王 珂,李 俊,許正平
(南京工業(yè)大學電氣工程與控制科學學院,南京 211816)
PLCL-SS型ICPT系統(tǒng)距離及頻率分叉特性研究*
王 珂,李 俊*,許正平
(南京工業(yè)大學電氣工程與控制科學學院,南京 211816)
分析了原邊LCL、副邊串聯(lián)補償型感應電能傳輸系統(tǒng)的工作特性,推導了系統(tǒng)傳輸功率和傳輸效率與傳輸距離之間的定量關系;補償電路的加入使得ICPT系統(tǒng)成為一個高階系統(tǒng),極易導致系統(tǒng)諧振頻率不唯一;因此,采用回路阻抗角法分析了系統(tǒng)的頻率分叉特性,并給出了近似消除系統(tǒng)頻率分叉的參數(shù)匹配條件;最后,設計系統(tǒng)相關參數(shù)并進行實驗驗證。
PLCL-SS;ICPT;距離特性;頻率分叉;參數(shù)匹配
在無線電能傳輸系統(tǒng)的發(fā)射側和接受側均加入無功補償電路以保證系統(tǒng)傳輸?shù)母咝约敖档桶l(fā)射側供電端的電源容量。雙側補償電路按補償電容的連接方式可分為4種:串聯(lián)-串聯(lián)、串聯(lián)-并聯(lián)、并聯(lián)-串聯(lián)、并聯(lián)-并聯(lián)。本文采用LCL型補償電路,通過合理的參數(shù)設計,該補償電路可以保證發(fā)射線圈電流基本恒定且不受互感及負載變化的影響,從而保證了電能傳輸?shù)目煽啃院头€(wěn)定性。在無線電能傳輸系統(tǒng)的發(fā)射側和接收側分別施加補償電路,提高ICPT系統(tǒng)的傳輸功率和效率有著積極的意義。然而,補償電路的加入使得ICPT系統(tǒng)成為一個高階系統(tǒng)。當系統(tǒng)的某些參數(shù)設計不合理,即系統(tǒng)參數(shù)不匹配時,將可能導致ICPT系統(tǒng)的諧振頻率不唯一,此時ICPT系統(tǒng)出現(xiàn)了頻率分叉。為保證ICPT系統(tǒng)高效、穩(wěn)定地運行應盡量避免系統(tǒng)頻率分叉現(xiàn)象的發(fā)生。
在對傳輸距離有特定要求的應用場合,如電動汽車無線充電、移動機器人無線充電等[4-5],研究無線電能系統(tǒng)傳輸功率、效率與傳輸距離的定量關系就顯得十分重要[6]。本文推導了ICPT系統(tǒng)傳輸功率、效率與傳輸距離的表達式;采用回路阻抗角法對系統(tǒng)的頻率分叉特性進行研究[7-8],并給出近似消除系統(tǒng)頻率分叉的參數(shù)匹配條件;建立了ICPT系統(tǒng)實驗平臺并進行了實驗驗證。
本文以發(fā)射側LCL諧振、接收側LC串聯(lián)諧振的無線電能傳輸系統(tǒng)為例進行分析,其拓撲結構如圖1所示。
對圖1進行簡化可得其等效電路,如圖2所示。其中,Ui為高頻逆變后的輸入電壓基波有效值;Uo為二次側交流輸出電壓值;Lp和Ls分別為系統(tǒng)發(fā)射線圈、接收線圈的電感;Cp和Cs分別為系統(tǒng)一次側、二次側的補償電容;電感Li、電容Cp和發(fā)射線圈電感Lp構成一次側LCL諧振網(wǎng)絡;接收線圈電感Ls和電容Cs構成二次側串聯(lián)諧振網(wǎng)絡;Rac為負載電阻;M為發(fā)射、接收線圈間的互感;電能正是通過發(fā)射側和接收側的互感完成非接觸傳輸?shù)摹?/p>
圖1 ICPT系統(tǒng)拓撲圖
圖2 LCL型系統(tǒng)等效電路圖
由電路完全諧振的特點可知,全橋逆變輸出的交流方波電壓可只考慮其基波分量,即為圖2中Ui。它與其直流側輸入電壓Udc之間的關系表示為式(1):
(1)
為簡化推導過程,現(xiàn)定義系統(tǒng)固有諧振頻率ω0、工作頻率歸一化頻率ωn、LCL補償電路的電感比例系數(shù)α分別為式(2)和式(3)所示:
(2)
(3)
現(xiàn)假定系統(tǒng)始終處于完全諧振狀態(tài),即LCL型無線電能傳輸?shù)墓ぷ黝l率等于其固有諧振頻率。那么,LCL型系統(tǒng)交流輸入阻抗Zin可表示為
(4)
式中:等效阻抗Req為發(fā)射線圈電感內(nèi)阻Rp和接收側折算至發(fā)射側的反映阻抗之和,忽略接收線圈電感內(nèi)阻,則Req可表示為
(5)
將式(2)、式(3)、式(5)代入式(4),可得LCL型無線電能傳輸系統(tǒng)交流輸入阻抗簡化形式,如式(6)所示:
(6)
由式(6)可知,當電感比例系數(shù)α等于1時,LCL型無線電能傳輸系統(tǒng)交流輸入阻抗呈純阻性,實現(xiàn)了輸入單位功率因數(shù)。此時,LCL型無線電能傳輸系統(tǒng)交流輸入阻抗可表示為式(7):
(7)
根據(jù)式(7),推導可得LCL型補償電路輸入電流Ii、發(fā)射線圈電感電流Ip,分別表示為式(8)和式(9):
(8)
(9)
結合式(9),可得LCL型無線電能傳輸系統(tǒng)接收側輸出電壓Uo和輸出電流Is,分別表示為式(10)和式(11):
(10)
(11)
