• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      植物根系分解及其對生物和非生物因素的響應機理研究進展

      2017-03-26 01:36:55羅永清趙學勇王濤李玉強左小安丁杰萍
      草業(yè)學報 2017年2期
      關鍵詞:細根菌根氮素

      羅永清, 趙學勇, 王濤, 李玉強, 左小安, 丁杰萍

      (1.中國科學院西北生態(tài)環(huán)境資源研究院,甘肅 蘭州 730000;2.甘肅省環(huán)境科學設計研究院,甘肅 蘭州 730020;3.蘭州大學資源環(huán)境學院,甘肅 蘭州 730000)

      植物根系分解及其對生物和非生物因素的響應機理研究進展

      羅永清1, 趙學勇1, 王濤1, 李玉強1, 左小安1, 丁杰萍2,3

      (1.中國科學院西北生態(tài)環(huán)境資源研究院,甘肅 蘭州 730000;2.甘肅省環(huán)境科學設計研究院,甘肅 蘭州 730020;3.蘭州大學資源環(huán)境學院,甘肅 蘭州 730000)

      植物根系在生態(tài)系統(tǒng)物質循環(huán)和能量流動過程中具有重要意義,其分解是固定于植物體內的物質返回土壤和大氣環(huán)境的重要過程,受生物和非生物等多重因子影響。其中:生物因素方面,根系化學特征是影響根分解的主要因素,根系壽命、直徑、菌根及物種差異等生物因素主要是通過改變根系化學性質產(chǎn)生作用,根系分泌物、土壤微生物等主要通過改變分解者的數(shù)量和活性影響根系分解。非生物因素方面,水熱因子是影響根分解的關鍵。另外,在全球變化背景下,大氣氮沉降、CO2濃度增加等因素也對植物根系分解產(chǎn)生影響。本文從植物根系分解過程和影響根分解的因素兩方面,綜述了植物根系分解過程中物質釋放規(guī)律,總結和歸納了主要生物和非生物因素對植物根系分解的影響機理,并對根系分解的研究進行展望。

      根系;分解過程;生物因素;環(huán)境因素;響應機理

      凋落物分解是陸地生態(tài)系統(tǒng)植物體向土壤和大氣環(huán)境中返還養(yǎng)分和碳元素的主要途徑。凋落物包括地上凋落物和地下凋落物兩部分。受水熱資源限制,一些生態(tài)系統(tǒng)地上凋落物的產(chǎn)生存在明顯的季節(jié)差異性[1-4]。同時,由于風力活動等因素,地上凋落物存在再分配的現(xiàn)象[5]。另外,放牧、刈割等人類活動在不同程度上減少了地上生物量向土壤中的轉移,地上凋落物向土壤中的物質返還存在不確定性。而對于地下凋落物,植物根系分解存在時間和空間上的連續(xù)性,其物質循環(huán)與能量流動是一個持續(xù)的過程;同時,植物根系具有快速周轉的特性[6-7],尤其是細根,其周轉速率較快。研究表明,一些森林樹種細根年死亡量在40%~90%[8],通過細根更新可產(chǎn)生5倍于地上凋落物的量[9]。此外,植物根系產(chǎn)生并輸入到土壤中的穩(wěn)定性有機碳高于地上部分等量凋落物的輸入,植物地下部分腐殖化系數(shù)為地上部分的2.3倍[10],通過根系分解實現(xiàn)的物質返還高于地上部分[11-12]。因此,植物根系分解是固定于植物體的物質返回土壤和大氣環(huán)境的重要過程,在陸地生態(tài)系統(tǒng)物質循環(huán)和能量流動中具有重要意義。

      1 根分解的過程

      根系分解是指在物理、化學和生物學等一系列復雜過程的作用下,植物死亡根系與土壤環(huán)境進行物質交換的現(xiàn)象[9],主要包括物理淋溶、破碎與生化分解等[13]。其中破碎是指在土壤動態(tài)過程(凍融交替、干濕循環(huán)等)或動物行為的作用下,植物死亡根系分裂和破碎成小段(小塊)的現(xiàn)象。破碎擴大了植物根系的比表面積,有利于微生物附著和一系列生化反應的發(fā)生。淋溶是指根系中的物質及元素在水溶及重力作用下,由根系轉移到土壤中的現(xiàn)象。淋溶作用是根分解過程中的一個重要環(huán)節(jié)。研究發(fā)現(xiàn),仙女木(Dryasoctopetala)、挪威虎耳草(Saxifragaoppositifolia)的細根在分解過程中,干物質損失量與呼吸不存在顯著相關性,淋溶作用在細根分解中占有很大比重[14]。淋溶的主要對象為可溶性有機物質和無機物質,該過程主要發(fā)生在植物根系分解的初期。研究表明,亞熱帶森林細根分解過程中,分解的前170 d內95%的可溶性糖通過淋溶作用由根系轉移到土壤中[9];經(jīng)150 d分解,水曲柳(Fraxinusmandshurica)和落葉松(Larixgmelinii)根系可溶性糖的釋放超過90%,K的釋放超過95%[15]。采伐后的森林細根分解結果顯示,K、Mg、P、N等可溶性無機離子在根系分解的3個月內發(fā)生了不同程度的淋溶,其中以K離子的淋溶速率最大,3個月內淋溶量高達80%[16]。生化分解是指在由植物根系或根際微生物產(chǎn)生的酶的作用下,土壤微生物通過新陳代謝將儲存在植物體死根中的物質緩慢分解的過程,生化分解的底物多為難溶、難分解型物質,主要包括木質素、纖維素及單寧等。

      受環(huán)境、物種類型等諸多因素影響,根系分解的一些研究至今尚沒有統(tǒng)一的結論。如干物質變化方面,有的研究發(fā)現(xiàn),根系分解過程中的干物質變化呈3個階段,Arunachalam等[17]在濕潤亞熱帶砍伐后再生林細根分解的研究結果表明,根系的分解表現(xiàn)出“慢-快-慢”的特征,指出初期(0~60 d)的緩慢分解可能是由于微生物種群建立與擴散導致的滯后性所致;中期的高速率分解可能是由于土壤中的能量資源或水溶性物質比例較高,微生物活性較強所致;而后期的緩慢分解可能是由于難溶性物質(木質素、纖維素等)積累造成。而更多的研究結論顯示,根分解過程中干物質變化包含快速和緩慢分解兩個階段[18-22],其原因是由于分解開始后水溶性物質及易分解物質的比例較高,形成快速分解與釋放。而在分解后期,木質素等難分解性物質的相對含量升高,分解速率降低。導致這種差異的原因可能與分解起始時間有關。許多研究表明,凋落物分解初期主要受環(huán)境因子控制[23-26],分解后期主要受凋落物質量和分解者狀況影響[27,28]。李榮華等[20]通過不同起始時間對亞熱帶森林凋落物分解的研究發(fā)現(xiàn),起始時間對凋落物的分解速率具有顯著影響,起始于雨季的分解速率高于起始于旱季,其大小與分解前期的環(huán)境因子相關性較高,與整個分解過程中的環(huán)境因子相關性較低。據(jù)此推斷,分解初期相對不適宜的環(huán)境可能是導致前期分解速率偏低、分解率峰值滯后的原因。

