• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Network coding resources optimization with transmission delay constraint in multicast networks①

    2017-03-28 09:47:37QuZhijian曲志堅
    High Technology Letters 2017年1期

    Qu Zhijian (曲志堅)

    *, Fu Jia**, Liu Xiaohong*, Li Caihong*(*School of Computer Science and Technology, Shandong University of Technology, Zibo 255049, P.R.China)

    Network coding resources optimization with transmission delay constraint in multicast networks①

    Qu Zhijian (曲志堅)②

    *, Fu Jia**, Liu Xiaohong*, Li Caihong*(*School of Computer Science and Technology, Shandong University of Technology, Zibo 255049, P.R.China)

    (**School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, P.R.China)

    Minimizing network coding resources of multicast networks, such as the number of coding nodes or links, has been proved to be NP-hard, and taking propagation delay into account makes the problem more complicated. To resolve this optimal problem, an integer encoding routing-based genetic algorithm (REGA) is presented to map the optimization problem into a genetic algorithm (GA) framework. Moreover, to speed up the search process of the algorithm, an efficient local search procedure which can reduce the searching space size is designed for searching the feasible solution. Compared with the binary link state encoding representation genetic algorithm (BLSGA), the chromosome length of REGA is shorter and just depends on the number of sinks. Simulation results show the advantages of the algorithm in terms of getting the optimal solution and algorithmic convergence speed.

    network coding, genetic algorithm (GA), search space, multicast network

    0 Introduction

    Network coding provides numerous advantages over store-and-forward based routing solution[1]. In network coding research community, the network coding operations are always assumed that it has to be conducted in all coding-possible nodes to achieve the required throughput. However, it is usually the case that network coding is required only at a subset of the coding-possible nodes[2]. For example, a source node s wishes to transmit multicast messages to all of the destinations at the multicast rate of two. In order to guarantee the required multicast rate, a multicast tree may contains one to three coding nodes according to different multicast tree establishing algorithm. The problem of determining such a minimum coding nodes subset has been proved to be NP-hard[3].

    Many scholars have concentrated on this problem and worked for minimizing the number of coding nodes or links. For example, Wang, et al.[4]modified the ant colony algorithm to optimize network coding resources, and Xing, et al.[5-7]proposed some evolutionary algorithms. Qu, et al.[8]proposed an adaptive quantum-inspired evolutionary algorithm based on Hamming distance to optimize the network coding resources in multicast networks. However, their work did not take delay or delay difference constraints into account.

    Obviously, network coding will lead to increase the transmission delay and the computational overhead when combining packets in intermediate nodes[9]. To solve this problem, Wu, et al.[10]developed a joint coding and feedback scheme to improve the throughput and reliability in wireless multicast. The results showed that the delay, encoding, and decoding complexities were low even for a large number of receivers. To reduce the packets delay and minimize packet dropping probability, Yu, et al.[11]considered multiple transmission methods and integrated packet scheduling with adaptive network coding method selection, and presented a dynamic coding-aware routing metric, which could increase potential coding opportunities. Those literatures above show the necessity of researching on network coding with delay needs.

    In real-time interactive applications, the efficiency of the message transmission and the fairness among receivers should be considered as a must one. The network coding resource optimization problems under the restriction of the end-to-end delay and the delay difference among the source-destination paths (see Ref.[12] for details) will be considered. The investigation of combining network coding resource optimization with delay needs can render realistic significance.

    1 Problem formulation

    The illustration of transmission delay constraints in network coding based multicast network is shown as follows: Considering the same network scenarios in Fig.1(a), where each link has a unit capacity and source s expects to send data at rate of 2 units to the sink t1, t2, t3, and t4, respectively. The transmission delay for each link is labeled in Fig.1 and both the coding and decoding time is assumed to be 1. Note that the coding-waited time and decoding-waited time should also be highly considered.

    Figs1(a), (b), (c), and (d) are 4 kinds of data transmission schemes with different amount of coding nodes. Note that the delay from source s to the sinks just depends on the path with maximum delay among all the source-destination paths. Namely, the original information cannot be recovered until all necessary messages received by a sink are collected. For example, the delays of two paths from s to sink t1are 3 and 10, respectively in Fig.1. Hence, the practical delay between s and sink t1is 10 and the inter-destination delay difference is 20 which is the difference between 30 and 10. Here, the concept of delay difference is defined as follows:

    Fig.1 Network coding sub-graph with different coding nodes and path delay property

    Delay Difference: The maximum sink delay subtracts the minimum sink delay.

    For example, in Table 1, the maximum sink delay is 30 (t3), the minimum sink delay is 10 (t1), thus the delay difference of the multicast scenario is 20. So a triple (1, 30, 20) is got, here the first represents the coding node number, the second represents the maximum sink delay, and the third represents the delay difference of the given multicast scenario.

