• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lattice Boltzmann model for shallow water in curvilinear coordinate grid*

    2017-04-26 06:00:56ZhuangmingZhao趙莊明PingHuang黃平ShaotianLi李少鈿
    關(guān)鍵詞:黃平皺褶皮下脂肪

    Zhuang-ming Zhao (趙莊明), Ping Huang (黃平), Shao-tian Li (李少鈿)

    1.South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655, China, E-mail: zhaozhuangming@scies.org

    2.Department of Environmental Science, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

    Lattice Boltzmann model for shallow water in curvilinear coordinate grid*

    Zhuang-ming Zhao (趙莊明)1, Ping Huang (黃平)2, Shao-tian Li (李少鈿)2

    1.South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655, China, E-mail: zhaozhuangming@scies.org

    2.Department of Environmental Science, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

    In this study, a multi-relaxation time lattice Boltzmann model for shallow water in a curvilinear coordinate grid is developed using the generalized form of the interpolation supplemented lattice Boltzmann method. The Taylor-Colette flow tests show that the proposed model enjoys a second order accuracy in space. The proposed model is applied to three types of meandering channels withconsecutive bends. The numerical results demonstrate that the simulated results agree well with previous computational and experimental data. In addition, the model can achieve the acceptable accuracy in terms of the water depth and the depth-averaged velocities for shallow water flows in curved and meandering channels over a wide range of bend angles.

    Curvilinear coordinate, lattice Boltzmann method, meandering flow, multi-relaxation-time model, shallow water

    Introduction

    Shallow water flows are characterized by the hydrostatic pressure and the horizontal scale of motions, which is much greater than the vertical one. These flows are governed by shallow water equations (SWEs). They are common in ocean and hydraulic engineering problems, including the sub-critical flows in curved and meandering rivers and channels. For many practical problems, the shapes of natural rivers and channels are always influenced by the flows and may not be straight. Curved and meandering rivers/ channels are of interest as problems of hydrodynamics, sediment transport and erosion. For these problems, to improve the efficiency and fit the river/channel shape well, the curvilinear coordinate grid systems are usually adopted. They are frequently solved by the finite difference method (FDM) and the finite volume method (FVM).

    In recent years, the lattice Boltzmann equation (LBE) method emerges as a powerful technique in the computational fluid dynamics analysis. The LBE enjoys several attractive features: (1) effective timedependent fluid computations, (2) intrinsic parallelism of the algorithm, (3) simplicity of programming, and (4) second order accuracy in space. It has been applied successfully to the analysis of various complex physical phenomena, such as the turbulent flows, the advection and dispersion problems, the multi-component flows, the free surface flows[1,2]and the shallow water flows[3,4].

    One of the drawbacks of the conventional LBE is that it is confined to a special class of uniform and regular lattices, which limits the efficiency when there is a need for a high-resolution grid in some sharp gradient flow regions, or when a far-field boundary condition is present. To improve the numerical efficiency, the LBE is extended to nonuniform meshes in recent years, such as the interpolation-supplemented LBE (ISLBE) for nonuniform grids[5,6], the multiscale method, the multiblock method, the quadtree grid system method, and the multi-relaxation time (MRT) LBE for rendering the flow equations in curvilinear coordinates[7].

    The ISLBE scheme has proved to be an effective method for simulating incompressible flows on a nonuniform mesh. It was first proposed by He et al. for simulating a sudden expansion channel flow using a nonuniform rectangular mesh[5,6]. And it is found that the ISLBE can enhance the stability of the LBE[6]. In addition, the use of a second-order interpolation function is important for reducing the numerical dissipation[8]. More recently, the generalized form of the interpolation supplemented lattice Boltzmann method (GILBM) was proposed to simulate a steady flow in generalized coordinates[9].

    In the present study, a lattice Boltzmann model is developed for shallow water (LBSW) based on a curvilinear coordinate grid system to accurately deal with the flow problem in curved and meandering open channels. Based on the GILBM, an overall second-order approximation of the LBSW is developed and applied to a curvilinear coordinate grid system. An MRT model[10]is implemented to enhance the stability. A boundary-fitted coordinate system has the advantage of better describing the bathymetry, but the accuracy of the boundary conditions is also quite important, hence, we proposed the second order non-equilibrium extrapolation method[11]. The accuracy of the spatial convergence is examined for the proposed model by considering the Taylor-Couette flow. Three types of open channel flows are simulated withconsecutive bends. The results are compared with those obtained from the experimental data and the simulated results obtained by using the FVM in previous studies.