      根分解過程中的氮素變化也存在一定的爭議性。研究發(fā)現(xiàn),根系分解過程中氮濃度降低[18,29],而另一些研究則表明,根系分解過程中存在氮富集現(xiàn)象,如林成芳等[19]在杉木(Cunninghamialanceolata)、木荷(Schimasuperba)[30]等根分解的研究中發(fā)現(xiàn),各個莖級(0~1 mm、1~2 mm、2~4 mm)根系分解中氮素均表現(xiàn)出富集的特征。氮素的釋放與富集,可能與環(huán)境有關,楊麗韞等[18]在長白山原始林和次生林根分解的研究中發(fā)現(xiàn),原始紅松闊葉林在演替過程中,根系分解時會出現(xiàn)氮素的富集或釋放,且氮素的釋放或富集與環(huán)境溫度和水分有關:降雨較少、溫度較低的春季,根分解過程中氮素表現(xiàn)出釋放現(xiàn)象,而在降雨較多、溫度較高的夏季,氮素表現(xiàn)出富集現(xiàn)象[18]。另外,有研究表明,根分解中氮素的釋放與富集與底物化學特征有關:Chen等[31-32]通過分析底物N濃度與根分解過程中氮素動態(tài)的關系發(fā)現(xiàn),氮素的變化有固定的閾值,當初始N濃度高于0.4%時,根分解過程中N素表現(xiàn)出釋放的特征,初始N濃度低于該值時,N素表現(xiàn)為富集現(xiàn)象。

      2 影響根分解的因素

      2.1 生物因素

      2.1.1 根系化學特征 與地上部分凋落物不同,植物根系質量被認為是影響其分解速率的第一因素[7,33]。早期的研究發(fā)現(xiàn)[31],碳氮比對分解速率具有決定作用,最適于微生物分解的底物碳氮比為25,一部分真菌和細菌也能分解碳氮比較高的底物。碳素的存在形式也可對植物根系分解產(chǎn)生影響,如木質素、纖維素、單寧等難分解型物質含量的高低對根系分解具有顯著意義[23,32,34-35]。此外,Ca2+與P含量對根系的分解也有一定程度的影響。研究表明,P濃度與根分解速率呈正相關[31]。也有研究發(fā)現(xiàn),Ca2+濃度與分解速率呈正相關性[7,36],其原因為Ca2+不但是微生物生活的必需元素,而且真菌和部分異養(yǎng)菌能將儲存于根系中的Ca2+轉化為草酸鹽,在脅迫條件下可為微生物代謝提供養(yǎng)分[8]。

      2.1.2 根壽命與直徑 根系壽命與根直徑的大小對根系分解速率具有一定的影響[35,37]。Ruess等[34]以黑云杉(Piceamariana)為材料的研究發(fā)現(xiàn),較長壽命根系的分解速率高于較短壽命的根系,壽命為2、8和18個月的細根對應的分解消失所需時間分別為41、50和156 d,其原因是長壽命根系中的木質素和單寧等難分解物質含量較高,這與宋森等[37]的研究結果一致。林成芳等[19]以杉木為材料的研究中發(fā)現(xiàn),隨根直徑增加,其分解速率有降低的趨勢,0~1 mm、1~2 mm及2~4 mm根系的分解速率分別為54.8%、41.2%和38.2%。但也有研究發(fā)現(xiàn),在細根的分解過程中,根直徑越小,分解速率反而越慢,如Fahey等[16]對不同直徑細根研究結果表明,經(jīng)過兩年分解后直徑<0.6 mm的細根分解速率低于0.6~1.0 mm的木質根;林成芳等[30]以木荷為材料的研究中也發(fā)現(xiàn),0~1 mm根系的分解速率(47.8%)低于1~2 mm根系(57.2%)。導致這種現(xiàn)象的原因可能是細根中表皮組織的分解速率慢于木質部[31],較細根系中的表皮組織比例相對較高,導致其分解速率低于直徑較大的細根。宋森等[37]對興安落葉松(Larixgmelinii)根系分解的研究表明,根表皮比例的提高可能是導致小直徑細根分解慢的主要原因。另一方面,較細根系中N含量較高,容易形成N-木質素絡合物,從而抑制根系的分解[38]。也有研究發(fā)現(xiàn),細根中較多形成外生菌根,大量外生菌根的存在改變了根系的物理結構和化學性質,形成抗分解機制,從而降低根系的分解速率[39]。

      但也有研究認為根分解與直徑無關。在以多年生草本植物柳枝稷(Panicumvirgatum)為材料的研究發(fā)現(xiàn),不同直徑根系的分解速率不存在顯著差異性[40]。也有研究表明,在直徑較大根系中,根直徑與分解速率無關,如以新西蘭輻射松(Pinusradiata)為材料的研究[41]發(fā)現(xiàn),10~15 mm粗根分解中不存在直徑效應(diameter effect)。2.1.3 物種 物種被認為是影響凋落物分解的重要因素之一[14,18,42-44]。在不同物種根分解速率的研究中發(fā)現(xiàn),草本植物根系的分解速率顯著高于木本植物,其原因可能是草本植物根系中的木質素含量較低而Ca2+含量較高所致[7,36]。榮麗等[45]通過微生物群落特征變化研究了光皮樺(Betulaluminifera)和扁穗牛鞭草(Hemarthriacompressa)根系的分解特征,結果發(fā)現(xiàn),分解120 d以后,扁穗牛鞭草處理的微生物總數(shù)及優(yōu)勢放線菌的數(shù)量均顯著高于光皮樺處理。在木本植物的對比研究中發(fā)現(xiàn),闊葉樹種根系分解速率高于針葉樹種,如林成芳等[19,30]的研究結果顯示,常綠闊葉樹種木荷1~2 mm和2~4 mm根分解速率分別為57.2%和39.5%,而常綠針葉樹種杉木根系相應莖級的分解速率分別為41.2%和38.2%,均低于木荷。也有研究[46]發(fā)現(xiàn),墨西哥柏(Cupressuslusitanica)細根分解速率高于展業(yè)松(Pinuspatula)和巨桉(Eucalyptusgrandis)。Robinson 等[14]的研究表明,不同物種的質量差異是造成其細根分解差異的重要原因。

      此外,混合物種根系分解的研究表明,柔毛橡(Quercuspubescens)、蒙彼利埃楓(Acermonspessulanum)、黃櫨(Cotinuscoggygria)和地中海白松(Pinushalepensis)4種植物根系組合后,在干旱脅迫和正常狀況下,分別有24.2%和63.6%表現(xiàn)出分解速率的協(xié)同交互作用(synergistic interactions),并且這種協(xié)同交互作用隨混合物種數(shù)量的增加而加劇,2種、3種和4種混合后的這種協(xié)同交互作用的出現(xiàn)率分別為53%、71%和100%[44]。這種混合協(xié)同交互作用的機理性研究目前多集中于葉凋落物,根系方面探索相對較少。凋落物分解的混合協(xié)同交互作用的機理可能為:1)不同分解底物化學性質的差異導致混合樣品性質的多樣性[47-48],2)分解底物豐富度的提高可能增加了土壤微生物的生態(tài)位,提高了分解者的豐富度和活性[49],3)混合分解過程中,一些物種可改變土壤水分等微環(huán)境[50-51],從而提高分解速率。

