• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      炎性小體激活與細(xì)胞焦亡的研究進(jìn)展

      2017-03-11 11:30:59楊斯迪鄧奇峰黃瑞吳淑燕
      微生物與感染 2017年3期
      關(guān)鍵詞:焦亡小體內(nèi)源性

      楊斯迪,鄧奇峰,黃瑞,吳淑燕

      蘇州大學(xué)醫(yī)學(xué)部基礎(chǔ)醫(yī)學(xué)與生物科學(xué)學(xué)院,蘇州 215123

      ?

      ·綜述·

      炎性小體激活與細(xì)胞焦亡的研究進(jìn)展

      楊斯迪,鄧奇峰,黃瑞,吳淑燕

      蘇州大學(xué)醫(yī)學(xué)部基礎(chǔ)醫(yī)學(xué)與生物科學(xué)學(xué)院,蘇州 215123

      細(xì)胞焦亡是一種依賴天冬氨酸特異性半胱氨酸蛋白酶1(cysteinyl aspartate specific proteinase 1,caspase-1)/caspase-11的程序性細(xì)胞死亡方式。炎性小體的激活在細(xì)胞焦亡過(guò)程中扮演重要角色。當(dāng)病原體入侵時(shí),核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體(nucleotide-binding oligomerization domain-like receptor,NLR)和黑色素瘤缺乏因子2(absent in melanoma 2,AIM2)等胞內(nèi)模式識(shí)別受體(pattern recognition receptor,PRR)與相應(yīng)配體結(jié)合,導(dǎo)致炎性小體多蛋白復(fù)合物組裝和caspase-1/caspase-11激活,進(jìn)而誘導(dǎo)細(xì)胞焦亡發(fā)生。深入研究炎性小體激活和細(xì)胞焦亡的相關(guān)機(jī)制,對(duì)認(rèn)識(shí)炎癥性疾病的發(fā)生發(fā)展非常重要。本文就炎性小體激活與細(xì)胞焦亡的研究進(jìn)展進(jìn)行綜述。

      細(xì)胞焦亡;炎性小體;Caspase-1;Caspase-11

      2001年,Brennan和Cookson[1]在沙門菌(Salmonellaspp.)感染巨噬細(xì)胞模型中發(fā)現(xiàn)一種有別于細(xì)胞凋亡且依賴天冬氨酸特異性半胱氨酸蛋白酶1(cysteinyl aspartate specific proteinase 1,caspase-1)的細(xì)胞程序性死亡方式,稱為“細(xì)胞焦亡”(pyroptosis)。焦亡是以細(xì)胞腫脹裂解、細(xì)胞膜溶解(胞質(zhì)內(nèi)容物釋放到細(xì)胞外)為主要特征的細(xì)胞炎性死亡,是宿主抵抗胞內(nèi)病原體感染的天然免疫防御機(jī)制之一[2]。當(dāng)細(xì)菌和病毒等內(nèi)源性或外源性危險(xiǎn)信號(hào)刺激機(jī)體時(shí),細(xì)胞內(nèi)的模式識(shí)別受體(pattern recognition receptor,PRR)通過(guò)識(shí)別病原體相關(guān)分子模式(pathogen-associated molecular pattern,PAMP)和損傷相關(guān)分子模式(damage-associated molecular pattern,DAMP),啟動(dòng)一系列信號(hào)級(jí)聯(lián)反應(yīng)以活化caspase-1前體,誘導(dǎo)細(xì)胞焦亡發(fā)生,進(jìn)而釋放大量促炎細(xì)胞因子,如白細(xì)胞介素1β(interleukin 1β,IL-1β)和IL-18。促炎信號(hào)的產(chǎn)生可將更多免疫細(xì)胞募集至感染病灶,在擴(kuò)大炎癥反應(yīng)的同時(shí),胞內(nèi)病原菌由于失去細(xì)胞保護(hù)而更易被吞噬細(xì)胞殺滅[3]。