    Table 1 The path from s to each sink with end-to-end delay and inter-destination delay difference for Fig.1(b)

    SourceSinkPathsPathdelayDelaydifferencest1t2t3t4s-1-3-t1;s-2-4-c1-10-t1s-1-3-c1-7-t2s-2-4-c2-8-t2s-1-5-c2-8-t3s-2-6-c3-9-t3s-1-5-c3-9-t4s-2-6-t4310615203025320

    The triples of
    Figs1(b)~(d) are (1, 30, 20), (1, 24, 14), and (1, 24, 15). It is easy to understand that, even though the number of coding nodes is the same, the performance of delay is quite different in different transmission scenarios. If the maximum end-to-end delay and delay difference bounds are confirmed, the feasible transmission scenarios will be determined. This is a very important problem, but the algorithm proposed by Kim, et al. and Xing, et al. just dedicated their efforts to minimize coding nodes/links without considering the delay requirements. So their coding sub-graph may contain paths severely violating the delay constraints, which deteriorates the benefits that network coding is characterized to a certain extent.

    2 Mathematic model

    The problem is to find the minimal set of coding links where the network coding scenario is required to 1) achieve multicast rate r, 2) meet the end-to-end delay requirements, and 3) meet the inter-destination delay difference constraints. The given multicast network is represented by a directed acyclic graph G = (V, E), where V denotes the set of vertices and E is the set of edges. The capacity of each edge e∈E is unit, and if there has an edge exceeding unit capacity, it is represented by multiple unit edges. The multicast problem is considered with one source s∈V and a sink set T?V-{s}, a link delay function d:E→R+, delay tolerance Θ, delay difference Ω , and the rate r. Here rate r is an integer and it can be achievable if a transmission scheme can guarantee all |T| sinks receiving packets from the source at least rate r. More specifically, to achieve rate r, there should be at least r link-disjoint paths to each sink subject to:

    (1)

    where Pi(s,vk) denotes the i-th path from source s to the k-th sink vk.This multicast problem can be converted into a multi-objective optimization problem, and stated mathematically as

    Minimize:

    (2)

    where c represents the amount of coding links employed in network coding.

    Subject to:

    min{R(s,vi)|vi∈T, i=1,2,…,|T|}≥r

    (3)

    (4)

    (5)

    xi∈{0, 1} i=1,2,…,n

    (6)

    where symbol x including n elements, denotes the output links of an intermediate node with multiple input links. If xi=1, it means that the i-th output link must be linearly coded; otherwise, it means that no coding operation is required over this link. Here the concept of merging node is presented.

    Merging Node: The intermediate nodes which have multiple input links are called merging nodes.

    All the output links of a merging node are named as potential coding links.

    Fig.2 An example of determining the output link states of a merging node

    In Eq.(3), R(s,vi) represents the rate from source s to sink viunder the current multicast tree. To achieve the desired multicast rate r, the minimum R(s,vi) among all the sinks should observe Eq.(3). Namely, for each sink, at least r link-disjoint paths from source to each one must be guaranteed. Eqs(4) and (5) are referred to as source-destination delay constraint and inter-destination delay difference constraint, respectively. The end-to-end delay for sink viactually depends on the one that has the maximum delay among r link-disjoint paths and is calculated by δvi(i=1,2,…,|D|; vi∈D) for each sink vi, which is defined as

    (7)

    here Pj(s,vi) means the j-th path from s to sink vi. After computing the end-to-end delay of each sink, the inter-destination delay variation can be obtained by Eq.(5). Therefore, the objective is to minimize Eq.(2) subjected to Eqs(3), (4), (5) and (6). Note that in Eqs(4) and (5), the coding-waited time is not considered, which will be explained and calculated in the following REGA.

    3 Solutions

    A routing-based encoding representation approach[13]is employed to map the optimization problem to a GA framework. The given multicast topology is decomposed to a secondary graph (see more details in the Ref.[8]), and then the path array Pi(i=1,2,…,|T|) which contains all paths from s to each sink tisubject to Eq.(4) is gotten. For the i-th path array Pi, all possible combinations are selected each of which consists of r link-disjoint paths. If the number of the selected combinations is mi, the combinations are numbered sequentially from 1 to mi, and then Piis updated by micombinations. Therefore, array Piconsists of r·mipaths. Table 2 shows all possible r link-disjoint paths in array Pi.

    Table 2 Array Piincludes all possible r link-disjoint paths

    Fig.3 Integer encoding representation

    An integer encoding routing-based genetic algorithm (REGA) is presented to search the optimal solution. The flowchart of REGA is shown in Fig.4.

    The algorithm starts from an initial population Qpopcontaining k chromosomes. The fitness function is given in Eq.(8), where α is the number of coding links, λ and β are constants, dnis the number of source-destination paths, dvdenotes the maximum inter-destination delay variation and p(dv, Ω) is a penalty function which is defined in Eq.(9).

    (8)

    (9)

    When performing the algorithm, the fittest chromosome is directly copied into the new population. This elitism strategy shows great improvement for the algorithmic performance in our simulation. Roulette selection and single crossover are carried out and followed by a random mutation which helps escaping from the local optimal. Moreover, it is widely demonstrated that the infeasible chromosomes also help population evolve rapidly. Hence, according to the level of violation, different scale penalties are imposed on the infeasible solutions while determining their fitness, which speed up search from not only feasible domain but also infeasible domain.