      2.1.4 根系分泌物 根系分泌物對植物殘體的分解有重要意義。Phillips等[52]的研究發(fā)現(xiàn),在CO2倍增條件下,森林植物主要通過根系分泌物增加植物殘體的分解速率來為植物提供更多的氮素,從而保證了生物量的增加,并指出,根系分泌是促進分解、增加氮源的關鍵環(huán)節(jié),是生物量增加的保證。此外,根系分泌物對土壤氮素的賦存形態(tài)具有重要影響,研究表明,根系分泌物可促進土壤氮素由有機態(tài)向無機態(tài)的轉化[53-54],而這種轉化可能是促進根系分解的關鍵因素。另外,植物根系分泌物可促進土壤中大分子有機物的降解[55-57],這可能對植物殘體分解過程產(chǎn)生影響。根系分泌物對凋落物分解的影響主要是通過土壤微生物實現(xiàn)。一方面,根系分泌物可直接對土壤微生物產(chǎn)生影響。研究發(fā)現(xiàn),根系分泌物可促進土壤細菌數(shù)量和活性的增加[54,58-59]。根系分泌物的這種直接作用在微生物群落組成[60]和群落發(fā)育[61-64]兩個層面均可產(chǎn)生作用。另一方面,通過根系分泌物的形成,植物在根際形成并保持了一個特殊的群落結構,該群落可產(chǎn)生大量的次級代謝物[65]。已有的研究發(fā)現(xiàn),這類次級代謝物可顯著提高土壤氮素固定和氮素的可利用性[66]。根系分泌物通過對土壤酶活性的影響產(chǎn)生作用可能是根系分泌物影響植物殘體分解的另一重要途徑。趙小亮等[67]的研究發(fā)現(xiàn),棉花(Gossypiumspp.)根系分泌物對土壤轉化酶活性增強具有顯著作用,且這種促進作用與根系分泌物濃度存在顯著的正相關性。根系分泌物對植物殘體分解的影響可能與其組成有關,已有的研究表明[68],根系分泌物除直接產(chǎn)生多種酶類物質(淀粉酶、轉化酶、磷酸酯酶、多聚半乳糖醛酸酶、硝酸還原酶、木聚糖酶、蛋白酶、尿酶、接觸酶等)以外,根系分泌物中的糖類(葡萄糖、果糖、半乳糖、核糖、蔗糖、木糖等)物質和酸類(脂肪酸、有機酸、酚酸及多種氨基酸類)物質可一方面向土壤微生物提供碳源,另一方面改變土壤酸性來影響土壤微生物的數(shù)量與活性[69]。

      2.1.5 菌根 菌根在植物根系生長發(fā)育和“植物-土壤”生態(tài)系統(tǒng)碳氮循環(huán)方面具有重要作用[70]。90%以上的陸地植物可與菌根真菌形成共生關系,菌根真菌包括叢枝菌根(AM)、外生菌根(ECM)、內外菌根(EEM)、歐石南菌根(ERM)和蘭科菌根(OM)等形式,將植物與土壤環(huán)境進行聯(lián)結,從而提高植物的養(yǎng)分吸收效率[71]。研究表明,菌根真菌對于植物養(yǎng)分獲取具有重要的作用,然而,其對凋落物分解的影響卻經(jīng)常被忽視[72]。目前,菌根對凋落物分解影響方面的研究尚存在較大的爭議。早期的研究表明[73],凋落物分解過程中,菌根通過抑制土壤微生物活性,減緩了其對凋落物的分解,這種抑制效應也被稱之為“Gadgil effect”,該結論得到了許多研究的支持[39,74-75]。但也有許多研究[76-81]表明,菌根對凋落物的分解具有顯著的促進作用。菌根對凋落物分解的影響過程中,氮素是一個關鍵因素,Colpaert等[82]研究認為,外生菌根真菌并不能有效利用凋落物中的有機氮,而是通過腐生微生物從難分解的有機物中獲取氮。然而,Hodge 等[83]的研究表明,一些叢枝菌根真菌可提高凋落物的分解速率,同時獲取分解釋放的無機氮,通過對分解產(chǎn)物的有效利用促進菌絲生長。Cheng 等[84]研究表明,AM真菌通過對土壤中銨態(tài)氮和硝態(tài)氮含量的改變加速了凋落物的降解速率。

      2.1.6 土壤微生物 真菌和細菌被認為是陸地生態(tài)系統(tǒng)中植物組織死亡后的初始分解者,占總分解者生物量和呼吸量的80%以上[13]。真菌和細菌分泌產(chǎn)生的酶,在根系大分子物質的降解中起重要作用。不同種類真菌對植物組織殘體的分解具有各自的特點:白腐菌專門降解木質素且分解速率快;褐腐菌只能分解木質素中苯酚的側鏈部分,余下含有酚單元的部分使根系變成褐色,分解速率慢[13]。也有研究表明,西黃松和黑松的根系由于大量白腐菌的寄生而使分解加快,而褐腐菌寄生的花旗松和西加云杉根系分解慢[32]。

      2.2 環(huán)境因素

      2.2.1 土壤水分 土壤水分是影響植物有機殘體分解的重要因素[85]。雖然在雨量充沛的熱帶亞熱帶等地區(qū),水分不是有機殘體分解的限制因子[20],甚至由于土壤水分過高,土壤通透性下降,氧氣供應量降低,需氧型微生物受到抑制,導致根系分解速率與土壤濕度呈顯著負相關[86],但在干旱和半干旱地區(qū),土壤水分是影響有機殘體分解最重要的環(huán)境因子[87-89]。一方面,干旱可直接抑制植物根系的分解,另一方面,土壤水分可通過與溫度的耦合,共同作用于土壤微環(huán)境,從而對有機殘體的分解產(chǎn)生影響[90]。另外,干旱可通過顯著降低根系分解的協(xié)同作用從而導致混合根樣分解速率的降低[44]。

      2.2.2 土壤溫度 溫度對植物根分解的影響與水分類似,即在溫度梯度上,植物根系分解速率表現(xiàn)為單峰曲線的特征。Chen 等[31]通過測定根系分解過程中的呼吸特征發(fā)現(xiàn),在一定范圍內(0~30 ℃或0~40 ℃),根分解過程中的呼吸強度隨溫度增加而上升,但當溫度增加到一定程度時則表現(xiàn)為抑制效應。

      通常情況下,土壤溫度對植物根系的分解具有促進作用。秦艷等[91]以毛烏素沙地臭柏(Sabinavulgari)和油蒿(Artemisiaordosic)為材料的研究發(fā)現(xiàn),二者細根分解量與低溫表現(xiàn)出顯著的正相關性,表明低溫的升高促進了臭柏和油蒿的細根分解。劉艷等[92]通過室內培養(yǎng)的方式研究了不同溫度條件下杉木、榿木(Alnuscremastogyne)和火力楠(Micheliamacclurei)細根的分解動態(tài),結果表明,隨溫度的增加,各物種細根的分解均表現(xiàn)為增加的特征。此外,土壤溫度也可通過凍融循環(huán)等間接作用于植物根系的分解。魏圓云等[93]通過網(wǎng)袋法研究了不同凍融時期高山/亞高山森林物種粗枝云杉(Piceaasperata)、紅樺(Betulaalbosinensis)和岷江冷杉(Abiesfaxoniana)等細根分解動態(tài),結果表明,由溫度引起的凍融循環(huán)是影響細根分解變化的重要原因。

      2.2.3 土壤養(yǎng)分 一般認為,土壤養(yǎng)分對微生物的數(shù)量和活性具有直接的影響,因此土壤養(yǎng)分被認為是影響根系分解的重要因素,許多研究對此結論有所驗證[13]。但也有研究表明,不同土壤養(yǎng)分對根分解的影響不存在差異性[94]。因此,土壤養(yǎng)分對根分解的影響可能受土壤碳元素影響[95],當碳元素含量較低,對微生物碳供應不足時,碳元素可能是微生物活動及根分解的限制因子,而當碳供應充足時,土壤養(yǎng)分供應對根分解產(chǎn)生促進作用。