      炎性小體是由PRR參與組裝的多蛋白復(fù)合物,可識(shí)別PAMP或宿主來(lái)源的DAMP,進(jìn)而激活caspase-1。目前研究較多的4種炎性小體——NLRP1〔nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain containing 1〕、NLRP3、NLRC4〔NOD-like receptor family, caspase recruitment domain (CARD) containing 4〕和黑色素瘤缺乏因子2(absent in melanoma 2,AIM2)均可通過(guò)經(jīng)典途徑介導(dǎo)炎性小體多蛋白復(fù)合物的組裝,從而促進(jìn)caspase-1前體自我切割產(chǎn)生caspase-1,后者進(jìn)一步將IL-1β前體和IL-18 前體剪切成具有生物學(xué)活性的IL-1β和IL-18[4]。此外,caspase-11作為內(nèi)源性脂多糖(lipopolysaccharide,LPS)受體,還可通過(guò)不依賴caspase-1活化的非經(jīng)典途徑介導(dǎo)IL-1β和IL-18的修飾和釋放[5]。細(xì)胞焦亡和炎性小體對(duì)IL-1β前體和IL-18前體的剪切修飾均依賴caspase-1/caspase-11。隨著研究的深入,科學(xué)家們發(fā)現(xiàn)炎性小體在調(diào)控細(xì)胞焦亡和凋亡等多種細(xì)胞死亡模式中發(fā)揮重要作用[6]。

      1 細(xì)胞焦亡的發(fā)生途徑

      1.1 依賴caspase-1的經(jīng)典細(xì)胞焦亡途經(jīng)

      Caspase家族中多種半胱天冬酶引發(fā)的級(jí)聯(lián)反應(yīng)是調(diào)控細(xì)胞死亡方式的中心環(huán)節(jié),其中caspase-3是細(xì)胞凋亡的主要調(diào)控因子,而caspase-1/ caspase-11依賴的細(xì)胞炎性死亡則主要介導(dǎo)細(xì)胞焦亡[7]。當(dāng)病原體入侵時(shí),核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體(nucleotide-binding oligomerization domain-like receptor,NLR)、細(xì)胞質(zhì)DNA傳感器AIM2等胞內(nèi)主要PRR可與相應(yīng)配體結(jié)合,引起炎性小體多蛋白復(fù)合物組裝和caspase-1激活,導(dǎo)致細(xì)胞膜上形成質(zhì)膜孔,進(jìn)而發(fā)生細(xì)胞滲透性腫脹破裂。此過(guò)程伴隨著IL-1β、IL-18和高遷移率族蛋白B1(high mobility group box 1,HMGB1)等大量炎癥因子釋放,最終放大局部炎癥反應(yīng),這是細(xì)胞焦亡發(fā)生的重要機(jī)制[7-9]。在沙門菌感染巨噬細(xì)胞模型中,人們首次發(fā)現(xiàn)了caspase-1介導(dǎo)的細(xì)胞死亡方式[10]。此后研究發(fā)現(xiàn),除PAMP可誘導(dǎo)細(xì)胞焦亡外,DAMP和活性氧(reactive oxygen species,ROS)亦可引起caspase-1依賴的細(xì)胞炎性死亡[11]。但此過(guò)程中細(xì)胞焦亡是否受caspase-1本身或其他介質(zhì)如caspase-11的調(diào)控,尚未明確。

      1.2 非caspase-1依賴的細(xì)胞焦亡途經(jīng)