    1. Numerical method

    1.1Governing equations

    The SWEs can be written in the tensor notation as:

    Fig.1 Discrete lattice and the particle trajectories

    1.2Lattice Boltzmann model

    The MRT LBE is used to solve the governing equations. In the proposed model, the space is discretized into a square lattice, with nine discrete velocities, which are given by ( see Fig.1)

    Table1 The transformation matrix

    The MRT lattice Boltzmann method involves two steps, i.e., a collision step and a streaming step, which can be expressed as:

    Collison and forcing

    The definition of the velocity is modified according to the Guo-Zheng-Shi model. Thus, the velocityandthe water depthare defined in terms of the distribution function as

    Using the Chapman-Enskog procedure, Eqs.(1)-(2) can be recovered and the viscosity is

    The LBSW on curvilinear coordinates is developed using the GILBM[9], based on the idea of ISLBM[5,6]. The GILBM involves three steps: the relaxation, the advection, and the interpolation. The first two steps are exactly the same as those in the previous standard LBE models. The physical and computational planes are described asrespectively. The two-step Runge-Kutta method is used to integrate the particle velocity and the second-order upwind quadratic interpolation is used for the overall interpolation process to maintain the second order approximation.

    1.3Boundary conditions

    In this study, we use the non-equilibrium extrapolation method[11], which is of the second order accuracy, on the inflow, outflow, and wall boundaries

    The macroscopic velocities can be estimated using the neighboring fluid velocities at the slip wall and they are equal to zero at the non-slip wall.

    In the turbulent flows, a large flow gradient exists in the vicinity of a solid boundary due to the wall friction, which cannot be simulated correctly with no-slip or slip boundary conditions. Thus, semi-slip boundary conditions are needed. The wall shear stressmay be represented by

    2. Model accuracy

    The second order accuracy of the proposed model is examined based on the Taylor-Couette flow between two circular cylinders using a curvilinear coordinate grid. The inner cylinder of radiusrotates with a constant tangential velocityand the outer cylinder of radiusis kept stationary. The radius ratioand the initial water depthThe flows with different Reynolds numbersof 10, 20 and 30 are considered.

    The periodic condition is implemented on the open boundaries. Three different grid resolutions are tested with uniform meshes of 90×23, 140×36 andThe particle velocityin all cases andis the minimum grid size of each mesh. In this and the following sections, the criterion for the steady states is defined as

    Fig.2 Errors in the velocity fields for the Taylor-Couette flow with different Reynolds numbers

    With a different number of gridsin the direction, the trends in thenorm errors (calculated relative to the analytical solution[14]) for the velocity fields are quite similar in the three cases with differentnumbers (Fig.2). The asymptotical quadratic convergence is clearly seen, thereby it can be concluded that the proposed model has an overall second order accuracy in space. It should be noted that the second order boundary conditions are necessary during the simulations.

    Different radius ratios are also tested, where0.2, 0.35 and 0.65 with the meshes of 140×36, 140×26 and 140×14, respectively. Figure 3 compares the simulated results and the analytical solutions, and very good agreement is observed, thereby it is concluded that the proposed curvilinear coordinate LBSW can accurately simulate the flow in a curved channel.

    Fig.3 Velocity profiles of the Taylor-Couette flow for different radius ratios

    Fig.4 Computational mesh of 100×26 for thecurved channel

    3. Applications

    3.1Open channel flow with abend

    Fig.5 Comparison of the depth-averaged velocities across the section of

    Fig.6 Contours of the water depth for thecurved channel

    Fig.7 Water depths along the channel bend. The longitudinal distance from the inlet is normalized with the length at the centre of the bend and the water depth is normalized as

    To investigate the grid convergence, we employ two uniform meshes of 50×13 and 100×26 (Fig.4) withrespectively. The particle velocitySemi-slip boundary conditions are set at the channel bank where the roughness coefficient. Figure 5 shows that with the model, similar results are obtained with different meshes where the grid convergence index(GCI, as proposed by Roache[16]) of the velocities is 1.24% for the fine mesh. These results indicate that the fine mesh can be used without large numerical errors and thus it is employed in this test.

    Fig.8 Depth-averaged velocity distributions on different sections

    The water depth contours are illustrated in Fig.6, which are very similar to the simulated results obtained in the previous studies[17,18]. Figure 7 also compares the results obtained at the central line andof the outer bank and the inner bank. The maximum relative error at the inner bank is 2.9%. Compared with the simulated results obtained by Ye?s 3-D FVM[19], better agreement is obtained by Ye?s method. However, our 2-D scheme shows reasonable accuracy. In Fig.8, further comparisons between the predicted and measured depth-averaged velocities on six cross-sections show that the results obtained by the proposed model agree well with the experimental data, except for some discrepancies on the section with. In addition, the results obtained by the 3-D model are better than those obtained with the proposed 2-D model, which may have several possible explanations, as follows: (1) with the 3-D model, the secondary flow in the meandering channel can be simulated more accurately, (2) in Ye?s study, the turbulent viscosity is more accurate because theturbulence model is employed, or (3) with a low turbulence Reynolds number, the wall region is simulated correctly by the wall function method proposed by Ye. However, our proposed model is simple and efficient, with a reasonable accuracy.