      2.2.4 CO2濃度 全球氣候變化背景下,CO2濃度增加及其效應引起了廣泛的關注。研究發(fā)現(xiàn),CO2濃度增加導致了根系分解的減緩[40,96-97]。但也有一些研究表明,CO2濃度增加對根系分解不存在顯著作用,如以橡樹-棕櫚灌叢生態(tài)系統(tǒng)(oak-palmetto scrub ecosystem)的研究結果表明,培養(yǎng)1年后,CO2濃度增加(700 μL/L)與普通濃度處理下,根系的干物質損失不存在顯著差異[98];以草本植物多年生黑麥草(Loliumperenne)、毛狀剪股穎(Agrostiscapillaris)和羊茅(Festucaovina)為材料的研究表明,與常規(guī)濃度(350 μL/L)相比較,CO2濃度增加(700 μL/L)對根和葉分解速率不存在顯著影響[99];以小麥(Triticumaestivum)為材料的研究同樣發(fā)現(xiàn),CO2濃度增加320 μL/L處理對根系中易分解成分的分解無顯著影響[100]。此外,也有研究發(fā)現(xiàn),在森林生態(tài)系統(tǒng)CO2濃度增加后凋落物分解速率的增加及其養(yǎng)分釋放的加快是植物初級生產(chǎn)增加的保證[52,70]。

      2.2.5 N沉降/添加 研究表明,氮添加/氮沉降對植物根系分解存在促進和抑制兩方面的影響。以濕地松(Pinuselliottii)為材料的研究表明,高氮(12 g N/m2·yrs)處理顯著抑制了細根和針葉的分解,與針葉胞外酶活性受抑制導致分解減緩不同,酸不溶解性殘余物與無機氮的結合導致細根分解速率降低[22]。也有研究表明,長期氮沉降顯著降低了華西雨屏區(qū)苦竹(Pleioblastusamarus)細根的分解速率,增加了根系氮素的殘留率,其主要機理為:1)分解后期外源無機氮與細根中木質素分解的中間產(chǎn)物發(fā)生了一系列的非生物反應,并形成抗分解物質,從而導致分解減緩[22,101];2)長期氮沉降可能降低土壤pH值,改變生產(chǎn)木質素降解酶的真菌環(huán)境,導致相關酶活性降低,從而抑制后期根系分解[101];3)氮沉降可改變根系的化學特征,長期或高濃度氮沉降可導致氮素在根系中的積累,這一類氮素在根系中一方面形成有機化合物,對細根分解產(chǎn)生影響[101],另一方面,當根系中的氮素累積到一定程度,高出根分解所需要的水平,達到了飽和后氮素會減少微生物多樣性而改變微生物群落的結構,從真菌轉向以細菌為主,降低了凋落物的分解速率[102]。

      也有研究表明,氮添加可促進植物根系的分解。Huxham 等[43]研究發(fā)現(xiàn),氮添加促進了木欖(Bruguieagymnorrhiza)根系分解速率。在紅三葉草(Trifoliumincarnatum)和毛野豌豆(Viciavillosa)的研究發(fā)現(xiàn),由于氮添加導致土壤碳氮比降低,以及由氮素引起的激發(fā)效應,促進了土壤微生物的生長,從而促進了細根分解的加速[103]。

      氮添加與根分解的關系可能與氮素濃度有關,如以天山云杉的研究表明,低濃度氮素促進分解,高濃度氮素抑制分解。

      2.2.6 土層深度 研究表明[37,104-108],根分解速率隨土層深度增加而顯著下降,其原因由不同土層的水熱因子及土壤生物活性差異所導致。但也有研究發(fā)現(xiàn)[109-112],不同深度根樣的分解速率不存在顯著差異性,如Cai等[110]以玉米(Zeamays)根系為材料的研究發(fā)現(xiàn),15 cm深度和45 cm深度的根樣分解速率差異性不顯著;Solley等[112]以歐洲山毛櫸(Fagussylvatica)為材料的研究也表明,5,20和35 cm深度的根分解速率不存在顯著差異性。不同土層根分解速率研究結論的爭議性可能是由于不同深度土層的水熱差異所致。Cai等[110]通過實驗觀測表明,45 cm深度土壤較高的含水率和土壤溫度可能會產(chǎn)生深層土壤生物活性的補償,從而減弱甚至抵消根分解的差異性;Solley等[112]認為,冬季淺層土壤的低溫對夏季深層土壤溫度的平衡作用可能導致了不同土層根分解差異不顯著。綜上所述,土層深度對根分解的影響主要是通過水熱因子產(chǎn)生作用。

      3 展望

      植物根分解是陸地生態(tài)系統(tǒng)物質循環(huán)和能量流動的關鍵環(huán)節(jié),根系分解過程中的氮素釋放是植被初級生產(chǎn)的重要保證。根系在植物生長和發(fā)育過程中通過多種生物和非生物因素影響著植物死根的分解。這些過程通過單一或耦合的形式影響著植被-土壤系統(tǒng)的物質周轉,該方面研究對準確評價植物根系生態(tài)學作用、進一步探討地下凋落物分解規(guī)律及植物-土壤系統(tǒng)氮素轉化機制具有重要意義。根分解的研究已有較長的歷史和大量的研究結論,但針對其分解機理,目前仍存在以下方面的問題。

      已有的研究多以單一物種為研究對象,而在自然環(huán)境中,植被多以群落形式存在,多種根系混合后,根系的分解特征、根分解是否存在激發(fā)效應?混合分解對生態(tài)系統(tǒng)碳排放的估算有多大影響?自然環(huán)境中,植物根系是一個連續(xù)周轉的過程,在該過程中,活根的活動和根系的死亡分解并存,而活根生長和發(fā)育過程中所形成的水分差異(水分再分配、水力提升等)、根系分泌物、菌根及根際微生物等對根分解的影響機理尚不清楚。近期的研究表明,根系分泌物和菌根可在一定程度上刺激根系分解,如在CO2濃度增加的狀況下,植物通過根系分泌物和菌根對根分解的刺激加速N循環(huán)速率,從而維持較高的初級生產(chǎn)。因此,根系活動對根分解的影響可能對生態(tài)系統(tǒng)碳平衡和植被-土壤系統(tǒng)的物質循環(huán)產(chǎn)生重要影響,目前該方面的研究較少。

      根分解過程中的物質分配,尤其是碳分配方面,目前的研究主要集中在根系碳氮濃度變化,而分解過程中的物質分配比例,即由根系分解釋放的物質在土壤、大氣和淋溶進入水體中的量或比例,直接關系到大氣組成、土壤肥力、水質等生態(tài)和環(huán)境問題。受研究方法的限制,該方面的研究較少,更準確的研究方法(如同位素示蹤技術等)亟需進一步探索。

      References:

      [1] Zheng J P, Guo Z L, Xu C Y,etal. Seasonal dynamics of litter accumulation in major forest communities on the northern slope of Changbai Mountain, Northeast China. Acta Ecologica Sinica, 2011, 31(15): 4299-4307. 鄭金萍, 郭忠玲, 徐程揚, 等. 長白山北坡主要森林群落凋落物現(xiàn)存量月動態(tài). 生態(tài)學報, 2011, 31(15): 4299-4307.

      [2] Liu W F, Fan H B, Huang R Z,etal. Impacts of different ecological restoration measures on litter production and its nutrient fluxes in red soil erosion region. Journal of Soil and Water Conservation, 2012, 26(1): 58-61. 劉文飛, 樊后保, 黃榮珍, 等. 紅壤侵蝕區(qū)不同生態(tài)修復措施對凋落物量及其養(yǎng)分歸還的影響. 水土保持學報, 2012, 26(1): 58-61.