      與caspase-1不同,caspase-11在鼠源巨噬細(xì)胞中僅與胞內(nèi)LPS特異性結(jié)合,并在Toll樣受體4(Toll-like receptor 4,TLR4)和caspase-1非依賴的細(xì)胞死亡過(guò)程中發(fā)揮重要作用[12-13]。大腸埃希菌(Escherichiacoli,E.coli)、鼠傷寒沙門菌(Salmonellatyphimurium,S.typhimurium)和福氏志賀菌(Shigellaflexneri,S.flexneri)等多種革蘭陰性菌的LPS均可激活caspase-11,進(jìn)而誘導(dǎo)細(xì)胞焦亡發(fā)生和IL-1β分泌[14],但caspase-11在上述下游信號(hào)事件中的確切機(jī)制尚待進(jìn)一步闡明。研究顯示,革蘭陰性菌LPS可通過(guò)激活TRIF(TIR-domain-containing adapter-inducing interferon β)信號(hào)通路介導(dǎo)β干擾素(interferon β,IFN-β)釋放,IFN-β通過(guò)自分泌/旁分泌的方式調(diào)控caspase-11表達(dá),從而啟動(dòng)caspase-11依賴的細(xì)胞焦亡[15-16]。在此過(guò)程中,caspase-11可剪切并激活小鼠中保守的Gsdmd基因產(chǎn)物Gasdermin D,而Gasdermin D經(jīng)剪切產(chǎn)生的N端p30片段可促使細(xì)胞膜表面質(zhì)膜孔形成和細(xì)胞腫脹破裂,是啟動(dòng)細(xì)胞焦亡的關(guān)鍵[17-18]。Yang等[19]最近發(fā)現(xiàn)縫隙連接蛋白pannexin-1是介導(dǎo)caspase-11非經(jīng)典途徑細(xì)胞焦亡中的另一關(guān)鍵蛋白。內(nèi)源性LPS與caspase-11特異性結(jié)合后,激活的caspase-11可剪切修飾跨膜通道pannexin-1,引起細(xì)胞ATP釋放,從而誘導(dǎo)離子通道P2X7受體依賴性細(xì)胞焦亡[20]。

      感知內(nèi)源性LPS后,誘導(dǎo)caspase-11依賴的細(xì)胞焦亡是小鼠天然免疫的重要環(huán)節(jié),但目前尚不清楚該途徑是否在人類中起作用。研究表明,人類caspase-4 和caspase-5是caspase-11的同源類似物。在人單核細(xì)胞中,內(nèi)源性LPS誘導(dǎo)的焦亡依賴高水平caspase-4表達(dá);caspase-4和caspase-11的功能可在某些小鼠或人類細(xì)胞中相互替代。但與小鼠細(xì)胞識(shí)別內(nèi)源性LPS不同,人類細(xì)胞主要通過(guò)TLR4/MD2復(fù)合物識(shí)別LPS,LPS與caspase-4/caspase-11高親和力結(jié)合后可誘導(dǎo)caspase-4/caspase-11寡聚化并激活相應(yīng)信號(hào)級(jí)聯(lián)反應(yīng),最終導(dǎo)致細(xì)胞焦亡。因此,caspase-4/caspase-5/caspase-11可作為內(nèi)源性LPS的天然受體,在革蘭陰性菌入侵宿主細(xì)胞過(guò)程中扮演重要角色。