    Fig.4 The flowchart of REGA

    4 Simulation and analysis

    To evaluate the performance of REGA, comparisons have been carried out with BLSGA[3]over the 2 fixed multicast networks and 1 random multicast network. The 2 fixed networks are 3-copy and 7-copy networks which have been used in Ref.[3]. Fig.5 illustrates an example of n-copy network, where Fig.5(a) is the original network and Fig.5(b) is a 3-copy network constructed by cascading 3 copies of the original network. For the n-copy network, the source node is at the top, and the sinks are at the bottom. According to Fig.5, it is known that the n-copy network contains n+1 sinks.

    Fig.5 Illustration the n-copy network

    The parameters of the 3 test networks shown in Table 3.

    Table 3 Network parameters

    The parameters for REGA are set as following: delay∈(0,1] with arbitrary unit which is uniformly distributed, crossover operator pc=0.8, mutation operator pm=0.1, and λ=10, β=100. In addition, the size of population (Popsize) and the number of iteration (NI) shown in following result tables vary with the size of solution space. Moreover, all simulations are run on a Windows XP computer with Intel(R) Core(TM) 2 Quad CPU, 2.40GHz, 3.25G RAM

    With regard to BLSGA, note that it is developed for a non-delay-constrained network coding resource optimization problem. Hence to provide an apple-to-apple comparison, some adjustments for BLSGA should be enforced to introduce link delay. For each individual in the population, it represents a multicast tree which is checked whether the current transmission scheme can guarantee the given multicast rate achievable. If the rate can be achieved, Ford-Fulkson algorithm is used to compute the end-to-end paths for each sink, and then the end-to-end delay for each source-destination path can be calculated. Correspondingly, the inter-destination delay variation is obtained. Due to the introduction of delay requirements, fitness function has to be adjusted and re-defined as

    (10)

    where nmaxis the number of potential coding links. The definition of dnand p(dv, Ω) is identical with that of REGA and β=100. If anyone of the constraints Eqs(3), (4), and (5) is violated, chromosome y is infeasible and corresponding penalty is added in the process of fitness evaluation.

    Before comparing the searching result under the delay restriction, the convergence speed of the 2 algorithms are tested firstly. Table 4 and Table 5 list the algorithmic parameters used in this test. Fig.6 and Fig.7 show the convergence speed over 15-copy and 31-copy networks. The index called mean network coding operation times (MNCO) is employed in the simulation, and it is defined as Eq.(11). Here ntrialsindicates the times of algorithmic trial and t is the number of evolutionary generation. b(t,i) denotes the best fitness (namely, the number of minimal coding links) so far when the population evolves to the t-th generation in the i-th trial. In the simulation ntrials=30.

    Table 4 Algorithmic parameters of REGA

    Table 5 Algorithmic parameters of BLSGA

    (11)

    In Fig.6 only 13 generation evolutions are required to hit the best solution. However, in order to get a best solution, BLSGA needs a huge population 150 and a big evolutionary generation 1000. From Fig.7, it can be seen that even using such prominent parameters, however, the performance is still worse than that of REGA. It is clear that the convergence speed of REGA is better, especially in the larger multicast networks (such as 31-copy network). The result provides a solid demonstration about the efficiency of REGA.

    Fig.6 Convergence speed of REGA

    Moreover, the simulation results about searching for the best solution under the delay restriction are shown in Table 6, Table 7, Table 8. The numeric results in a row in parentheses indicate coding number (CN), maximum end-to-end delay (MD), maximum delay difference (MDD), computational time (CT, the unit is second), Popsize, and NI, respectively. Therefor the numbers in the brackets from Table 6 to Table 8 indicate the numerical result of (CN, MD, MDD, CT, Popsize, NI) respectively. Actually, each algorithm in tables has been run for 30 times, and the best result among those 30 trials is chosen.

    From the numerical results it can be known that BLSGA even cannot find a satisfied solution. Several reasons may be responsible for this. First, due to the binary link state representation in BLSGA, the size of solution space is too large to handle, especially in such strict constraints. Thereby an increment for BLSGA on both Popsize and NI has to be imposed to promote the search ability, which extremely enhance CT. Besides, according to the chromosome encoding principle, the length of the string in REGA just depends on the number of sinks and is evidently much shorter than that of BLSGA, which can reduce the computing complexity and speed up the algorithm operation. On the other hand, compared with the constitution of solution space of REGA, BLSGA search space has too many infeasible solutions while in REGA only the solutions subject to Eqs(3) and (4) can be covered.

    Table 6 Numerical results of 3-copy network

    Table 7 Numerical results 7 copy network

    Table 8 Numerical results of random network

    Moreover, the simulation results also indicate that the coding numbers will be influenced by different delay constraints in a same multicast network. When the QoS level becomes severer, the encoding cost will increase, hence it should play a trade-off between the encoding cost and delay constraints. As for the performance of the algorithms, thanks to the RE and some excellent evolutionary schemes, such as fitness penalty and elitism strategy, REGA outperforms significantly over the BLSGA in terms of the ability to get a satisfied solution and the computational time.