現(xiàn)定義系統(tǒng)傳輸效率η為輸出功率Po與輸入功率Pi的比值,根據(jù)式(5)、式(7)、式(8)、式(10)和式(11)可得LCL型無線電能傳輸系統(tǒng)的輸入功率Pi、輸出功率Po及傳輸效率η,分別表示為式(12)~式(14):
(12)
(13)
(14)
依據(jù)文獻[3]可知,當系統(tǒng)發(fā)射線圈和接收線圈采用螺旋繞制方式且發(fā)射和接收線圈同軸擺放時,ICPT系統(tǒng)的傳輸距離與發(fā)射接收線圈的互感關系可表示為式(15):
(15)
式中:μ0為真空磁導率;np和ns分別表示系統(tǒng)發(fā)射和接收線圈的匝數(shù);rp和rs分別表示系統(tǒng)發(fā)射和接收線圈的半徑;d表示系統(tǒng)傳輸距離。
將式(15)代入式(13)、式(14)中可得ICPT系統(tǒng)傳輸功率、傳輸效率與傳輸距離的關系,分別表示為式(16)和式(17):
(16)
(17)
如圖2所示,以發(fā)射側LCL諧振補償和接收側串聯(lián)電容補償?shù)母袘娔軅鬏斚到y(tǒng)為例,對發(fā)射側回路阻抗角進行分析并推導其表達式。根據(jù)式(3)、式(4)并令式(3)等于1可得ICPT系統(tǒng)發(fā)射側回路阻抗,如式(18)所示:
(18)
進一步簡化可得,發(fā)射側回路阻抗的實部和虛部分別表示為式(19)、式(20):
(19)
(20)
式中:A的表達式見于式(21):
(21)
因此,發(fā)射側回路阻抗角可表示為式(22):
(22)
將式(2)、式(18)、式(19)代入式(22)可將發(fā)射側回路阻抗角表示為式(23):
(23)
式中:k表示發(fā)射側和接收側線圈的耦合系數(shù),Qs表示接收側回路的品質(zhì)因數(shù);k和Qs分別表示為式(24)、式(25)。
(24)
(25)
根據(jù)前面的分析可知,PLCL-SS補償型ICPT系統(tǒng)發(fā)射側回路阻抗角的大小受系統(tǒng)歸一化工作頻率ωn、發(fā)射側和接收側線圈的耦合系數(shù)k和接收側回路的品質(zhì)因數(shù)Qs的約束。下面將分析ωn、k、Qs和發(fā)射側回路阻抗角的關系。
(1)給定Qs時,ωn、k與發(fā)射側回路阻抗角的關系
依次給定Qs為5、10、20,依據(jù)式(23)可以得出它們的變化關系圖,見于圖3。
圖3 發(fā)射側回路阻抗角與k的關系
(2)給定k時,ωn、Qs與發(fā)射側回路阻抗角的關系
依次給定k為0.1、0.2、0.3,依據(jù)式(23)可以得出它們的變化關系圖,見于圖4。
圖4 發(fā)射側回路阻抗角與Qs的關系
分析圖3可得,隨著接收側回路的品質(zhì)因數(shù)Qs的增加,近似滿足消除ICPT系統(tǒng)頻率分叉的耦合系數(shù)k將減小;分析圖4可得,隨著耦合系數(shù)k的增加,近似滿足消除ICPT系統(tǒng)頻率分叉的接收側回路的品質(zhì)因數(shù)Qs將減小。
經(jīng)過以上分析得出了發(fā)射側回路阻抗角與耦合系數(shù)k、接收側回路的品質(zhì)因數(shù)Qs、歸一化工作頻率ωn之間的變化關系。下面將對PLCL-SS補償型ICPT系統(tǒng)的頻率分叉特性進行理論推導。
(26)
由式(26)化簡可得
(27)
頻率分叉現(xiàn)象的發(fā)生表明式(3-31)存在除ωn=1之外的其他解,即存在ωn≠1使得式(3-33)成立。
(28)
求取式(28)的根判別式,如式(29):
(29)
由于式(29)大于0恒成立,即式(28)有解。因此,式(26)存在多個解,即系統(tǒng)發(fā)生了頻率分叉現(xiàn)象。
求出式(28)的解(負值已舍去)并表示為
(30)
為了保證ICPT系統(tǒng)高效運行,應使得式(30)的取值接近1,從而近似達到避免ICPT系統(tǒng)的頻率分叉現(xiàn)象的目標?,F(xiàn)設定式(30)的取值為0.99,求解可得耦合系數(shù)k、接收側回路的品質(zhì)因數(shù)Qs應滿足式(31):
(31)
為了進一步研究ICPT系統(tǒng)的工作特性,本文建立了原邊LCL、副邊串聯(lián)補償?shù)母袘娔軅鬏斚到y(tǒng)實驗平臺,如圖5所示。
圖5 LCL型無線電能傳輸系統(tǒng)實驗平臺
根據(jù)上述分析設計了相關參數(shù),系統(tǒng)實驗平臺各參數(shù)值如表1中所示。其中,Lx、Cx構成LC濾波環(huán)節(jié),串聯(lián)接入LCL補償網(wǎng)絡與高頻逆變環(huán)節(jié)之間,以改善輸入電流波形。
表1 樣機參數(shù)
在不同傳輸距離條件下進行了實驗,對不同傳輸距離下的傳輸功率和傳輸效率進行了定量分析,依據(jù)實驗結果及理論值繪制了樣機傳輸功率和傳輸效率與傳輸距離的關系曲線圖,如圖6和圖7所示。
圖6 傳輸功率曲線
圖7 傳輸效率曲線