      2 細(xì)胞焦亡與炎性小體的關(guān)系

      2.1 NLRP1通過(guò)識(shí)別炭疽致死毒素(lethal toxin,LeTx)誘導(dǎo)細(xì)胞焦亡

      首先被報(bào)道的炎性小體是NLRP1[21]。人類NLRP1是目前發(fā)現(xiàn)的唯一含有pyrin和CARD結(jié)構(gòu)域的NLR。在NLRP1炎性體形成過(guò)程中,NLRP1可不依賴凋亡相關(guān)斑點(diǎn)樣蛋白(apoptosis-associated speck-like protein containing a CARD,ASC),而是直接通過(guò)CARD-CARD相互作用募集caspase-1前體,介導(dǎo)caspase-1激活后致細(xì)胞焦亡發(fā)生。NLRP1基因的表達(dá)呈多樣性,人源性和大部分靈長(zhǎng)類動(dòng)物NLRP1基因只表達(dá)NLRP1,而鼠源性NLRP1基因則表達(dá)3種同系物NLRP1a、NLRP1b和NLRP1c,其中NLRP1b是小鼠巨噬細(xì)胞識(shí)別LeTx的重要PRR。Boyden等[22]發(fā)現(xiàn),NLRP1b識(shí)別LeTx后可進(jìn)一步活化caspase-1,從而誘導(dǎo)細(xì)胞焦亡發(fā)生,在此過(guò)程中ASC并不參與LeTx誘導(dǎo)的細(xì)胞焦亡和IL-1β釋放[23]。NLRP1b在不同小鼠品系中呈現(xiàn)基因多態(tài)性,如B6遺傳背景小鼠雖然能表達(dá)NLRP1a/b,但不識(shí)別LeTx[24]。進(jìn)一步研究表明,LeTx中致死因子(lethal factor,LF)失活可導(dǎo)致NLRP1b和caspase-1依賴的細(xì)胞焦亡缺失[25]。除LeTx外,研究人員在剛地弓形蟲(Toxoplasmagondii)感染的大鼠巨噬細(xì)胞中發(fā)現(xiàn)NLRP1表達(dá)水平升高,NLRP1炎性小體激活,細(xì)胞焦亡發(fā)生[26]。此外,NLRP1表達(dá)水平降低可抑制人單核細(xì)胞系THP-1細(xì)胞焦亡[27],表明NLRP1在宿主抵抗剛地弓形蟲感染過(guò)程中發(fā)揮重要作用。

      2.2 NLRP3識(shí)別多種配體誘導(dǎo)細(xì)胞焦亡

      NLRP3由NLRP3蛋白、接頭蛋白ASC及caspase-1前體組成,是目前結(jié)構(gòu)和功能最為明確的炎性小體。NLRP3可被細(xì)菌、病毒、二氧化硅和石棉等多種內(nèi)源性或外源性因素激活[28]。接受活化信號(hào)刺激后,ASC可通過(guò)CARD-CARD和PYD-PYD結(jié)構(gòu)域相互作用的方式分別募集NLRP3和caspase-1前體,從而介導(dǎo)caspase-1激活及促炎因子釋放,導(dǎo)致細(xì)胞焦亡發(fā)生。經(jīng)典的NLRP3激活過(guò)程分為兩個(gè)階段,即TLR4信號(hào)通路介導(dǎo)的NLRP3和IL-1β前體轉(zhuǎn)錄水平升高的預(yù)激活階段,以及NLRP3轉(zhuǎn)錄后修飾激活的第二階段[29]。非經(jīng)典的NLRP3激活途徑不依賴TLR4信號(hào)的預(yù)激活,由caspase-11直接識(shí)別LPS。雖然NLRP3調(diào)控細(xì)胞焦亡的機(jī)制還不明確,但近期發(fā)現(xiàn)caspase-11可將Gasdermin D蛋白切割成兩部分,其中相對(duì)分子質(zhì)量為22 000的C端片段功能未知,但相對(duì)分子質(zhì)量為31 000的N端片段則是啟動(dòng)細(xì)胞焦亡的關(guān)鍵。在此過(guò)程中,NLRP3一方面在宿主免疫防御過(guò)程中發(fā)揮重要作用;另一方面,過(guò)度炎癥反應(yīng)及細(xì)胞焦亡的發(fā)生可對(duì)機(jī)體造成不可逆損傷[17,30]。骨髓增生異常綜合征(myelodysplastic syndrome,MDS)和老年性黃斑退化癥(age-related macular degeneration,AMD)等多種疾病與NLRP3介導(dǎo)的細(xì)胞焦亡密切相關(guān)。此外,β淀粉樣蛋白可通過(guò)激活NLRP3繼而引發(fā)caspase-1依賴的細(xì)胞焦亡,表明阿爾茲海默癥的發(fā)生發(fā)展與NLRP3的激活相關(guān)[31]。