    5 Conclusions

    In this study, the problem of minimizing the coding cost with required data rate and delay constraints in network coding based multicast networks is studied. An algorithm named REGA, has been proposed to address this problem. In REGA, an efficient and problem-specific local search scheme is designed to help the algorithm to obtain the optimality more quickly. Then it is demonstrated that even under the severe delay constraints, the proposed REGA can still render a feasible solution for real application in such coding resources optimization area. The distinguished suboptimal solutions obtained by REGA prove the capability and efficiency of the utility in this field.

    [1] Ahlswede R, Cai N, Li S, et al. Network information flow. IEEE Transactions on Information Theory, 2000, 46(4): 1204-1216

    [2] Minkyu K, Varun A, Una-May O, et al. Genetic representations for evolutionary minimization of network coding resources. Computer Science, 2007, 4448:21-31

    [3] Minkyu K, Médard, Aggarwal V, et al. Evolutionary approaches to minimize network coding resources. In: Proceedings of the 26th IEEE International Conference on Computer Communications, Anchorage, USA, 2007. 1991-1999

    [4] Wang Z, Xing H, Li T, et al. A modified ant colony optimization algorithm for network coding resource minimization. IEEE Transactions on Evolutionary Computation, 2016, 20(3): 325-342

    [5] Xing H, Qu R, Bai L, et al. On minimizing coding operations in network coding based multicast: an evolutionary algorithm. Applied Intelligence, 2014, 41(3): 820-836

    [6] Xing H, Qu R. A nondominated sorting genetic algorithm for bi-objective network coding based multicast routing problems. Information Sciences, 2013, 233(6): 36-53

    [7] Xing H, Qu R, Kendall G, et al. A path-oriented encoding evolutionary algorithm for network coding resource minimization. Journal of the Operational Research Society, 2014, 65(8): 1261-1277

    [8] Qu Z, Liu X, Zhang X, et al. Hamming-distance-based adaptive quantum-inspired evolutionary algorithm for network coding resources optimization. The Journal of China Universities of Posts and Telecommunications, 2015, 22(3): 92-99

    [9] Keshavarz-Haddad A, Riedi R. Bounds on the benefit of network coding for wireless multicast and unicast. IEEE Transactions on Mobile Computing, 2014, 13(1), 102-115

    [10] Wu F, Sun Y, Yang Y, et al. Constant-delay and constant-feedback moving window network coding for wireless multicast: design and asymptotic analysis. IEEE Journal on Selected Areas in Communications, 2015, 33(2): 127-140

    [11] Yu Y, Peng Y, Li X, et al. Distributed packet-aware routing scheme based on dynamic network coding. China Communications, 2016, 13(10): 20-28

    [12] Rouskas G, Baldine I. Multicasting routing with end-to-end delay and delay variation constraints. In: Proceedings of the 15th Annual Joint Conference of the IEEE Computer Societies, Networking the Next Generation, San Francisco, USA, 1996. 353-360

    [13] Hadj-Alouane A, Bean J. A genetic algorithm for the multiple-choice integer program. Operations Research, 1997, 45(1): 92-101

    Qu Zhijian, born in 1980. He received his Ph.D degrees in Information and Communication Engineering Department of Beijing University of Posts and Telecommunications in 2011. He is currently an associate professor in the School of Computer Science and Technology, Shandong University of Technology. His research interests include network coding, intelligence algorithm, and optical multicast.

    10.3772/j.issn.1006-6748.2017.01.005

    ①Supported by the National Natural Science Foundation of China (No. 61473179), Shandong Province Higher Educational Science and Technology Program (No. J16LN20), Natural Science Foundation of Shandong Province (No. ZR2016FM18) and the Youth Scholars Development Program of Shandong University of Technology.

    ②To whom correspondence should be addressed. E-mail: zhijianqu@sdut.edu.cn Received on Feb. 22, 2016