    Fig.9 Computational mesh of 160×20 for two bends in themeandering channel

    3.2Open channel flow withconsecutive bends

    In this test, we consider the experimental channel studied by Tamai et al.[20], which involves 90° consecutive bends with a rectangular cross-section. Each bend is connected by a 0.3 m straight reach. The radius of the channel centerline is 0.6 m and the channel width. The inflow discharge is 0.002 m3/s and the constant water depth, as specifically at the outflow. The longitudinal bed slope is 1/1000 and the Manning’s roughness coefficient forthe channel is estimated to be 0.013. Thein this test.

    Fig.10 Comparison of the depth-averaged velocities across Section E

    Fig.11 Water depths in the meandering channel withbends

    Fig.12 Transverse profiles of the depth-averaged velocity components across three sections of the meandering channel withbends

    Fig.13 Contours of the water depths in the meandering channel withbends

    Two meshes of 80×10 and 16×20 (see Fig.9) withrespectively, are tested. The results obtained by using the two different mesh resolutions are shown in Fig.10.Compared with the coarse mesh (80×10), the GCI for the fine mesh (160×20) is only 0.3% in terms of the depth-averaged velocities, so the fine mesh can be used.

    Fig.14 Contours of the water depth in the meandering channel withbends

    Fig.15 Water depths in the meandering channel withbends

    The water depths and the depth-averaged velocity profiles on Sections E, F and G are plotted in Figs.11, 12, respectively. Good agreement is observed for the water depth, where the maximum relative error is 2.8%. There are some differences in the velocity distribution, but the numerical results for the longitudinal and lateral velocities agree well with the experimental data. Compared with the simulations reported by Zarrati et al.[21], obtained by using a 2-D depth-averaged FVM model with a nonorthogonal curvilinear coordinate system, it is found that our method gives very similar results (the maximum relative error in the water depth is 1.5% according to Zarrati et al). The overall agreement is good between the results obtained by using our proposed method and the solutions reported by Zarrati et al.. After reaching a steady state, the water depth increases from the inner bank to the outer bank and it becomes almost constant at the straight reach (see Fig.13), as in good agreement with the experimental results.

    Fig.16 Transverse profiles of the depth-averaged velocity components across three sections of the meandering channel withbends

    3.3Open channel flow withconsecutive bends

    In the final test, we consider awide meandering rectangular channel with an angle ofThere are 18 circular bends and each bend is connected by a 0.07 m straight reach. The radius of the channel centerline is 1.3 m. The discharge rate isand the average flow depth0.045 m. The Manning’s roughness coefficient and the longitudinal gradient of the channel are 0.008 and 1/1 000, respectively.

    A uniform 192×15 mesh is used to calculate four consecutive bends, whereThe roughness coefficientin the semi-slip boundary conditions is 1.1032.

    The water depth contours are plotted in Fig.14, and it is shown that the water depth increases from the inner bank to the outer bank due to the centripetal force. Figures 15, 16 show the water depths and the depth-averaged velocity profiles on Sections A, B and C along the reach where we take measurements, as shown in Fig.14. An excellent agreement is observed in terms of the water depth with the relative error less than 3.0%. The predicted velocities on these three sections also agree well with the experimental results. In general, good agreement is observed between the results obtained by using the proposed method and the solutions reported by Zarrati et al. (the maximum relative error of water depth is 2.0% according to Zarrati et al.), as shown in Figs.15, 16.

    4. Conclusions

    In this study, a second order LBSW is developed on a curvilinear coordinate grid, and the GILBM and MRT models are implemented. A non-equilibrium extrapolation method is used to handle the inflow, outflow and wall boundaries. It is demonstrated that the proposed model enjoys a second order accuracy in space. In general, the treatment of the wall boundaries is easier and more exact results are obtained for the meandering flows after applying the curvilinear coordinate grid. The proposed model is verified by considering the Taylor-Couette flow, where three meandering channel flows withconsecutive bends are tested. The results show that with the proposed model, reasonable depth-averaged hydrodynamic characteristics can be obtained for the shallow water flow in curved and meandering open channels over a wide range of bend angles.

    第七個月,‘皮膚上長滿毛毛,皮下脂肪少,皮膚皺褶,如果此時出生,能啼哭與吞咽,但生活力弱?!盵11]

    The proposed model can be used to solve more complex practical problems such as for curved and meandering rivers. The turbulent models and other boundary treatments such as the wall function method, can also be integrated to solve more complex flow problems. Moreover, the advection and anisotropic dispersion equations can be coupled to solve the advection-dispersion problems. These extensions and further applications will be considered in our future research.