      2.3 NLRC4通過(guò)識(shí)別鞭毛蛋白和Ⅲ型分泌系統(tǒng)基座蛋白PrgJ誘導(dǎo)細(xì)胞焦亡

      NLRC4也稱為IPAF,主要參與機(jī)體抵抗革蘭陰性菌為主的病原菌感染過(guò)程。2004年,Mariathasan等首次報(bào)道了NLRC4在沙門菌感染中的重要作用[32]。隨后,NLRC4在機(jī)體抵抗嗜肺軍團(tuán)菌(Legionellapneumophila,L.pneumophila)、銅綠假單胞菌(Pseudomonasaeruginosa,P.aeruginosa)、福氏志賀菌等病原體感染中的作用也相繼被發(fā)現(xiàn)。NLRC4由N端CARD結(jié)構(gòu)域、中間NOD結(jié)構(gòu)域和C端LRR結(jié)構(gòu)域3部分組成。雖然NLRC4本身N端具有CARD結(jié)構(gòu)域,但與NLRP1不同,接頭蛋白ASC在NLRC4募集caspase-1介導(dǎo)的細(xì)胞焦亡過(guò)程中仍具有重要作用。嗜肺軍團(tuán)菌和銅綠假單胞菌鞭毛蛋白(flagellin)突變株不能誘導(dǎo)NLRC4多蛋白復(fù)合物的組裝,因此不能啟動(dòng)caspase-1依賴的IL-1β釋放和細(xì)胞焦亡,表明病原菌能否激活NLRC4取決于該菌是否表達(dá)單體鞭毛蛋白[33-34]。除鞭毛蛋白外,細(xì)菌Ⅲ型分泌系統(tǒng)基座蛋白PrgJ亦可激活NLRC4,引發(fā)下游信號(hào)級(jí)聯(lián)反應(yīng)[35-36]。最新研究發(fā)現(xiàn),沙門菌感染巨噬細(xì)胞時(shí),活化的NLRC4可招募NLRP3,進(jìn)而激活caspase-1,啟動(dòng)細(xì)胞焦亡[37]。因此,在機(jī)體抗感染免疫中各炎性小體相互作用可作為細(xì)胞焦亡的共同調(diào)控因子。

      2.4 AIM2通過(guò)識(shí)別雙鏈DNA誘導(dǎo)細(xì)胞焦亡

      AIM2屬于HIN-200家族,主要在細(xì)胞質(zhì)中表達(dá),由N端的PYD結(jié)構(gòu)域和C端的HIN結(jié)構(gòu)域組成。通過(guò)HIN結(jié)構(gòu)域,AIM2可直接結(jié)合多種病毒DNA和細(xì)菌雙鏈DNA[38]。當(dāng)病原體入侵后,AIM2可經(jīng)接頭蛋白ASC活化caspase-1,導(dǎo)致IL-1β和IL-18的成熟和釋放以及細(xì)胞焦亡的發(fā)生。AIM2缺陷的巨噬細(xì)胞在牛痘病毒和巨細(xì)胞病毒感染時(shí)均不能有效激活caspase-1[39]。而進(jìn)入巨噬細(xì)胞的土拉弗朗西斯菌(Francisellatularensis,F(xiàn).tularensis)可被AIM2識(shí)別并結(jié)合,隨后活化的caspase-1刺激Ⅰ型干擾素IFN-α與IFN-β釋放,最終導(dǎo)致細(xì)胞焦亡[40]。產(chǎn)單核細(xì)胞李斯特菌(Listeriamonocytogenes,L.monocytogenes)感染細(xì)胞模型中也有類似現(xiàn)象[41],但AIM2調(diào)控細(xì)胞焦亡的相關(guān)機(jī)制尚未完全明了。