    日韩三级视频一区二区三区| www.熟女人妻精品国产| 久久精品aⅴ一区二区三区四区| 久久99热这里只频精品6学生| 亚洲av日韩在线播放| 亚洲欧美激情在线| 老司机午夜福利在线观看视频 | 亚洲精品美女久久久久99蜜臀| 国产精品久久久久成人av| 在线av久久热| 亚洲伊人久久精品综合| 一进一出抽搐动态| 亚洲天堂av无毛| 一区二区三区精品91| 亚洲黑人精品在线| 黄频高清免费视频| 国产一区二区三区综合在线观看| 国产精品久久久人人做人人爽| av线在线观看网站| 狠狠精品人妻久久久久久综合| 亚洲熟女毛片儿| 黄色视频在线播放观看不卡| 男男h啪啪无遮挡| 搡老乐熟女国产| 亚洲国产av新网站| 国产欧美日韩一区二区精品| 18在线观看网站| 一级片免费观看大全| 高清黄色对白视频在线免费看| 国产一区二区三区在线臀色熟女 | kizo精华| 美女中出高潮动态图| 日本欧美视频一区| 激情视频va一区二区三区| 亚洲欧美激情在线| 欧美成人午夜精品| 亚洲欧美日韩另类电影网站| 97人妻天天添夜夜摸| 亚洲五月色婷婷综合| 国产精品1区2区在线观看. | 国产日韩欧美在线精品| 国产在线一区二区三区精| 亚洲少妇的诱惑av| 久久久国产欧美日韩av| 精品亚洲成国产av| 国产日韩欧美在线精品| 国产真人三级小视频在线观看| 久久精品熟女亚洲av麻豆精品| 久久久精品免费免费高清| 国产一卡二卡三卡精品| 久久亚洲精品不卡| kizo精华| 黄色视频不卡| 国产在线免费精品| 欧美日本中文国产一区发布| 国产一区二区激情短视频 | 夫妻午夜视频| 久久综合国产亚洲精品| 50天的宝宝边吃奶边哭怎么回事| 青青草视频在线视频观看| 中国国产av一级| 中文字幕最新亚洲高清| 国产av国产精品国产| 免费一级毛片在线播放高清视频 | 高清黄色对白视频在线免费看| 国产成人精品久久二区二区91| 满18在线观看网站| 亚洲精品久久久久久婷婷小说| 一区二区三区精品91| av网站免费在线观看视频| 麻豆av在线久日| 亚洲美女黄色视频免费看| 亚洲一卡2卡3卡4卡5卡精品中文| av福利片在线| 国产精品成人在线| 欧美亚洲 丝袜 人妻 在线| av超薄肉色丝袜交足视频| 国产亚洲精品久久久久5区| 十八禁网站免费在线| av视频免费观看在线观看| 天天影视国产精品| 人人妻,人人澡人人爽秒播| 丝袜喷水一区| 无遮挡黄片免费观看| 91字幕亚洲| 极品少妇高潮喷水抽搐| 久久人人97超碰香蕉20202| 精品人妻1区二区| 亚洲精品一区蜜桃| 91成人精品电影| videos熟女内射| 男人添女人高潮全过程视频| 一区福利在线观看| 亚洲精品一二三| 欧美激情 高清一区二区三区| 久久av网站| 人人妻人人爽人人添夜夜欢视频| 99精品欧美一区二区三区四区| 99国产精品免费福利视频| 在线精品无人区一区二区三| 国产在线视频一区二区| 亚洲成人国产一区在线观看| 他把我摸到了高潮在线观看 | 动漫黄色视频在线观看| 午夜两性在线视频| 九色亚洲精品在线播放| 侵犯人妻中文字幕一二三四区| 国产精品免费视频内射| 欧美日韩黄片免| 少妇 在线观看| 热re99久久精品国产66热6| 亚洲精品国产av蜜桃| 久久久久久人人人人人| 亚洲成人免费电影在线观看| 97精品久久久久久久久久精品| 天堂俺去俺来也www色官网| 亚洲精品国产区一区二| 丝袜在线中文字幕| 国产av国产精品国产| bbb黄色大片| 国产亚洲欧美在线一区二区| tube8黄色片| 视频在线观看一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 我要看黄色一级片免费的| 久久久精品94久久精品| 久久精品久久久久久噜噜老黄| 五月开心婷婷网| 在线永久观看黄色视频| 欧美亚洲日本最大视频资源| 免费在线观看日本一区| 久久精品国产综合久久久| 男人爽女人下面视频在线观看| 韩国高清视频一区二区三区| 日韩欧美国产一区二区入口| 久久精品aⅴ一区二区三区四区| 十八禁网站免费在线| 丝袜美腿诱惑在线| 久久久久国内视频| 日韩一卡2卡3卡4卡2021年| 亚洲欧洲精品一区二区精品久久久| 亚洲av电影在线观看一区二区三区| 亚洲欧美一区二区三区久久| 亚洲欧美日韩另类电影网站| 天天躁夜夜躁狠狠躁躁| 国产主播在线观看一区二区| 国产在线视频一区二区| 纵有疾风起免费观看全集完整版| 亚洲天堂av无毛| av片东京热男人的天堂| 男女高潮啪啪啪动态图| 99国产精品99久久久久| 亚洲专区国产一区二区| 男人舔女人的私密视频| 