    [1] Zhao Z., Huang P., Li Y. et al. A lattice Boltzmann method for viscous free surface waves in two dimensions [J].International Journal for Numerical Methods in Fluids, 2013, 71(2): 223-248.

    [2] Zhao Z. M., Huang P., Chen L. P. Lattice Boltzmann method for simulating viscous free surface waves in three dimensions [J].ChineseJournal of Hydrodynamics, 2013, 28(6): 708-716(in Chinese).

    [3] Li S., Huang P., Li J. A modified lattice Boltzmann model for shallow water flows over complex topography [J].International Journal for Numerical Methods in Fluids, 2014, 77(8): 441-458.

    [4] Zhang C. Z., Cheng Y. G., Wu J. Y. et al. Lattice Boltzmann simulation of the open channel flow connecting two cascaded hydropower stations [J].Journal of Hydrodynamics, 2016, 28(3): 400-410.

    [5] He X., Luo L., Dembo M. Some progress in lattice Boltzmann method. Part I. Nonuniform mesh grids [J].Journal of Computational Physics, 1996, 129(2): 357-363.

    [6] He X., Luo L., Dembo M. Some progress in the lattice Boltzmann method: Reynolds number enhancement in simulations [J].Physical A, 1997, 239(1-3): 276-285.

    [7] Budinski L. MRT lattice Boltzmann method for 2D flows in curvilinear coordinates [J].Computers and Fluids, 2014, 96: 288-301.

    [8] He X., Doolen G. Lattice Boltzmann method on curvilinear coordinates system: Flow around a circular cylinder [J].Journal of Computational Physics, 1997, 134(2): 306-315.

    [9] Imamura T., Suzuki K., Nakamura T. et al. Acceleration of steady-state lattice Boltzmann simulations on non-uniform mesh using local time step method [J].Journal of Computational Physics, 2005, 202(2): 645-663.

    [10] Tubbs K. Lattice Boltzmann modeling for shallow water equations using high performance computing [C]. Doctoral Thesis, Baton Rouge, USA: Louisiana State University, 2010.

    [11] Guo Z. L., Zheng C. G., Shi B. C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method [J].Chinese Physics, 2002, 11(4): 366-374.

    [12] Guo Z., Zheng C. Analysis of lattice Boltzmann equation for microscale gas flows: Relaxation times, boundary conditions and the Knudsen layer [J].International Journal of Computational Fluid Dynamics, 2008, 22(7): 465-473.

    [13] Du R., Shi B., Chen X. Multi-relaxation-time lattice Boltzmann model for incompressible flow [J].Physics Letters A, 2006, 359(6): 564-572.

    [14] Chen M. Fundamentals of viscous fluid dynamics [M]. Beijing, China: China Higher Education Press, 2002(in Chinese).

    [15] Vriend H. D. A mathematical model of steady flow in curved shallow channels [J].Journal of Hydraulic Research, 1977, 15(1): 37-54.

    [16] Roache P. Perspective: A method for uniform reporting of grid refinement studies [J].Journal of Fluids Engineering, 1994, 116(3): 405-413.

    [17] Duan J. G. Simulation of flow and mass dispersion in meandering channels [J].Journal of Hydraulic Engineering, ASCE, 2004, 130(10): 964-976.

    [18] Zhang M. L., Shen Y. M. Three-dimensional simulation of meandering river based on 3-D RNGturbulence model [J].Journal of Hydrodynamics, 2008, 20(4): 448-455.

    [19] Ye J., Mccorquodale J., Barron R. A three-dimensional hydrodynamic model in curvilinear co-ordinates with collocated [J].International Journal for Numerical Methods in Fluids, 1998, 28(7): 1109-1134.

    [20] Tamai N., Ikeuchi K., Yamazaki A. et al. Experimental analysis on the open channel flow in rectangular continuous bends [J].Journal of Hydroscience and Hydraulic Engineering, 1983, 1(2): 17-31.

    [21] Zarrati A., Tamai N., Jin Y. Mathematical modeling of meandering channels with a generalized depth averaged model [J].Journal of Hydraulic Engineering, ASCE, 2005, 131(6): 467-475.

    [22] Tarekul Islam G., Tamai N., Kobayashi K. Hydraulic characteristics of a doubly meandering compound channel [C].Proceedings of Joint Conference on Water Resource Engineering and Water Resources Planning and Management 2000. Minneapolis, USA: ASCE, 2000, 1-9.

    (Received January 12, 2015, Revised August 30, 2015)

    * Project supported by the Chinese Special Fund for Environmental Protection Research in the Public Interest (Grant No. 201309006).

    Biography: Zhuang-ming Zhao (1986-), Male, Ph. D.