      3 結(jié)語(yǔ)

      細(xì)胞焦亡是一種以細(xì)胞腫脹裂解、細(xì)胞膜溶解和大量促炎因子釋放為主要表現(xiàn)形式的程序性細(xì)胞死亡方式,常伴隨炎性小體和caspase-1/caspase-11的激活。盡管近年來(lái)關(guān)于兩者間關(guān)系的分子機(jī)制不斷有新發(fā)現(xiàn),但尚存在眾多未解之謎。細(xì)胞焦亡在炎性小體相關(guān)宿主抗感染免疫過(guò)程中是一把“雙刃劍”:一方面,細(xì)胞焦亡的發(fā)生有助于病原體的清除,防止感染;另一方面,過(guò)度的caspase-1激活可導(dǎo)致病理性炎癥反應(yīng)。此外,編碼NLR蛋白的基因突變會(huì)導(dǎo)致異常的caspase-1激活,從而引起自身免疫性疾病。作為新定義的一種細(xì)胞死亡類型,焦亡表現(xiàn)出與病原體的特定關(guān)系,且與眾多自身免疫性疾病、炎癥性疾病的發(fā)生發(fā)展密切相關(guān)。深入研究炎性小體調(diào)控細(xì)胞焦亡的分子機(jī)制有助于認(rèn)識(shí)其在各類疾病中的作用,從而為治療炎癥性疾病提供新的思路和手段。

      [1] Brennan MA, Cookson BT. Salmonella induces macrophage death by caspase-1-dependent necrosis [J]. Mol Microbiol, 2000, 38(1): 31-40.

      [2] Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, Warren SE, Wewers MD, Aderem A. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria [J]. Nat Immunol, 2010, 11(12): 1136-1142.

      [3] Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens [J]. Immunol Rev, 2015, 265(1):130-142.

      [4] Vince JE, Silke J. The intersection of cell death and inflammasome activation [J]. Cell Mol Life Sci, 2016, 73(11-12):2349-2367.

      [5] Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM. Non-canonical inflammasome activation targets caspase-11 [J]. Nature, 2011, 479(7371):117-121.

      [6] de Vasconcelos NM, Van Opdenbosch N, Lamkanfi M. Inflammasomes as polyvalent cell death platforms [J]. Cell Mol Life Sci, 2016, 73(11-12):2335-2347.

      [7] Yang Y, Jiang G, Zhang P, Fan J. Programmed cell death and its role in inflammation [J]. Mil Med Res, 2015. doi: 10.1186/s40779-015-0039-0.

      [8] Lu B, Nakamura T, Inouye K, Li J, Tang Y, Lundb?ck P, Valdes-Ferrer SI, Olofsson PS, Kalb T, Roth J, Zou Y, Erlandsson-Harris H, Yang H, Ting JP, Wang H, Andersson U, Antoine DJ, Chavan SS, Hotamisligil GS, Tracey KJ. Novel role of PKR in inflammasome activation and HMGB1 release [J]. Nature, 2012, 488(7413): 670-674.

      [9] Sharma D, Kanneganti TD. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation [J]. J Cell Biol, 2016, 213(6): 617-629.

      [10] Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages [J]. Cell Microbiol, 2006, 8(11): 1812-1825.

      [11] Sun Q, Scott MJ. Caspase-1 as a multifunctional inflammatory mediator: noncytokine maturation roles [J]. J Leuk Biol, 2016, 100(5):961-967.

      [12] Stowe I, Lee B, Kayagaki N. Caspase-11: arming the guards against bacterial infection [J]. Immunol Rev, 2015, 265(1):75-84.

      [13] Yang J, Zhao Y, Shao F. Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity [J]. Curr Opin Immunol, 2015, 32: 78-83.

      [14] Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes [J]. Cell, 2014, 157(5): 1013-1022.