日韩视频在线欧美| 亚洲精品粉嫩美女一区| 久久99一区二区三区| 欧美精品一区二区免费开放| 国产精品亚洲av一区麻豆| 国产日韩一区二区三区精品不卡| netflix在线观看网站| av免费在线观看网站| 精品人妻一区二区三区麻豆| 热99久久久久精品小说推荐| 最近中文字幕2019免费版| 亚洲熟女精品中文字幕| 人妻久久中文字幕网| 黄色毛片三级朝国网站| 下体分泌物呈黄色| 韩国精品一区二区三区| 国产精品久久久人人做人人爽| 久久久水蜜桃国产精品网| 伊人亚洲综合成人网| 人人妻人人澡人人看| 午夜成年电影在线免费观看| 亚洲av片天天在线观看| 侵犯人妻中文字幕一二三四区| 国产精品影院久久| 亚洲成人国产一区在线观看| 国产伦人伦偷精品视频| 欧美日韩福利视频一区二区| 正在播放国产对白刺激| 亚洲欧美清纯卡通| 婷婷色av中文字幕| 丝袜喷水一区| 高清视频免费观看一区二区| 亚洲av日韩在线播放| 日韩一卡2卡3卡4卡2021年| 99久久精品国产亚洲精品| 久久这里只有精品19| 美女扒开内裤让男人捅视频| 丰满迷人的少妇在线观看| √禁漫天堂资源中文www| 欧美大码av| 久久影院123| 老司机影院成人| 伊人久久大香线蕉亚洲五| 91麻豆精品激情在线观看国产 | 亚洲精品粉嫩美女一区| 国产免费福利视频在线观看| 18禁黄网站禁片午夜丰满| 丰满迷人的少妇在线观看| 欧美国产精品va在线观看不卡| 天堂俺去俺来也www色官网| 国产亚洲精品第一综合不卡| 精品乱码久久久久久99久播| 国产亚洲精品久久久久5区| 日韩有码中文字幕| av天堂久久9| 曰老女人黄片| 午夜福利视频在线观看免费| 在线天堂中文资源库| 亚洲精品自拍成人| 一本色道久久久久久精品综合| 亚洲欧洲精品一区二区精品久久久| 精品久久久精品久久久| 飞空精品影院首页| 1024香蕉在线观看| 狠狠婷婷综合久久久久久88av| 最黄视频免费看| 欧美精品av麻豆av| 成年人午夜在线观看视频| 欧美 日韩 精品 国产| 考比视频在线观看| 天堂中文最新版在线下载| 午夜老司机福利片| 国产精品 欧美亚洲| 亚洲av男天堂| 99re6热这里在线精品视频| 韩国精品一区二区三区| 可以免费在线观看a视频的电影网站| 嫩草影视91久久| 亚洲成人手机| 真人做人爱边吃奶动态| 在线观看www视频免费| 青春草视频在线免费观看| 丝袜美腿诱惑在线| 一进一出抽搐动态| 在线观看免费高清a一片| 亚洲一区中文字幕在线| 99国产极品粉嫩在线观看| 99国产精品免费福利视频| 啪啪无遮挡十八禁网站| 亚洲国产欧美在线一区| 99九九在线精品视频| 亚洲全国av大片| 日韩三级视频一区二区三区| 久久九九热精品免费| 成人影院久久| 777久久人妻少妇嫩草av网站| 亚洲国产毛片av蜜桃av| 亚洲av电影在线进入| 一区在线观看完整版| 国产高清videossex| a 毛片基地| 日本欧美视频一区| 99国产综合亚洲精品| 精品久久久久久电影网| 亚洲 欧美一区二区三区| 亚洲熟女毛片儿| 国产又色又爽无遮挡免| 人成视频在线观看免费观看| 免费不卡黄色视频| 久久综合国产亚洲精品| 国产精品免费视频内射| 午夜免费观看性视频| 亚洲欧美一区二区三区黑人| 亚洲国产av新网站| 精品一区二区三区av网在线观看 | 国产熟女午夜一区二区三区| 国产一区二区 视频在线| 777久久人妻少妇嫩草av网站| 男人添女人高潮全过程视频| 最近最新中文字幕大全免费视频| 大片电影免费在线观看免费| 五月天丁香电影| 国产在线观看jvid| 中文字幕人妻丝袜制服| 老司机午夜十八禁免费视频| 99久久综合免费| 天天躁夜夜躁狠狠躁躁| 欧美激情极品国产一区二区三区| 波多野结衣一区麻豆| 午夜成年电影在线免费观看| 男人爽女人下面视频在线观看| 国产又爽黄色视频| 99国产精品一区二区蜜桃av | 国产精品麻豆人妻色哟哟久久| 久久女婷五月综合色啪小说| 精品国产乱码久久久久久小说| 一级毛片精品| 韩国精品一区二区三区| 女性生殖器流出的白浆| 操出白浆在线播放| 少妇猛男粗大的猛烈进出视频| 不卡一级毛片| 在线精品无人区一区二区三| 99香蕉大伊视频| 亚洲精品久久午夜乱码| 飞空精品影院首页| 国产一区二区激情短视频 | 亚洲专区中文字幕在线| 亚洲人成77777在线视频| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久成人av| 亚洲成人免费av在线播放| 久久女婷五月综合色啪小说| 女警被强在线播放| 色播在线永久视频| 在线观看人妻少妇| 国产精品久久久久久人妻精品电影 | 国产欧美日韩一区二区精品| av国产精品久久久久影院| 亚洲三区欧美一区| 十八禁网站网址无遮挡| 久久久国产成人免费| 精品一区二区三区av网在线观看 | 日日摸夜夜添夜夜添小说| 成人国产一区最新在线观看| 亚洲av电影在线进入| 一本色道久久久久久精品综合| 搡老熟女国产l中国老女人| 免费少妇av软件| 精品福利永久在线观看| 一级毛片电影观看| 亚洲精品在线美女| 久久久久精品人妻al黑| 视频区图区小说| 亚洲国产欧美网| av线在线观看网站| 久久精品国产亚洲av高清一级| www.