    猜你喜歡
    黃平皺褶皮下脂肪
    世界上的月亮
    異處求解
    貴州黃平重安鎮(zhèn):食用菌種植帶動農(nóng)民持續(xù)增收
    基于PACS探討皮下脂肪含量與脂肪肝的相關(guān)性
    青山的起伏
    詩潮(2017年2期)2017-03-16 20:02:48
    患者皮下脂肪厚度與丙泊酚麻醉應(yīng)用劑量相關(guān)性的臨床觀察
    會陰體修復(fù)聯(lián)合陰道黏膜皺褶縫合陰道緊縮術(shù)的療效
    秋天
    One-piece coal mine mobile refuge chamber with safety structure and less sealing risk based on FEA
    日本推出新款皮下脂肪儀 檢測精度達毫米級
    家電科技(2014年5期)2014-04-16 03:11:28
    久久这里只有精品19| 亚洲国产欧美日韩在线播放| 精品酒店卫生间| 黑人欧美特级aaaaaa片| 成年动漫av网址| 免费不卡的大黄色大毛片视频在线观看| 久久久精品区二区三区| 欧美日韩成人在线一区二区| a级毛片黄视频| 久久精品国产亚洲av高清一级| 午夜福利影视在线免费观看| 精品国产一区二区三区久久久樱花| 日日爽夜夜爽网站| 日本黄色日本黄色录像| 国产成人av激情在线播放| 欧美人与善性xxx| 天堂8中文在线网| 亚洲,欧美,日韩| 校园人妻丝袜中文字幕| 亚洲精品美女久久久久99蜜臀 | 一级毛片我不卡| 精品酒店卫生间| 丰满少妇做爰视频| 夫妻性生交免费视频一级片| 精品少妇内射三级| 国产有黄有色有爽视频| 2021少妇久久久久久久久久久| 国产成人精品久久久久久| 80岁老熟妇乱子伦牲交| 久久鲁丝午夜福利片| 免费少妇av软件| 久久久精品区二区三区| 在线观看免费高清a一片| 一本色道久久久久久精品综合| 精品一品国产午夜福利视频| 制服人妻中文乱码| 久久鲁丝午夜福利片| 国语对白做爰xxxⅹ性视频网站| 满18在线观看网站| 韩国高清视频一区二区三区| 久久精品国产自在天天线| 亚洲伊人色综图| 亚洲国产欧美在线一区| 一级,二级,三级黄色视频| 日本午夜av视频| 色哟哟·www| 亚洲婷婷狠狠爱综合网| 啦啦啦啦在线视频资源| 亚洲图色成人| 亚洲视频免费观看视频| 熟女电影av网| 中文字幕人妻熟女乱码| 多毛熟女@视频| av国产久精品久网站免费入址| 国产免费视频播放在线视频| 国产精品嫩草影院av在线观看| 少妇熟女欧美另类| 免费黄网站久久成人精品| 一区二区日韩欧美中文字幕| 久久久久精品人妻al黑| 亚洲国产日韩一区二区| 精品国产露脸久久av麻豆| 国产精品偷伦视频观看了| 成人国语在线视频| 久久久国产一区二区| 高清不卡的av网站| 高清欧美精品videossex| 欧美亚洲日本最大视频资源| 国产在线一区二区三区精| 日本欧美视频一区| www.av在线官网国产| 久久99一区二区三区| 亚洲天堂av无毛| 一级毛片电影观看| 五月天丁香电影| 国产精品蜜桃在线观看| 精品少妇一区二区三区视频日本电影 | 精品少妇黑人巨大在线播放| 欧美日韩一区二区视频在线观看视频在线| 国产精品无大码| av网站在线播放免费| 日日爽夜夜爽网站| 麻豆乱淫一区二区| 在线观看人妻少妇| 国产午夜精品一二区理论片| 熟女电影av网| 男的添女的下面高潮视频| 国产精品国产三级专区第一集| 少妇的丰满在线观看| 又黄又粗又硬又大视频| 人妻 亚洲 视频| 丝袜人妻中文字幕| av在线播放精品| 男人舔女人的私密视频| 满18在线观看网站| 欧美日韩视频高清一区二区三区二| 另类精品久久| 老司机影院毛片| 日韩三级伦理在线观看| 欧美精品亚洲一区二区| 日本黄色日本黄色录像| 国产麻豆69| 亚洲综合精品二区| 国产精品国产av在线观看| 国产极品天堂在线| 国产综合精华液| 女人被躁到高潮嗷嗷叫费观| 色网站视频免费| 欧美日韩精品成人综合77777| 亚洲精品乱久久久久久| 国产 精品1| 国产伦理片在线播放av一区| 日韩一卡2卡3卡4卡2021年| 