索引,存儲浪費巨大;另一方面計算分析過程耗時過長,無法滿足實時和準(zhǔn)實時分析需求。因此必須采用新的技術(shù)架構(gòu)來分析處理海量告警信息,支撐主動維護工作顯得尤為必要,為此我們引入了大數(shù)據(jù)技術(shù)。

      2 分析目標(biāo)

      (1)數(shù)據(jù)源:電信運營商網(wǎng)絡(luò)設(shè)備告警日志數(shù)據(jù),每天50 G。

      (2)數(shù)據(jù)分析目標(biāo):完成高頻翻轉(zhuǎn)類(瞬斷)告警分析;完成自定義網(wǎng)元、自定義告警等可定制告警分析;完成被過濾掉的告警分析、TOPN告警分析;核心設(shè)備和重要業(yè)務(wù)監(jiān)控。

      (3)分析平臺硬件配置:云計算平臺分配8臺虛擬機,每臺虛機配置CPU16核;內(nèi)存32 G;硬盤2 T。

      3 制定方案

      進入大數(shù)據(jù)時代,行業(yè)內(nèi)涌現(xiàn)了大量的數(shù)據(jù)挖掘技術(shù),數(shù)據(jù)處理和分析更高效、更有價值。Google、Facebook等公司提供可行的思路是通過類似Hadoop[2]的分布式計算、MapReduce[3]、Spark[4]算法等構(gòu)造而成的新型架構(gòu),挖掘有價值信息。

      Hadoop是Apache基金會用JAVA語言開發(fā)的分布式框架,通過利用計算機集群對大規(guī)模數(shù)據(jù)進行分布式計算分析。Hadoop框架最重要的兩個核心是HDFS和MapReduce,HDFS用于分布式存儲,MapReduce則實現(xiàn)分布式任務(wù)計算。

      一個HDFS集群包含元數(shù)據(jù)節(jié)點(NameNode)、若干數(shù)據(jù)節(jié)點(DataNode)和客戶端(Client)。NameNode管理HDFS的文件系統(tǒng),DataNode存儲數(shù)據(jù)塊文件。HDFS將一個文件劃分成若干個數(shù)據(jù)塊,這些數(shù)據(jù)塊存儲DataNode節(jié)點上。

      MapReduce是Google公司提出的針對大數(shù)據(jù)的編程模型。核心思想是將計算過程分解成Map(映射)和Reduce(歸約)兩個過程,也就是將一個大的計算任務(wù)拆分為多個小任務(wù),MapReduce框架化繁為簡,輕松地解決了數(shù)據(jù)分布式存儲的計算問題,讓不熟悉并行編程的程序員也能輕松寫出分布式計算程序。MapReduce最大的不足則在于Map和Reduce都是以進程為單位調(diào)度、運行、結(jié)束的,磁盤I/O開銷大、效率低,無法滿足實時計算需求。

      Spark是由加州伯克利大學(xué)AMP實驗室開發(fā)的類Hadoop MapReduce的分布式并行計算框架,主要特點是彈性分布式數(shù)據(jù)集RDD[5],中間輸出結(jié)果可以保存在內(nèi)存中,節(jié)省了大量的磁盤I/O操作。Spark除擁有Hadoop MapReduce所具有的優(yōu)點外,還支持多次迭代計算,特別適合流計算和圖計算。

      基于成本、效率、復(fù)雜性等因素,我們選擇了HDFS+Spark實現(xiàn)對告警數(shù)據(jù)的挖掘分析。

      4 分析平臺設(shè)計

      4.1 Hadoop集群搭建

      基于CentOS-6.5系統(tǒng)環(huán)境搭建Hadoop集群,配置如表1所示。

      4.2 Spark參數(shù)設(shè)置[6]

      Spark參數(shù)設(shè)置如表2所示。

      4.3 數(shù)據(jù)采集層

      數(shù)據(jù)采集:由于需采集的告警設(shè)備種類繁多,故采取分布式的告警采集,數(shù)據(jù)網(wǎng)設(shè)備、交換網(wǎng)設(shè)備、接入網(wǎng)設(shè)備分別通過IP綜合網(wǎng)管、天元綜合網(wǎng)管、PON綜合網(wǎng)管進行采集,采集周期5分鐘一次。采集機先將采集到的告警日志文件,通過FTP接口上傳到智能網(wǎng)管系統(tǒng)文件服務(wù)器上,再對文件進行校驗,通過Sqoop推送到Hadoop集群上。