本文研究了原邊LCL、副邊串聯(lián)補償型感應電能傳輸系統(tǒng)的工作特性,推導了系統(tǒng)傳輸功率和效率與傳輸距離之間的定量關系;由于補償電路的加入使得ICPT系統(tǒng)成為一個高階系統(tǒng),極易導致系統(tǒng)諧振頻率不唯一,因此,本文采用回路阻抗角法分析系統(tǒng)的頻率分叉特性,并給出了近似消除系統(tǒng)頻率分叉的參數(shù)匹配條件;根據(jù)理論分析設計系統(tǒng)相關參數(shù)并搭建了ICPT系統(tǒng)實驗平臺;在不同的傳輸距離條件下進行了實驗,實驗結果與理論值基本符合。綜上,本文對ICPT系統(tǒng)參數(shù)設計具有一定的參考價值。
[1] Fotopoulou K,Flynn B W. Wireless Power Transferin Loosely Coupled Links:Coil Misalignment Model[J]. IEEE Transactions on Magnetics,2011,47(2):416-430.
[2] Villa J L,Sallan J,Sanz Osorio J F,et al. High-Misalignmenttolerant Compensation Topology for ICPT Systems[J]. IEEE Transactions on Industrial Electronics,2012,59(2):945-951.
[3] 傅文珍,張波,丘東元,等. 自諧振線圈耦合式無線電能傳輸?shù)淖畲笮史治雠c設計[J]. 中國電機工程學報,2009,29(18):21-26.
[4] 孫躍,夏晨陽,戴欣,等. 感應耦合電能傳輸系統(tǒng)互感耦合參數(shù)的分析與優(yōu)化[J]. 中國電機工程學報,2010,30(33):44-50.
[5] 周雯琪,馬皓,何湘寧. 感應耦合電能傳輸系統(tǒng)不同補償拓撲的研究[J]. 電工技術學報,2009,24(1):133-139.
[6] 陳文仙,陳乾宏,張惠娟. 電磁共振式無線電能傳輸系統(tǒng)距離特性的分析[J]. 電力系統(tǒng)自動化,2015,39(8):98-104.
[7] 孫躍,吳靜,王智慧,等. ICPT系統(tǒng)基于電容陣列的穩(wěn)頻控制策略[J]. 電子科技大學學報,2014,43(1):54-59.
[8] 鄒愛龍,王慧貞,華潔. 基于LCL補償?shù)亩嘭撦d移動式感應非接觸電能傳輸系統(tǒng)[J]. 中國電機工程學報,2014,24:4000-4006.
Research on the Distance and Frequency Bifurcation Characteristics of ICPT Type PLCL-SS System*
WANGKe,LIJun*,XUZhengping
(College of Electrical Engineering and Control Science,Nanjing Technology University,Nanjing 211816,China)
Operating characteristics of inductive power transmission system in PLCL-SS compensation type was analyzed,and the quantitative relationship between the system transmission power and transmission efficiency and transmission distance were derived;Compensation circuits make ICPT(Inductively Coupled Power Transfer)system become a high-order system,easily making system resonant frequency not only;So the loop impedance angle method was used to analysis the system frequency bifurcation characteristics,and the parameter matching conditions of eliminating the system frequency bifurcation was given;Finally,design of the system parameters and the experimental verification were done.
PLCL-SS;ICPT;distance characteristic;frequency bifurcation;parameter matching
項目來源:國家自然科學基金項目(50977086)
2016-04-07 修改日期:2016-06-05
C:7310G;7320C
10.3969/j.issn.1005-9490.2017.02.023
TM131.41
A
1005-9490(2017)02-0375-05