又黄又粗又硬又大视频| 国产伦理片在线播放av一区| 日日撸夜夜添| 少妇人妻精品综合一区二区| 国产又色又爽无遮挡免| 少妇人妻 视频| 又黄又粗又硬又大视频| 尾随美女入室| 精品一区二区三区四区五区乱码 | 亚洲国产av影院在线观看| 一区二区三区乱码不卡18| 欧美精品高潮呻吟av久久| 天天操日日干夜夜撸| 国产视频首页在线观看| 亚洲欧美日韩另类电影网站| 日韩熟女老妇一区二区性免费视频| 精品久久久久久电影网| 国产成人aa在线观看| 国产伦理片在线播放av一区| 亚洲一级一片aⅴ在线观看| 久久久久精品性色| 日韩在线高清观看一区二区三区| 国产麻豆69| 免费日韩欧美在线观看| 精品人妻熟女毛片av久久网站| 亚洲欧洲国产日韩| 又黄又粗又硬又大视频| 国产精品二区激情视频| 精品午夜福利在线看| 国产成人aa在线观看| 久久久久精品人妻al黑| 国产亚洲欧美精品永久| 99热全是精品| 国产av码专区亚洲av| 亚洲精品国产一区二区精华液| 99热全是精品| 在线天堂最新版资源| 午夜久久久在线观看| 韩国高清视频一区二区三区| 黄频高清免费视频| 欧美日韩视频高清一区二区三区二| 自线自在国产av| 成年美女黄网站色视频大全免费| 青青草视频在线视频观看| 久久女婷五月综合色啪小说| 中文字幕色久视频| 如何舔出高潮| 黄频高清免费视频| 黄色怎么调成土黄色| 黑人巨大精品欧美一区二区蜜桃| 亚洲av日韩在线播放| 制服人妻中文乱码| 午夜影院在线不卡| 久久精品国产自在天天线| 欧美 亚洲 国产 日韩一| kizo精华| 国产国语露脸激情在线看| 日韩免费高清中文字幕av| 秋霞伦理黄片| 又大又黄又爽视频免费| 少妇人妻精品综合一区二区| 一级毛片黄色毛片免费观看视频| 在线观看美女被高潮喷水网站| 久久精品国产a三级三级三级| 国产精品av久久久久免费| 国产精品三级大全| 久热久热在线精品观看| 老鸭窝网址在线观看| 午夜免费鲁丝| 日韩视频在线欧美| 搡女人真爽免费视频火全软件| 99久国产av精品国产电影| 18+在线观看网站| 欧美bdsm另类| 麻豆乱淫一区二区| 亚洲国产精品一区二区三区在线| 日日爽夜夜爽网站| 免费看不卡的av| 日韩精品有码人妻一区| 亚洲五月色婷婷综合| 国产精品.久久久| 亚洲综合色网址| 免费看av在线观看网站| 成人亚洲欧美一区二区av| 欧美国产精品一级二级三级| 老女人水多毛片| 亚洲精品久久久久久婷婷小说| 色播在线永久视频| 深夜精品福利| 各种免费的搞黄视频| 日韩中文字幕欧美一区二区 | 国产探花极品一区二区| 午夜久久久在线观看| 久久久久久久国产电影| 亚洲精品久久久久久婷婷小说| 国产免费一区二区三区四区乱码| 人妻一区二区av| 日韩大片免费观看网站| 久久精品久久久久久久性| 狠狠婷婷综合久久久久久88av| 成人影院久久| 国产淫语在线视频| 欧美bdsm另类| 色婷婷久久久亚洲欧美| 久久鲁丝午夜福利片| 国产亚洲欧美精品永久| 免费黄网站久久成人精品| 电影成人av| 丝袜美足系列| 99re6热这里在线精品视频| av免费在线看不卡| 欧美成人精品欧美一级黄| 成年美女黄网站色视频大全免费| 亚洲精品久久午夜乱码| 欧美变态另类bdsm刘玥| 一级毛片 在线播放| 欧美成人午夜精品| 久久久久精品人妻al黑| 久久久久人妻精品一区果冻| 免费黄频网站在线观看国产| 看非洲黑人一级黄片| 成年人午夜在线观看视频| 亚洲国产日韩一区二区| 2018国产大陆天天弄谢| 精品亚洲成国产av| 欧美精品一区二区免费开放| 欧美日韩精品网址| 成人亚洲精品一区在线观看| 综合色丁香网| 成人午夜精彩视频在线观看| 欧美精品国产亚洲| 男人舔女人的私密视频| 久久99蜜桃精品久久| 国产在视频线精品| 午夜福利在线免费观看网站| 久久ye,这里只有精品| 精品亚洲成国产av| 精品一区二区三区四区五区乱码 | 精品少妇久久久久久888优播| 久久狼人影院| 一级毛片 在线播放| 亚洲成人一二三区av| 国产女主播在线喷水免费视频网站| 男男h啪啪无遮挡| 国产成人午夜福利电影在线观看| 国产一区亚洲一区在线观看| 