      4.4 邏輯處理層

      (1)建立高頻翻轉(zhuǎn)告警監(jiān)控工作流程

      先將海量告警進行初步刪選,通過數(shù)量、位置和時間三個維度的分析,得出高頻翻轉(zhuǎn)類告警清單列表,最后由專業(yè)工程師甄別確認,對某類告警進行重點關(guān)注和監(jiān)控。

      (2)差異化定制方案

      按組網(wǎng)架構(gòu)細分,針對核心重要節(jié)點的所有告警均納入實時監(jiān)控方案;

      按業(yè)務(wù)網(wǎng)絡(luò)細分,針對不同業(yè)務(wù)網(wǎng)絡(luò)設(shè)計個性化的監(jiān)控方案;

      按客戶業(yè)務(wù)細分,針對客戶數(shù)字出租電路設(shè)計個性化的監(jiān)控方案。

      4.5 數(shù)據(jù)分析層

      Spark讀取Hive[7]表的告警數(shù)據(jù),然后在Spark引擎中進行SQL統(tǒng)計分析。Spark SQL模塊在進行分析時,將外部告警數(shù)據(jù)源轉(zhuǎn)化為DataFrame[8],并像操作RDD或者將其注冊為臨時表的方式處理和分析這些數(shù)據(jù)。一旦將DataFrame注冊成臨時表,就可以使用類SQL的方式操作查詢分析告警數(shù)據(jù)。表3是利用Spark SQL對告警工單做的一個簡單分析:

      5 平臺實踐應(yīng)用

      探索運維數(shù)據(jù)分析的新方法,利用大數(shù)據(jù)分析技術(shù),分析可能影響業(yè)務(wù)/設(shè)備整體性能的設(shè)備告警,結(jié)合網(wǎng)絡(luò)性能數(shù)據(jù),找到網(wǎng)絡(luò)隱患,實現(xiàn)主動維護的工作目標(biāo)。

      5.1 高頻翻轉(zhuǎn)類告警監(jiān)控

      首先制定了高頻翻轉(zhuǎn)類告警分析規(guī)則,將連續(xù)7天每天原始告警發(fā)生24次以上定義為高頻翻轉(zhuǎn)類告警,并基于大數(shù)據(jù)平臺開發(fā)了相應(yīng)的分析腳本,目前已實現(xiàn)全專業(yè)所有告警類型的分析。表4是全省高頻翻轉(zhuǎn)類TOP10排名。

      5.2 核心設(shè)備和重要業(yè)務(wù)監(jiān)控

      目前以設(shè)備廠商或?qū)<医?jīng)驗評定告警監(jiān)控級別往往會與實際形成偏差,主要表現(xiàn)在以下幾個方面:監(jiān)控級別的差異化設(shè)定基于已知的告警類型,一旦網(wǎng)絡(luò)重大故障上報未知的告警類型就無法在第一時間有效監(jiān)控到;同一類型的故障告警出現(xiàn)在不同網(wǎng)絡(luò)層面可能影響業(yè)務(wù)的程度是完全不同的;不同保障級別的客戶對故障告警監(jiān)控的實時性要求也是不同的。

      通過大數(shù)據(jù)分析平臺對差異化監(jiān)控提供了靈活的定制手段,可根據(jù)告警關(guān)鍵字,分專業(yè)、地市、網(wǎng)管、機房、告警頻次等維度自主定制需要的告警數(shù)據(jù),實現(xiàn)日、周、月、某個時間區(qū)等統(tǒng)計分析。

      應(yīng)用案例:省NOC通過大數(shù)據(jù)分析出一條編號為CTVPN80113的中國平安大客戶電路在一段時間內(nèi)頻繁產(chǎn)生線路劣化告警,但用戶未申告,省NOC隨即預(yù)警給政企支撐工程師,政支工程師與用戶溝通后,派維護人員至現(xiàn)場處理,發(fā)現(xiàn)線路接頭松動,緊急處理后告警消除、業(yè)務(wù)恢復(fù)。

      5.3 被過濾告警分析

      全省每天網(wǎng)絡(luò)告警數(shù)據(jù)300萬條~500萬條,其中99%都會根據(jù)告警過濾規(guī)則進行過濾篩選,把過濾后的告警呈現(xiàn)給網(wǎng)絡(luò)監(jiān)控人員。過濾規(guī)則的準(zhǔn)確性直接影響告警數(shù)據(jù)的質(zhì)量。一般來說告警過濾規(guī)則可以從具有豐富運維經(jīng)驗的網(wǎng)絡(luò)維護人員獲得,但是這個過程非常繁瑣,而且通過人工途徑獲得的告警過濾規(guī)則在不同的應(yīng)用環(huán)境可能存在差異,無法滿足網(wǎng)絡(luò)維護的整體需要。采用大數(shù)據(jù)技術(shù)對被過濾的告警進行分析可以很好地完善過濾規(guī)則,讓真正急迫需要處理的告警優(yōu)先呈現(xiàn)給維護人員及時處理,真正做到先于客戶發(fā)現(xiàn)故障。表5是動環(huán)專業(yè)被過濾的告警情況分布。