      [3] Zhang J X, Liu Y Q, Wu C S,etal. Litterfall production and dynamics of its decomposition ofLiquidambarformosanaplantation. Acta Agriculturae Universitis Jiangxiensis, 2013, 35(6): 1187-1192. 章俊霞, 劉苑秋, 吳春生, 等. 楓香人工林凋落物的產(chǎn)量與分解動態(tài). 江西農業(yè)大學學報, 2013, 35(6): 1187-1192.

      [4] Luo Y Q, Zhao X Y, Ding J P,etal. Dynamics of aboveground biomass and litters in different types of dunes under vegetation restoration processes in Horqin Sandy Land. Journal of Desert Research, 2016, 36(1): 78-84. 羅永清, 趙學勇, 丁杰萍, 等. 科爾沁沙地不同類型沙地植被恢復過程中地上生物量與凋落物量變化. 中國沙漠, 2016, 36(1): 78-84.

      [5] Wang X Y. Litter Decomposition and Nitrogen Distribution among 4 Habitat Gradients in Different Dunes in Horqin Sandy Land. Doctor’s Dissertation[D]. Beijing: University of Chinese Academy of Sciences, 2013. 王新源. 科爾沁沙地不同沙丘各生境梯度下凋落物物質周轉與氮素再分配[D]. 北京: 中國科學院大學, 2013.

      [6] Huang G, Zhao X Y, Padilla F M,etal. Fine root dynamics and longevity ofArtemisiahalodendronreflect plant growth strategy in two contrasting habitats. Journal of Arid Environments, 2012, 79: 1-7.

      [7] Silver W L, Miya R K. Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia, 2001, 129(3): 407-419.

      [8] Zhang X J, Mei L, Wang Z Q,etal. Advances in studying fine root decomposition in forest. Chinese Bulletin of Botany, 2005, 22(2): 246-254. 張秀娟, 梅莉, 王政權, 等. 細根分解研究及其存在的問題. 植物學通報, 2005, 22(2): 246-254.

      [9] Wen D Z, Wei P. Dry mass loss and chemical changes of the decomposed fine roots in three China South Subtropical forests at Dinghushan. Chinese Journal of Ecology, 1998, 17(2): 1-6. 溫達志, 魏平. 鼎湖山南亞熱帶森林細根分解干物質損失和元素動態(tài). 生態(tài)學雜志, 1998, 17(2): 1-6.

      [10] K?tterer T, Bolinder M A, Andrén O,etal. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, Ecosystems and Environment, 2011, 141(1): 184-192.

      [11] Usman S, Singh S P, Rawat Y S,etal. Fine root decomposition and nitrogen mineralization patterns inQuercusleucotrichophoraandPinusroxburghiiforests in central Himalaya. Forest Ecology and Management, 2000, 131(1): 191-199.

      [12] Bolinder M A, K?tterer T, Andrén O,etal. Estimating carbon inputs to soil in forage-based crop rotations and modeling the effects on soil carbon dynamics in a Swedish long-term field experiment. Canadian Journal of Soil Science, 2012, 92(6): 821-833.

      [13] Chapin F S, Matson P M, Mooney H A. Principles of Terrestrial Ecosystem Ecology[M]. New York: Springer-Verlag, 2002.

      [14] Robinson C H, Kirkham J B, Littlewood R. Decomposition of root mixture from high arctic plants: a microcosm study. Soil Biology and Biochemistry, 1999, 31(8): 1101-1108.

      [15] Zhang X J, Wu C, Mei L,etal. Root decomposition and nutrient release ofFraxinusmanshuricaandLarixgmeliniiplantations. Chinese Journal of Applied Ecology, 2006, 17(8): 1370-1376. 張秀娟, 吳楚, 梅莉, 等. 水曲柳和落葉松人工林根系分解與養(yǎng)分釋放. 應用生態(tài)學報, 2006, 17(8): 1370-1376.

      [16] Fahey T J, Hughes J W, Pu M,etal. Root decomposition and nutrient flux following whole-tree harvest of northern hardwood forest. Forest Science, 1988, 34(3): 744-768.

      [17] Arunachalam A, Pandey H N, Tripathi R S,etal. Fine root decomposition and nutrient mineralization patterns in a subtropical humid forest following tree cutting. Forest Ecology and Management, 1996, 86(1): 141-150.

      [18] Yang L W, Li W H, Wu S T. Fine root decomposition and nitrogen mineralization of the primitive Korean pine and broadleaved forests as well as its secondary forests in the Changbaishan Mountains, northeastern China. Journal of Beijing Forestry University, 2007, 29(6): 11-15. 楊麗韞, 李文華, 吳松濤. 長白山原始紅松闊葉林及其次生林細根分解動態(tài)和氮元素的變化. 北京林業(yè)大學學報, 2007, 29(6): 11-15.

      [19] Lin C F, Yang Y S, Chen G S,etal. Decomposition dynamics of fine roots ofCunninghamialanceolatain Mid-subtropics. Journal of Subtropical Resources and Environment, 2008, 3(1): 15-23. 林成芳, 楊玉盛, 陳光水, 等. 杉木人工林細根分解和養(yǎng)分釋放及化學組成變化. 亞熱帶資源與環(huán)境學報, 2008, 3(1): 15-23.

      [20] Li R H, Deng Q, Zhou G Y,etal. Effect of incubation starting time on litter decomposition rate in a subtropical forest in China. Chinese Journal of Plant Ecology, 2011, 35(7): 699-706. 李榮華, 鄧琦, 周國逸, 等. 起始時間對亞熱帶森林凋落物分解速率的影響. 植物生態(tài)學報, 2011, 35(7): 699-706.

      [21] Mao R, Zeng D H, Li L J. Fresh root decomposition pattern of two contrasting tree species from temperate agroforestry systems: effects of root diameter and nitrogen enrichment of soil. Plant and Soil, 2011, 347(1/2): 115-123.

      [22] Kou L, Chen W, Zhang X,etal. Differential responses of needle and branch order-based root decay to nitrogen addition: dominant effects of acid-unhydrolyzable residue and microbial enzymes. Plant and Soil, 2015, 394(1/2): 315-327.

      [23] Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 1997, 79(3): 439-449.

      [24] Zhang D Q, Hui D F, Luo Y Q,etal. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 2008, 1(2): 85-93.

      [25] Song X Z, Jiang H, Ma Y D,etal. Litter decomposition across climate zone in Eastern China: the integrated influence of climate and litter quality. Acta Ecologica Sinica, 2009, 29(10): 5219-5226. 宋新章, 江洪, 馬元丹, 等. 中國東部氣候帶凋落物分解特征-氣候和基質質量的綜合影響. 生態(tài)學報, 2009, 29(10): 5219-5226.

      [26] Liu Q, Peng S L. Plant Litter Ecology[M]. Beijing: Science Press, 2010. 劉強, 彭少麟. 植物凋落物生態(tài)學[M]. 北京: 科學出版社, 2010.

      [27] Berg B. Litter decomposition and organic turnover in northern forest soils. Forest Ecology and Management, 2000, 133: 13-22.

      [28] Finzi A C, Schlesinger W H. Species control variation in litter decomposition in a pine forest exposed to elevated CO2. Global Change Biology, 2002, 8(12): 1217-1229.

      [29] Kemp P R, Reynolds J F, Virginia R A,etal. Decomposition of leaf and root litter of Chihuahuan desert shrubs: effects of three years of summer drought. Journal of Arid Environments, 2003, 53(1): 21-39.