      [15] Thurston TL, Matthews SA, Jennings E, Alix E, Shao F, Shenoy AR, Birrell MA, Holden DW. Growth inhibition of cytosolic Salmonella by caspase-1 and caspase-11 precedes host cell death [J]. Nat Commun, 2016. doi: 10.1038/ncomms13292.

      [16] Yang Q, Stevenson HL, Scott MJ, Ismail N. Type I interferon contributes to noncanonical inflammasome activation, mediates immunopathology, and impairs protective immunity during fatal infection with lipopolysaccharide-negative ehrlichiae [J]. Am J Pathol, 2015, 185(2): 446-461.

      [17] Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling [J]. Nature, 2015, 526(7575):666-671.

      [18] Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, Ciferri C, Dixit VM, Dueber EC. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes [J]. Proc Natl Acad Sci USA, 2016, 113(28): 7858-7863.

      [19] Yang D, He Y, Muoz-Planillo R, Liu Q, Núez G. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock [J]. Immunity, 2015, 43(5):923-932.

      [20] de Gassart A, Martinon F. Pyroptosis: caspase-11 unlocks the gates of death [J]. Immunity, 2015, 43(5):835-837.

      [21] Martinon F, Burns K, Tschopp J. The inflammasome:a molecular platform triggering activation of inflammatory caspases and processing of proIL-β [J]. Mol Cell, 2002, 10 (2):417-426.

      [22] Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin [J]. Nat Genet, 2006, 38(2): 240-244.

      [23] Van Opdenbosch N, Gurung P, Vande Walle L, Fossoul A, Kanneganti TD, Lamkanfi M. Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation [J]. Nat Commun, 2014. doi: 10.1038/ncomms4209.

      [24] Sastalla I, Crown D, Masters SL, McKenzie A, Leppla SH, Moayeri M. Transcriptional analysis of the three Nlrp1 paralogs in mice [J]. BMC Genomics, 2013. doi: 10.1186/1471-2164-14-188.

      [25] Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, Volkmann N, Hanein D, Rouiller I, Reed JC. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation [J]. Mol Cell, 2007, 25(5):713-724.

      [26] Cirelli KM, Gorfu G, Hassan MA, Printz M, Crown D, Leppla SH, Grigg ME, Saeij JP, Moayeri M. Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii [J]. PLoS Pathog, 2014, 10(3): e1003927.

      [27] Witola WH, Mui E, Hargrave A, Liu S, Hypolite M, Montpetit A, Cavailles P, Bisanz C, Cesbron-Delauw MF, Fournié GJ, McLeod R. NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii-infected monocytic cells [J]. Infect Immun, 2011, 79(2):756-766.

      [28] Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly [J]. Immunol Rev, 2015, 265(1): 35-52.

      [29] Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives [J]. J Inflamm Res, 2015, 8: 15-27.

      [30] Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death [J]. Nature, 2015, 526(7575): 660-665.

      [31] Parajuli B, Sonobe Y, Horiuchi H, Takeuchi H, Mizuno T, Suzumura A. Oligomeric amyloid beta induces IL-1beta processing via production of ROS: implication in Alzheimer’s disease [J]. Cell Death Dis, 2013, 4: e975. doi: 10.1038/cddis.2013.503.

      [32] Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf [J]. Nature, 2004, 430(6996): 213-218.

      [33] Miao EA, Ernst RK, Dors M, Mao DP, Aderem A. Pseudomonas aeruginosa activates caspase 1 through Ipaf [J]. Proc Natl Acad Sci USA, 2008, 105(7): 2562-2567.

      [34] Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Oz?ren N, Brady G, Meshinchi S, Jagirdar R, Gewirtz A, Akira S, Núez G. Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf [J]. J Biol Chem, 2006, 281(46): 35217-35223.

      [35] Miao EA, Warren SE. Innate immune detection of bacterial virulence factors via the NLRC4 inflammasome [J]. J Clin Immunol, 2010, 30(4): 502-506.