老熟女久久久| 欧美人与性动交α欧美精品济南到 | 在线观看人妻少妇| 国产精品秋霞免费鲁丝片| 黄网站色视频无遮挡免费观看| 免费观看av网站的网址| 日本vs欧美在线观看视频| 少妇猛男粗大的猛烈进出视频| 日韩一区二区视频免费看| 一区二区av电影网| 国产日韩欧美视频二区| 母亲3免费完整高清在线观看 | 不卡视频在线观看欧美| 国产视频首页在线观看| 日韩欧美一区视频在线观看| 一级片'在线观看视频| 男人舔女人的私密视频| 国产av精品麻豆| 欧美bdsm另类| 黑丝袜美女国产一区| 日韩不卡一区二区三区视频在线| 国产精品 欧美亚洲| 老司机亚洲免费影院| 伦理电影大哥的女人| 久久热在线av| 国产午夜精品一二区理论片| 亚洲欧洲日产国产| h视频一区二区三区| 日本vs欧美在线观看视频| 亚洲av综合色区一区| 亚洲av欧美aⅴ国产| 亚洲国产欧美网| 99国产精品免费福利视频| 一边亲一边摸免费视频| 免费少妇av软件| 日韩一卡2卡3卡4卡2021年| 丝袜在线中文字幕| 久久精品亚洲av国产电影网| 亚洲精品第二区| 高清黄色对白视频在线免费看| 毛片一级片免费看久久久久| 亚洲中文av在线| 在线观看国产h片| 精品视频人人做人人爽| 日韩av免费高清视频| 91成人精品电影| 亚洲欧美成人综合另类久久久| 天堂俺去俺来也www色官网| 男的添女的下面高潮视频| 婷婷色综合www| 黄色配什么色好看| 亚洲 欧美一区二区三区| 国产不卡av网站在线观看| 啦啦啦在线观看免费高清www| 久久精品国产亚洲av天美| 青草久久国产| 妹子高潮喷水视频| 一区二区三区精品91| 日韩 亚洲 欧美在线| 天堂中文最新版在线下载| 99九九在线精品视频| 久久鲁丝午夜福利片| 欧美日韩视频高清一区二区三区二| 国产av一区二区精品久久| av网站在线播放免费| 少妇精品久久久久久久| 成人国语在线视频| 午夜影院在线不卡| 啦啦啦在线观看免费高清www| 久久久久久免费高清国产稀缺| 精品酒店卫生间| 色视频在线一区二区三区| 国产成人精品一,二区| 亚洲精品日韩在线中文字幕| a级毛片黄视频| 制服丝袜香蕉在线| 99久国产av精品国产电影| 最近中文字幕2019免费版| 国产免费视频播放在线视频| 亚洲成色77777| 啦啦啦在线免费观看视频4| 国产伦理片在线播放av一区| 欧美日韩视频高清一区二区三区二| 国产精品不卡视频一区二区| 制服人妻中文乱码| 人人妻人人爽人人添夜夜欢视频| 色视频在线一区二区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 热99国产精品久久久久久7| 日本免费在线观看一区| 久久国内精品自在自线图片| 久久99一区二区三区| 日本欧美国产在线视频| 欧美精品一区二区大全| 日韩 亚洲 欧美在线| 美女大奶头黄色视频| 久久久久精品性色| 亚洲av中文av极速乱| 曰老女人黄片| 交换朋友夫妻互换小说| 亚洲欧美日韩另类电影网站| 在线观看免费日韩欧美大片| 精品国产超薄肉色丝袜足j| 这个男人来自地球电影免费观看 | 国产精品国产av在线观看| 激情五月婷婷亚洲| 亚洲精品一二三| 伦理电影免费视频| 国产精品二区激情视频| 啦啦啦视频在线资源免费观看| 欧美人与善性xxx| 午夜免费鲁丝| 性高湖久久久久久久久免费观看| 热re99久久国产66热| 成人免费观看视频高清| 色播在线永久视频| 免费女性裸体啪啪无遮挡网站| 99久久精品国产国产毛片| 丝袜美腿诱惑在线| 亚洲精品日本国产第一区| 纵有疾风起免费观看全集完整版| 丝袜脚勾引网站| 亚洲精品aⅴ在线观看| www日本在线高清视频| 国产免费福利视频在线观看| 午夜激情av网站| 亚洲图色成人| 最新中文字幕久久久久| 伊人久久大香线蕉亚洲五| 国产麻豆69| 新久久久久国产一级毛片| 一本色道久久久久久精品综合| 国产精品麻豆人妻色哟哟久久| 爱豆传媒免费全集在线观看| 久久狼人影院| 欧美另类一区| 亚洲精品一二三| 国产精品女同一区二区软件| 国产一区二区激情短视频 | 边亲边吃奶的免费视频| 狂野欧美激情性bbbbbb| 只有这里有精品99| 