      [30] Lin C F, Yang Y S, Chen G S,etal. Decomposition dynamics of roots ofSchimasuperbin Mid-subtropics of Fujian, China. Journal of Subtropical Resources and Environment, 2012, 7(3): 8-13. 林成芳, 楊玉盛, 陳光水, 等. 木荷天然林根系分解和養(yǎng)分釋放及化學組成變化. 亞熱帶資源與環(huán)境學報, 2012, 7(3): 8-13.

      [31] Chen H, Harmon M, Griffiths R P,etal. Effects of temperature and moisture on carbon respired from decomposing woody roots. Forest Ecology and Management, 2000, 138(1): 51-64.

      [32] Chen H, Harmon M, Griffiths R P. Decomposition and nitrogen release from decomposing woody roots in coniferous forests of the Pacific Northwest. Canadian Journal of Forest Research, 2001, 31(2): 246-260.

      [33] Yang Y S, Chen G S, Lin P,etal. Fine root distribution, seasonal pattern and production in a native forest and monoculture plantations in subtropical China. Acta Ecologica Sinica, 2003, 23(9): 1719-1730. 楊玉盛, 陳光水, 林鵬, 等. 格氏栲天然林與人工林細根生物量、季節(jié)動態(tài)和凈生產(chǎn)力. 生態(tài)學報, 2003, 23(9): 1719-1730.

      [34] Ruess R W, Hendrick R L, Burton A J,etal. Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecological Monographs, 2003, 73(4): 643-662.

      [35] Fan P P, Guo D L. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil. Oecologia, 2010, 163(2): 509-515.

      [36] Dornbush M E, Isenhart T M, Raich J W. Quantifying fine-root decomposition: an alternative to buried litterbags. Ecology, 2002, 83(11): 2985-2990.

      [37] Song S, Gu J C, Quan X K,etal. Fine-root decomposition ofFraxinusmandshuricaandLarixgmliniiplantations. Chinese Journal of Plant Ecology, 2008, 32(6): 1227-1237. 宋森, 谷加存, 全先奎, 等. 水曲柳和興安落葉松人工林細根分解研究. 植物生態(tài)學報, 2008, 32(6): 1227-1237.

      [38] Camiré C, Cté B, Brulotte S. Decomposition of roots of black alder and hybrid poplar in short-rotation plantings: nitrogen and lignin control. Plant and Soil, 1991, 138(1): 123-132.

      [39] Langley J A, Dijkstra P, Drake B G,etal. Ectomycorrhizal colonization, biomass, and production in a regenerating scrub oak forest in response to elevated CO2. Ecosystems, 2003, 6(5): 424-430.

      [40] de Graaff M A, Six J, Jastrow J D,etal. Variation in root architecture among Switch grass cultivars impacts root decomposition rates. Soil Biology and Biochemistry, 2013, 58: 198-206.

      [41] Garrett L G, Kimberley M O, Oliver G R,etal. Decomposition of coarse woody roots and branches in managedPinusradiataplantations in New Zealand-A time series approach. Forest Ecology and Management, 2012, 269: 116-123.

      [42] Cornwell W K, Cornelissen J H C, Amatangelo K,etal. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 2008, 11(10): 1065-1071.

      [43] Huxham M, Langat J, Tamooh F,etal. Decomposition of mangrove roots: effects of location, nutrients, species identity and mix in a Kenyan forest. Estuarine, Coastal and Shelf Science, 2010, 88(1): 135-142.

      [44] Santonja M, Fernandez C, Gauquelin T,etal. Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions. Plant and Soil, 2015, 393(1): 1-14.

      [45] Rong L, Li X W, Zhu T H,etal. Varieties of soil microorganisms decomposingBetulaluminiferafine roots andHemarthriacompressaroots. Acta Prataculturae Sinica, 2009, 18(4): 117-124. 榮麗, 李賢偉, 朱天輝, 等. 光皮樺細根與扁穗牛鞭草草根分解的土壤微生物數(shù)量及優(yōu)勢類群. 草業(yè)學報, 2009, 18(4): 117-124.

      [46] Lemma B, Nilsson I, Kleja D B,etal. Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia. Soil Biology and Biochemistry, 2007, 39(9): 2317-2328.

      [47] Sanpera-Calbet I, Lecerf A, Chauvet E. Leaf diversity influences in-stream litter decomposition through effects on shredders. Freshwater Biology, 2009, 54(8): 1671-1682.

      [48] Vos V C A, van Ruijven J, Berg M P,etal. Leaf litter quality drives litter mixing effects through complementary resource use among detritivores. Oecologia, 2013, 173(1): 269-280.

      [49] Hector A, Beale A J, Minns A,etal. Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos, 2000, 90(2): 357-371.

      [50] Hoorens B, Stroetenga M, Aerts R. Litter mixture interactions at the level of plant functional types are additive. Ecosystems, 2010, 13(1): 90-98.

      [51] Makkonen M, Berg M P, van Logtestijn R S P,etal. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos, 2013, 122(7): 987-997.

      [52] Phillips R P, Finzi A C, Bernhardt E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2fumigation. Ecology Letters, 2011, 14(2): 187-194.

      [53] Nardi S, Sessi E, Pizzeghello D,etal. Biological activity of soil organic matter mobilized by root exudates. Chemosphere, 2002, 46(7): 1075-1081.

      [54] Landi L, Valori F, Ascher J,etal. Root exudate effects on the bacterial communities, CO2evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biology and Biochemistry, 2006, 38(3): 509-516.

      [55] Gao Y Z, Ren L L, Ling W T,etal. Desorption of phenanthrene and pyrene in soils by root exudates. Bioresource Technology, 2010, 101(4): 1159-1165.

      [56] Sun T R, Cang L, Wang Q Y,etal. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil. Journal of Hazardous Materials, 2010, 176(1): 919-925.

      [57] Toyama T, Furukawa T, Maeda N,etal. Accelerated biodegradation of pyrene and benzo[α]pyrene in thePhragmitesaustralisrhizosphere by bacteria-root exudate interactions. Water Research, 2011, 45(4): 1629-1638.

      [58] Baudoin E, Benizri E, Guckert A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biology and Biochemistry, 2003, 35(9): 1183-1192.

      [59] Técher D, Laval-Gilly P, Henry S,etal. Contribution of miscanthus×giganteus root exudates to the biostimulation of PAH degradation: An in vitro study. Science of the Total Environment, 2011, 409(20): 4489-4495.

      [60] Fischer S E, Miguel M J, Mori G B. Effect of root exudates on the exopolysaccharide composition and the lipopolysaccharide profile ofAzospirillumbrasilenseCd under saline stress. FEMS Microbiology Letters, 2003, 219(1): 53-62.

      [61] Nagahashi G. Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycological Research, 2000, 104(12): 1453-1464.

      [62] Gadkar V, David-Schwartz R, Nagahashi G,etal. Root exudate of pmi tomato mutant M161 reduces AM fungal proliferation in vitro. FEMS Microbiology Letters, 2003, 223(2): 193-198.

      [63] Nagahashi G, Douds D Jr. Separated components of root exudate and cytosol stimulate different morphologically identifiable types of branching responses by arbuscular mycorrhizal fungi. Mycological Research, 2007, 111(4): 487-492.

      [64] Muhammad A K, Cheng Z H, Xiao X M,etal. Ultrastructural studies of the inhibition effect against phytophthora capsici of root exudates collected from two garlic cultivars along with their qualitative analysis. Crop Protection, 2011, 30(9): 1149-1155.

      [65] Luo Y Q, Zhao X Y, Li M X. Review of research in ecological effects of plant root exudates and related factors. Chinese Journal of Applied Ecology, 2012, 23(12): 3496-3504. 羅永清, 趙學勇, 李美霞. 植物根系分泌物生態(tài)效應及其影響因素研究綜述. 應用生態(tài)學報, 2012, 23(12): 3496-3504.