熟女人妻精品国产| 另类精品久久| 国产一区二区三区综合在线观看| 精品国产一区二区久久| 欧美人与性动交α欧美软件| 国产免费av片在线观看野外av| 国产黄频视频在线观看| xxxhd国产人妻xxx| 91字幕亚洲| 成年美女黄网站色视频大全免费| 2018国产大陆天天弄谢| 一边摸一边做爽爽视频免费| 99国产精品免费福利视频| 精品一区二区三区四区五区乱码| 亚洲精品国产av成人精品| 久久精品aⅴ一区二区三区四区| 欧美日韩成人在线一区二区| 久久热在线av| 18禁观看日本| 亚洲av片天天在线观看| 97精品久久久久久久久久精品| 一二三四社区在线视频社区8| 一进一出抽搐动态| 亚洲精品国产av成人精品| 人妻 亚洲 视频| 国产黄频视频在线观看| 国产av国产精品国产| 十八禁高潮呻吟视频| 一级片免费观看大全| 国产成人欧美在线观看 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲人成电影免费在线| 午夜日韩欧美国产| av欧美777| 中文欧美无线码| 女人爽到高潮嗷嗷叫在线视频| 国产主播在线观看一区二区| 男人操女人黄网站| 亚洲欧美清纯卡通| 91麻豆精品激情在线观看国产 | 操美女的视频在线观看| 下体分泌物呈黄色| 国产一区二区三区综合在线观看| 国产成人欧美在线观看 | 1024视频免费在线观看| 亚洲欧美日韩高清在线视频 | 飞空精品影院首页| 亚洲av日韩精品久久久久久密| 多毛熟女@视频| 成人av一区二区三区在线看 | 9191精品国产免费久久| 成年动漫av网址| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机深夜福利视频在线观看 | 欧美中文综合在线视频| 国产成人欧美| 久久99一区二区三区| 天堂8中文在线网| 国产精品麻豆人妻色哟哟久久| 丝袜人妻中文字幕| 国产成人免费无遮挡视频| 亚洲国产看品久久| 午夜精品久久久久久毛片777| 在线十欧美十亚洲十日本专区| 亚洲成av片中文字幕在线观看| 操美女的视频在线观看| 久热爱精品视频在线9| 亚洲国产日韩一区二区| 久久久久国产一级毛片高清牌| 999久久久精品免费观看国产| 女性生殖器流出的白浆| 亚洲欧洲日产国产| 亚洲精品国产av蜜桃| 大型av网站在线播放| 国产成人免费无遮挡视频| 欧美97在线视频| 美女主播在线视频| 久久久久网色| 亚洲,欧美精品.| 日本撒尿小便嘘嘘汇集6| 国产日韩欧美视频二区| 久久国产精品大桥未久av| www.精华液| 黑人巨大精品欧美一区二区蜜桃| cao死你这个sao货| 50天的宝宝边吃奶边哭怎么回事| 新久久久久国产一级毛片| 丝袜人妻中文字幕| 国产亚洲精品一区二区www | 久久热在线av| 久久精品国产a三级三级三级| 国产精品 国内视频| 精品少妇久久久久久888优播| 99国产极品粉嫩在线观看| 中国美女看黄片| 99九九在线精品视频| 人妻一区二区av| 日本vs欧美在线观看视频| 99热全是精品| 叶爱在线成人免费视频播放| 久久人人爽av亚洲精品天堂| 国产一区有黄有色的免费视频| 蜜桃国产av成人99| 精品亚洲成a人片在线观看| 黄片大片在线免费观看| 超碰成人久久| 啦啦啦 在线观看视频| 国产男女内射视频| 国产欧美日韩一区二区三区在线| 国产精品 国内视频| 男男h啪啪无遮挡| 1024香蕉在线观看| 一本—道久久a久久精品蜜桃钙片| 精品国产超薄肉色丝袜足j| 美女脱内裤让男人舔精品视频| 丰满迷人的少妇在线观看| 搡老岳熟女国产| 99热国产这里只有精品6| 97人妻天天添夜夜摸| 色94色欧美一区二区| 中国国产av一级| 国产成人系列免费观看| 国产极品粉嫩免费观看在线| 狂野欧美激情性bbbbbb| 亚洲av电影在线进入| 丰满人妻熟妇乱又伦精品不卡| av线在线观看网站| 欧美精品一区二区免费开放| av不卡在线播放| 久久精品人人爽人人爽视色| 