      [36] Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus [J]. Nature, 2011, 477(7366):596-600.

      [37] Qu Y, Misaghi S, Newton K, Maltzman A, Izrael-Tomasevic A, Arnott D, Dixit VM. NLRP3 recruitment by NLRC4 during Salmonella infection [J]. J Exp Med, 2016, 213(6): 877-885.

      [38] Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses [J]. Nat Immunol, 2010, 11(5): 395-402.

      [39] Alnemri ES. Sensing cytoplasmic danger signals by the inflammasome [J]. J Clin Immunol, 2010, 30 (4): 512-519.

      [40] Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J, Datta P, McCormick M, Huang L, McDermott E, Eisenlohr L, Landel CP, Alnermri ES. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis [J]. Nat Immunol, 2010, 11(5): 385-393.

      [41] Sauer JD, Witte CE, Zemansky J, Hanson B, Lauer P, Portnoy DA. Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol [J]. Cell Host Microbe, 2010, 7 (5): 412-419.

      . WU Shuyan, E-mail: shuyanzw@aliyun.com

      Research progress on inflammasome activation and pyroptosis

      YANG Sidi, DENG Qifeng, HUANG Rui, WU Shuyan

      School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China

      Pyroptosis is a new form of programmed cell death depending on cysteinyl aspartate specific proteinase 1 (caspase-1). Inflammasome plays a significant role in regulating pyroptosis. Intracellular pattern recognition proteins such as nucleotide-binding oligomerization domain-like receptor (NLR) and absent in melanoma 2 (AIM2) act to their ligands and promote the assembly of inflammasome as well as the activation of caspase-1/caspase-11, then induce pyroptosis. The in-depth research on the mechanisms and correlation between pyroptosis and inflammasome contributes to the understanding of the occurrence and development of pyroptosis-related inflammatory diseases.

      Pyroptosis; Inflammasome; Caspase-1; Caspase-11

      吳淑燕

      2016-11-22)

      猜你喜歡
      焦亡小體內(nèi)源性
      針刺對(duì)腦缺血再灌注損傷大鼠大腦皮質(zhì)細(xì)胞焦亡的影響
      miRNA調(diào)控細(xì)胞焦亡及參與糖尿病腎病作用機(jī)制的研究進(jìn)展
      內(nèi)源性NO介導(dǎo)的Stargazin亞硝基化修飾在腦缺血再灌注后突觸可塑性中的作用及機(jī)制
      缺血再灌注損傷與細(xì)胞焦亡的相關(guān)性研究進(jìn)展
      病毒如何與人類共進(jìn)化——內(nèi)源性逆轉(zhuǎn)錄病毒的秘密
      科學(xué)(2020年3期)2020-11-26 08:18:34
      電針對(duì)腦缺血再灌注損傷大鼠海馬區(qū)細(xì)胞焦亡相關(guān)蛋白酶Caspase-1的影響
      一種優(yōu)化小鼠成纖維細(xì)胞中自噬小體示蹤的方法
      內(nèi)源性12—HETE參與缺氧對(duì)Kv通道抑制作用機(jī)制的研究
      炎癥小體與腎臟炎癥研究進(jìn)展
      NLRP3炎癥小體與動(dòng)脈粥樣硬化的研究進(jìn)展
      丽水市| 黄骅市| 佳木斯市| 山阴县| 广州市| 张家口市| 长宁县| 长寿区| 松潘县| 潞城市| 中方县| 清原| 高要市| 元氏县| 蓬莱市| 浑源县| 大新县| 古蔺县| 德江县| 莎车县| 林周县| 揭阳市| 山东省| 江口县| 象山县| 莱西市| 常宁市| 奉贤区| 通辽市| 晋城| 安塞县| 庆城县| 宜丰县| 杭锦旗| 大悟县| 黔西| 洛阳市| 晋中市| 武功县| 漠河县| 贡嘎县|