      [66] Sturz A V, Christie B R. Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil and Tillage Research, 2003, 72(2): 107-123.

      [67] Zhao X L, Liu X H, He J Z,etal. Effects of cotton root exudates on available soil nutrition, enzyme activity and microorganism quantity. Acta Botanica Boreal-Occident Sinica, 2009, 29(7): 1426-1431. 趙小亮, 劉新虎, 賀江舟, 等. 棉花根系分泌物對土壤速效養(yǎng)分和酶活性及微生物數(shù)量的影響. 西北植物學報, 2009, 29(7): 1426-1431.

      [68] Wu C X, Fu H. Effects and roles of root exudates. Pratacultural Science, 2009, 26(9): 24-29. 吳彩霞, 傅華. 根系分泌物的作用及影響因素. 草業(yè)科學, 2009, 26(9): 24-29.

      [69] Luo Y Q, Zhao X Y, Andrén O,etal. Artificial root exudates and soil organic carbon mineralization in degraded sandy grassland in NE China. Journal of Arid Land, 2014, 6(4): 423-431.

      [70] Phillips R P, Meier I C, Bernhardt E S,etal. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecology Letters, 2012, 15(9): 1042-1049.

      [71] Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754-13759.

      [72] Qian Y Q, Peng X Q, Zeng W J,etal. The effect of mycorrhizal fungi on soil respiration and litter decomposition. Microbiology China, 2013, 40(12): 2306-2318. 錢雨奇, 彭曉茜, 曾文靜, 等. 菌根真菌對土壤呼吸以及凋落物分解的影響. 微生物學通報, 2013, 40(12): 2306-2318.

      [73] Gadgil R L, Gadgil P D. Mycorrhiza and litter decomposition. Nature, 1971, 233(5315): 133-135.

      [74] Cuenca G, Aranguren J, Herrera R. Root growth and litter decomposition in a coffee plantation under shade trees[M]//Atkinson D, Bhat K K S, Coutts M P,etal. Tree Root Systems and Their Mycorrhizas. Netherlands: Springer, 1983: 477-486.

      [75] Saderstriim B. Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil. FEMS Microbiology Ecology, 1996, 21: 77-86.

      [76] Pigott C D. Survival of mycorrhiza formed byCenococcumgeophilumFr. in dry soils. The New Phytologist, 1982, 92(4): 513-517.

      [77] Fu S L, Cheng W X. Rhizosphere priming effects on the decomposition of soil organic matter in C4and C3grassland soils. Plant and Soil, 2002, 238(2): 289-294.

      [78] Querejeta J, Egerton-Warburton L M, Allen M F. Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia, 2003, 134(1): 55-64.

      [79] Tu C, Booker F L, Watson D M,etal. Mycorrhizal mediation of plant N acquisition and residue decomposition: impact of mineral N inputs. Global Change Biology, 2006, 12(5): 793-803.

      [80] Liu Y K. Research on the Relationship between Litter Decomposition and Ectomyxorrhizal Fungi[D]. Harbin: Heilongjiang University, 2010. 劉遠開. 紅松外生菌根真菌與凋落物分解相關性研究[D]. 哈爾濱: 黑龍江大學, 2010.

      [81] Pritsch K, Garbaye J. Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Annals of Forest Science, 2011, 68(1): 25-32.

      [82] Colpaert J V, Van Laere A. A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprotrophic basidiomycete colonizing beech leaf litter. The New Phytologist, 1996, 134(1): 133-141.

      [83] Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 2001, 413(6853): 297-299.

      [84] Cheng L, Booker F L, Tu C,etal. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 2012, 337(6098): 1084-1087.

      [85] Zhu B, Cheng W. Impacts of drying-wetting cycles on rhizosphere respiration and soil organic matter decomposition. Soil Biology and Biochemistry, 2013, 63: 89-96.

      [86] Steinberger Y, Degani R G B. Decomposition of root litter and related microbial population dynamics of a Negev Desert shrub,Zygophyllumdumosurn. Journal of Arid Environments, 1995, 31(4): 383-399.

      [87] Wang Q B, Li L H, Bai Y F,etal. Effect of stimulated climate change on the decomposition of mixed litter in three steppe communities. Chinese Journal of Plant Ecology, 2000, 24(6): 674-679. 王其兵, 李凌浩, 白永飛, 等. 模擬氣候變化對 3 種草原植物群落混合凋落物分解的影響. 植物生態(tài)學報, 2000, 24(6): 674-679.

      [88] Chen Q S, Li L H, Han X G,etal. Effect of water content o soil respiration and the mechanisms. Acta Ecologica Sinica, 2003, 23(5): 972-978. 陳全勝, 李凌浩, 韓興國, 等. 水分對土壤呼吸的影響及機理. 生態(tài)學報, 2003, 23(5): 972-978.

      [89] Li X B, Ma L, Chen L,etal. Research progress and the prospect of grassland litters decomposition. Ecology and Environmental Sciences, 2010, 19(9): 2260-2264. 李學斌, 馬林, 陳林, 等. 草地枯落物分解研究進展及展望. 生態(tài)環(huán)境學報, 2010, 19(9): 2260-2264.

      [90] Andrén O, Kihara J, Bationo A,etal. Soil climate and decomposer activity in Sub-Saharan Africa estimated from standard weather station data: A simple climate index for soil carbon balance calculations. Ambio, 2007, 36(5): 379-386.

      [91] Qin Y, Wang L H, Zhang G S,etal. The analysis on the fine roots’ decomposition and influence factors ofSabinavulgarisandArtemisiaordosicacommunities in Muus Sandland. Journal of Arid Land Resources and Environment, 2008, 22(6): 181-185. 秦艷, 王林和, 張國盛, 等. 毛烏素沙地天然臭柏、油蒿群落細根分解及影響因子分析. 干旱區(qū)資源與環(huán)境, 2008, 22(6): 181-185.

      [92] Liu Y, Wang S L, Wang X W,etal. Effects of tree species fine root decomposition on soil active organic carbon. Chinese Journal of Applied Ecology, 2007, 18(3): 481-486. 劉艷, 汪思龍, 王曉偉, 等. 不同溫度條件下杉木、榿木和火力楠細根分解對土壤活性有機碳的影響. 應用生態(tài)學報, 2007, 18(3): 481-486.

      [93] Wei Y Y, Wu Z C, Yang W Q,etal. Fine root decomposition dynamics during freeze-thaw season in the subalpine/alpine forests. Scientia Silvae Sinicae, 2013, 49(8): 21-28. 魏圓云, 武志超, 楊萬勤, 等. 季節(jié)性凍融期亞高山/高山森林細根分解動態(tài). 林業(yè)科學, 2013, 49(8): 21-28.

      [94] Bryant D M, Holland E A, Seastedt T R,etal. Analysis of litter decomposition in an alpine tundra. Canadian Journal of Botany, 1998, 76(7): 1295-1304.

      [95] Prescott C E. Does nitrogen availability control rates of litter decomposition in forests[M]// Nilsson L O. Nutrient Uptake and Cycling in Forest Ecosystems. Netherlands: Springer, 1995: 83-88.

      [96] Li X, Han S, Guo Z,etal. Changes in soil microbial biomass carbon and enzyme activities under elevated CO2affect fine root decomposition processes in a Mongolian oak ecosystem. Soil Biology and Biochemistry, 2010, 42(7): 1101-1107.