      5.4 動環(huán)深放電分析

      動環(huán)網(wǎng)管通過C接口采集蓄電池電壓數(shù)據(jù),在停電告警產(chǎn)生之后,電壓數(shù)據(jù)首次下降到45 V,表示該局站電池出現(xiàn)深放電現(xiàn)象,通過計算這一放電過程的持續(xù)時間,記為深放電時長,該時長可以初步反映電池的放電性能。一個局站每天產(chǎn)生幾十萬條電壓等動環(huán)實時數(shù)據(jù)。

      在告警數(shù)據(jù)分析的基礎(chǔ)上,實現(xiàn)對蓄電池電壓變化數(shù)據(jù)的分析,提醒分公司關(guān)注那些深放電次數(shù)過多和放電時長過短的局站,核查蓄電池、油機配置、發(fā)電安排等,并進行整治。利用Spark SQL統(tǒng)計了一個月內(nèi)撫州、贛州、吉安三分公司幾十億條動環(huán)數(shù)據(jù),分析了其中深放電的情況如表6所示。

      6 結(jié)論

      本文利用HDFS+Spark技術(shù),實驗性地解決告警數(shù)據(jù)存儲和分析等相關(guān)問題:一是通過數(shù)據(jù)分析,從海量告警數(shù)據(jù)中發(fā)現(xiàn)潛在的網(wǎng)絡(luò)隱患;二是結(jié)合資源信息和不同專業(yè)的告警,最終為用戶提供綜合預(yù)警;三是轉(zhuǎn)變網(wǎng)絡(luò)監(jiān)控思路和方式,通過數(shù)據(jù)匯聚、數(shù)據(jù)相關(guān)性分析、數(shù)據(jù)可視化展示,提高了網(wǎng)絡(luò)監(jiān)控效率;最后還擴展到對動環(huán)實時數(shù)據(jù)、信令數(shù)據(jù)進行分析。

      從實際運行效果來看,HDFS和Spark完全可以取代傳統(tǒng)的數(shù)據(jù)存儲和計算方式,滿足電信運營商主動運維的需求。

      參考文獻:

      [1] 中國電信股份有限公司. 中國電信智能網(wǎng)管技術(shù)規(guī)范-總體分冊[Z]. 2015.

      [2] Tom white. Hadoop權(quán)威指南[M]. 4版. 南京: 東南大學(xué)出版社, 2015.

      [3] RP Raji. MapReduce: Simplified Data Processing on Large Clusters[Z]. 2004.

      [4] Spark. Apache Spark?[EB/OL]. [2016-11-27]. http://spark.apache.org/.

      [5] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing[J]. Usenix Conference on Networked Systems Design & Implementation, 2012,70(2): 141-146.

      [6] 許鵬. Apache Spark源碼剖析[M]. 北京: 電子工業(yè)出版社, 2015.

      [7] Hive. Apache HiveTM[EB/OL]. [2016-11-27]. http://hive.apache.org/.

      [8] Holden Karau, Andy Konwinski, Patrick Wendell, et al. Learning Spark: Lightning-Fast Big Data Analysis[M]. Oreilly & Associates Inc, 2015.

      [9] 員建廈. 基于動態(tài)存儲策略的數(shù)據(jù)管理系統(tǒng)[J]. 無線電工程, 2014,44(11): 52-54.

      [10] 楊毅. 一種基于網(wǎng)格優(yōu)化的空間數(shù)據(jù)訪問與存儲

      研究[J]. 無線電通信技術(shù), 2014,40(6):43-46. ★

      平昌县| 道真| 澄城县| 萨迦县| 延边| 年辖:市辖区| 高碑店市| 洞头县| 富民县| 时尚| 三原县| 武城县| 邵东县| 疏附县| 额济纳旗| 加查县| 太康县| 石城县| 桐柏县| 前郭尔| 封丘县| 汤阴县| 夹江县| 达孜县| 闸北区| 横山县| 锦州市| 札达县| 岑溪市| 甘孜| 桃源县| 彰化市| 永宁县| 互助| 白银市| 遵义县| 惠来县| 监利县| 拜城县| 出国| 台州市|