久久影院123| 久久国产精品男人的天堂亚洲| 女警被强在线播放| 久热爱精品视频在线9| 91av网站免费观看| 精品国内亚洲2022精品成人 | 成人黄色视频免费在线看| 亚洲午夜精品一区,二区,三区| 国产一区二区三区在线臀色熟女 | 丝袜美足系列| 欧美老熟妇乱子伦牲交| 亚洲综合色网址| videos熟女内射| 一进一出抽搐动态| 动漫黄色视频在线观看| 美女大奶头黄色视频| av电影中文网址| www.av在线官网国产| 9色porny在线观看| 国产主播在线观看一区二区| 国产精品亚洲av一区麻豆| 成人国产一区最新在线观看| 中文欧美无线码| 亚洲精品第二区| 久久天躁狠狠躁夜夜2o2o| 精品少妇久久久久久888优播| 国产又色又爽无遮挡免| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美国产一区二区入口| 亚洲熟女精品中文字幕| 国产日韩欧美视频二区| 亚洲av欧美aⅴ国产| 国产精品久久久久成人av| 黄色视频,在线免费观看| 中文字幕av电影在线播放| 亚洲av美国av| 黑人猛操日本美女一级片| 亚洲第一av免费看| 在线av久久热| 亚洲伊人色综图| 国产极品粉嫩免费观看在线| 999精品在线视频| 欧美在线一区亚洲| 免费在线观看视频国产中文字幕亚洲 | 日韩欧美免费精品| 国产成人精品久久二区二区免费| 一二三四社区在线视频社区8| 91大片在线观看| 国产免费av片在线观看野外av| 国产激情久久老熟女| 国产成人系列免费观看| 日韩大片免费观看网站| 人人妻,人人澡人人爽秒播| 黄色片一级片一级黄色片| 飞空精品影院首页| 亚洲色图 男人天堂 中文字幕| 国产日韩欧美视频二区| 一级,二级,三级黄色视频| 亚洲国产精品成人久久小说| 狠狠狠狠99中文字幕| 亚洲欧美清纯卡通| 精品国产一区二区三区久久久樱花| 热re99久久国产66热| videosex国产| 真人做人爱边吃奶动态| 国产亚洲欧美在线一区二区| 日日夜夜操网爽| 成年人免费黄色播放视频| 午夜免费鲁丝| 91精品三级在线观看| 国产成人av激情在线播放| 精品人妻熟女毛片av久久网站| 黄色怎么调成土黄色| 精品人妻熟女毛片av久久网站| 久久久久久久久免费视频了| 午夜福利一区二区在线看| 欧美国产精品一级二级三级| 午夜福利一区二区在线看| 多毛熟女@视频| 精品一品国产午夜福利视频| 熟女少妇亚洲综合色aaa.| 精品一品国产午夜福利视频| 国产激情久久老熟女| 一区福利在线观看| 欧美国产精品一级二级三级| 国产xxxxx性猛交| 日本猛色少妇xxxxx猛交久久| 精品一品国产午夜福利视频| www.精华液| 国产av一区二区精品久久| 亚洲欧洲精品一区二区精品久久久| 少妇被粗大的猛进出69影院| 久久久久精品国产欧美久久久 | 肉色欧美久久久久久久蜜桃| 午夜福利影视在线免费观看| 久久人妻熟女aⅴ| 在线 av 中文字幕| 国产福利在线免费观看视频| 精品福利观看| 男女边摸边吃奶| 日韩中文字幕欧美一区二区| 国产色视频综合| 每晚都被弄得嗷嗷叫到高潮| 国产极品粉嫩免费观看在线| 韩国精品一区二区三区| 一本色道久久久久久精品综合| 国产在线观看jvid| 国产亚洲欧美精品永久| 久久亚洲精品不卡| 成人影院久久| 人妻一区二区av| 一级毛片精品| 最近中文字幕2019免费版| 老司机深夜福利视频在线观看 | 亚洲专区字幕在线| 免费观看人在逋| 热99国产精品久久久久久7| 性色av乱码一区二区三区2| 国产老妇伦熟女老妇高清| av超薄肉色丝袜交足视频| 秋霞在线观看毛片| 成年人黄色毛片网站| 亚洲 国产 在线| 18禁黄网站禁片午夜丰满| 亚洲伊人色综图| 精品欧美一区二区三区在线| 国产精品香港三级国产av潘金莲| svipshipincom国产片| 亚洲av美国av| 啦啦啦在线免费观看视频4| 久久女婷五月综合色啪小说| 精品久久久精品久久久| 亚洲欧美一区二区三区黑人| 一边摸一边做爽爽视频免费| 国产欧美日韩综合在线一区二区| 99久久人妻综合| 91麻豆av在线| 美女高潮喷水抽搐中文字幕| 国产成人精品久久二区二区免费| 日本a在线网址| 国产精品国产三级国产专区5o| 亚洲天堂av无毛| 乱人伦中国视频| 精品欧美一区二区三区在线| 久久精品国产亚洲av香蕉五月 | 捣出白浆h1v1| 午夜日韩欧美国产| 国产伦人伦偷精品视频| av免费在线观看网站| 91国产中文字幕| 三上悠亚av全集在线观看| bbb黄色大片| 精品亚洲成国产av| 国产亚洲午夜精品一区二区久久|