      [97] Viswanath T, Pal D, Purakayastha T J. Elevated CO2reduces rate of decomposition of rice and wheat residues in soil. Agriculture, Ecosystems and Environment, 2010, 139(4): 557-564.

      [98] Dilustro J J, Day F P, Drake B G. Effects of elevated atmospheric CO2on root decomposition in a scrub oak ecosystem. Global Change Biology, 2001, 7(5): 581-589.

      [99] Gorissen A, Cotrufo M F. Decomposition of leaf and root tissue of three perennial grass species grown at two levels of atmospheric CO2and N supply. Plant and Soil, 2000, 224(1): 75-84.

      [100] R?nn R, Ekelund F, Christensen S. Effects of elevated atmospheric CO2on protozoan abundance in soil planted with wheat and on decomposition of wheat roots. Plant and Soil, 2003, 251(1): 13-21.

      [101] Tu L H, Chen G, Peng Y,etal. Response of fine root decomposition to simulated nitrogen deposition inPleioblastusamarusplantation, Rainy Area of West China. Chinese Journal of Applied Ecology, 2014, 25(8): 2176-2182. 涂利華, 陳剛, 彭勇, 等. 華西雨屏區(qū)苦竹細根分解對模擬氮沉降的響應. 應用生態(tài)學報, 2014, 25(8): 2176-2182.

      [102] Li J M, Zhang Y T, Li J G,etal. Effect of stimulated nitrogen deposition on the fine root decomposition and related nutrient release ofPiceaschrenkianavar.tianshanica. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(1): 182-188. 李吉玫, 張毓?jié)? 李建貴, 等. 模擬氮沉降對天山云杉細根分解及其養(yǎng)分釋放的影響. 西北植物學報, 2015, 35(1): 182-188.

      [103] Jani A D, Grossman J M, Smyth T J,etal. Influence of soil inorganic nitrogen and root diameter size on legume cover crop root decomposition and nitrogen release. Plant and Soil, 2015, 393(1): 57-68.

      [104] Hunt H W. A simulation model for decomposition in grasslands. Ecology, 1977, 58(3): 469-484.

      [105] Gill R A, Burke I C, Milchunas D G,etal. Relationship between root biomass and soil organic matter pools in the short grass steppe of eastern Colorado: implications for decomposition through a soil profile. Ecosystems, 1999, 2(3): 226-236.

      [106] Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10(2): 423-436.

      [107] Gill R A, Burke I C. Influence of soil depth on the decomposition ofBoutelouagracilisroots in the short grass steppe. Plant and Soil, 2002, 241(2): 233-242.

      [108] Sariyildiz T. Effects of tree species and topography on fine and small root decomposition rates of three common tree species (Alnusglutinosa,PiceaorientalisandPinussylvestris) in Turkey. Forest Ecology and Management, 2015, 335(1): 71-86.

      [109] Sanaullah M, Chabbi A, Leifeld J,etal. Decomposition and stabilization of root litter in top-and subsoil horizons: what is the difference. Plant and Soil, 2011, 338(1/2):127-141.

      [110] Cai M, Dong Y J, Chen Z J,etal. Effects of nitrogen fertilizer on the composition of maize roots and their decomposition at different soil depths. European Journal of Soil Biology, 2015, 67: 43-50.

      [111] Li A, Fahey T J, Pawlowska T E,etal. Fine root decomposition, nutrient mobilization and fungal communities in a pine forest ecosystem. Soil Biology and Biochemistry, 2015, 83: 76-83.

      [112] Solley E F, Sch?ning I, Herold N,etal. No depth-dependence of fine root litter decomposition in temperate beech forest soils. Plant and Soil, 2015, 393(1): 273-282.

      Plant root decomposition and its responses to biotic and abiotic factors

      LUO Yong-Qing1, ZHAO Xue-Yong1, WANG Tao1, LI Yu-Qiang1, ZUO Xiao-An1, DING Jie-Ping2,3

      1.NorthwestInstituteofEco-EnvironmentandResources,ChineseAcademyofSciences,Lanzhou730000,China; 2.GansuAcademyofEnvironmentalSciences,Lanzhou730020,China; 3.CollegeofEarthandEnvironmentalSciences,LanzhouUniversity,Lanzhou730000,China

      The plant root system plays an important role in ecosystem matter exchange and energy flux, and root decomposition is one of the main contributors to these processes. Matter accumulates in roots and is then released back into the roots’ surroundings, including the atmosphere and soil, via the decomposition process. Root decomposition is affected by multiple biotic and abiotic factors. In terms of biotic factors, the chemical characteristics of roots are among the main factors affecting their decomposition. Other factors such as root lifespan, size/diameter, and the abundance and types of fungi and other microbes in soil also affect plant root decomposition, and their effects can be explained by their ability to alter the chemical characteristics of plant roots. Root exudates and changes in the abundance and activities of soil microorganisms that degrade plant roots affect the root decomposition rate. In terms of abiotic factors, water and temperature are the main factors affecting root decomposition. Other factors related to climate change, for example, nitrogen deposition and carbon dioxide concentrations, will affect the root decomposition rate to different degrees, the extent of which is currently unknown. In this study, we reviewed the process of matter release during plant root decomposition, and summarized the current knowledge on how different biotic and abiotic factors affect plant root decomposition. Finally, we proposed some related perspectives based on the current status of plant root decomposition research.

      plant root system; decomposition; biotic factors; abiotic factors; response mechanism

      10.11686/cyxb2016136

      http://cyxb.lzu.edu.cn

      2016-03-29;改回日期:2016-04-28

      國家自然基金項目(31500369)和中國科學院“百人計劃”項目(Y551821001, Y451H31001)資助。

      羅永清(1984-),男,陜西寶雞人,助理研究員,博士。E-mail: luoyongqing8401@sina.com

      羅永清, 趙學勇, 王濤, 李玉強, 左小安, 丁杰萍. 植物根系分解及其對生物和非生物因素的響應機理研究進展. 草業(yè)學報, 2017, 26(2): 197-207.

      LUO Yong-Qing, ZHAO Xue-Yong, WANG Tao, LI Yu-Qiang, ZUO Xiao-An, DING Jie-Ping. Plant root decomposition and its responses to biotic and abiotic factors. Acta Prataculturae Sinica, 2017, 26(2): 197-207.

      猜你喜歡
      細根菌根氮素
      氮沉降對細根分解影響的研究進展
      外生菌根真菌菌劑的制備及保存研究
      園林科技(2020年2期)2020-01-18 03:28:26
      土壤性能對樹木細根生長的影響
      模擬氮沉降對杉木幼苗細根化學計量學特征的影響
      人造林窗下香椿幼林細根的養(yǎng)分內循環(huán)
      重金屬污染土壤的生物修復——菌根技術的應用
      楸樹無性系苗期氮素分配和氮素效率差異
      基于光譜分析的玉米氮素營養(yǎng)診斷
      氮素運籌對玉米干物質積累、氮素吸收分配及產(chǎn)量的影響
      接種叢枝菌根真菌對玉米小斑病發(fā)生的影響
      凤阳县| 大丰市| 固原市| 定陶县| 瓦房店市| 罗平县| 肃南| 类乌齐县| 南城县| 岱山县| 岑溪市| 泸定县| 开封县| 河间市| 舒兰市| 天气| 治多县| 安远县| 林西县| 伊宁市| 左贡县| 淅川县| 白水县| 阿拉尔市| 洛阳市| SHOW| 宁德市| 长宁县| 阜新| 襄汾县| 洪湖市| 德阳市| 八宿县| 天气| 阿拉尔市| 重庆市| 丁青县| 青河县| 高雄县| 万荣县| 临海市|