丝袜在线中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 极品少妇高潮喷水抽搐| 可以免费在线观看a视频的电影网站 | 久久av网站| 黄色怎么调成土黄色| 大香蕉久久网| 最近手机中文字幕大全| 亚洲一码二码三码区别大吗| 一边摸一边做爽爽视频免费| 日本色播在线视频| 99久久人妻综合| 99热网站在线观看| 亚洲三级黄色毛片| 激情五月婷婷亚洲| 不卡视频在线观看欧美| 99九九在线精品视频| 亚洲第一区二区三区不卡| 美女国产高潮福利片在线看| 一级,二级,三级黄色视频| 亚洲三区欧美一区| 国产一区二区三区av在线| 狠狠精品人妻久久久久久综合| 一区二区av电影网| 国产xxxxx性猛交| 亚洲内射少妇av| 18禁国产床啪视频网站| 观看美女的网站| 看十八女毛片水多多多| 日本欧美国产在线视频| freevideosex欧美| 久热久热在线精品观看| 七月丁香在线播放| 成年女人在线观看亚洲视频| 国产综合精华液| 女性生殖器流出的白浆| 一二三四中文在线观看免费高清| 夫妻午夜视频| 80岁老熟妇乱子伦牲交| 免费观看性生交大片5| 欧美最新免费一区二区三区| 男人爽女人下面视频在线观看| 视频在线观看一区二区三区| 女的被弄到高潮叫床怎么办| av免费在线看不卡| 少妇被粗大的猛进出69影院| 国产av国产精品国产| 精品国产一区二区三区久久久樱花| www日本在线高清视频| 国产黄色免费在线视频| 成年av动漫网址| 国产97色在线日韩免费| 考比视频在线观看| 天美传媒精品一区二区| 丝袜美腿诱惑在线| 亚洲精品第二区| 五月伊人婷婷丁香| 91成人精品电影| 一边亲一边摸免费视频| 亚洲在久久综合| 大片免费播放器 马上看| 亚洲国产精品一区二区三区在线| 天堂俺去俺来也www色官网| 精品国产乱码久久久久久小说| 伊人久久国产一区二区| 黑人猛操日本美女一级片| 精品人妻熟女毛片av久久网站| 热re99久久国产66热| 亚洲av日韩在线播放| 国产精品国产三级国产专区5o| 美女主播在线视频| 国产又爽黄色视频| 久久ye,这里只有精品| 国产在线免费精品| 女性被躁到高潮视频| 亚洲精品日韩在线中文字幕| 伊人久久大香线蕉亚洲五| 777米奇影视久久| 免费在线观看完整版高清| 免费观看性生交大片5| 欧美激情高清一区二区三区 | 宅男免费午夜| 久久午夜福利片| 纵有疾风起免费观看全集完整版| 国产无遮挡羞羞视频在线观看| 亚洲综合色惰| 80岁老熟妇乱子伦牲交| 国产免费视频播放在线视频| 边亲边吃奶的免费视频| 女的被弄到高潮叫床怎么办| 国产男人的电影天堂91| 不卡视频在线观看欧美| 亚洲四区av| 成人手机av| 精品亚洲乱码少妇综合久久| 男女高潮啪啪啪动态图| 亚洲国产日韩一区二区| 亚洲精品日本国产第一区| 国产一区二区三区av在线| 在线观看人妻少妇| 美女xxoo啪啪120秒动态图| 美女高潮到喷水免费观看| 免费在线观看视频国产中文字幕亚洲 | 亚洲av免费高清在线观看| 丝袜人妻中文字幕| 国产乱人偷精品视频| 国产亚洲午夜精品一区二区久久| 捣出白浆h1v1| 亚洲精品日本国产第一区| 亚洲熟女精品中文字幕| 久久国产精品男人的天堂亚洲| 国产一区二区 视频在线| 大陆偷拍与自拍| 最近2019中文字幕mv第一页| 日韩中字成人| 精品一品国产午夜福利视频| 国产1区2区3区精品| 边亲边吃奶的免费视频| 三上悠亚av全集在线观看| av网站在线播放免费| 捣出白浆h1v1| 亚洲一区中文字幕在线| 五月伊人婷婷丁香| 日韩精品免费视频一区二区三区| 免费观看无遮挡的男女| 电影成人av| 九九爱精品视频在线观看| 多毛熟女@视频| 久久久国产精品麻豆| 国产精品久久久久久精品电影小说| 国产熟女午夜一区二区三区| 亚洲国产看品久久| 看免费av毛片| 亚洲精品aⅴ在线观看| 丝袜在线中文字幕| 亚洲精品国产一区二区精华液| 黄色配什么色好看| 黄色视频在线播放观看不卡| 欧美bdsm另类| 欧美变态另类bdsm刘玥| 午夜91福利影院| 日韩av在线免费看完整版不卡| 久久精品国产亚洲av天美| 国产亚洲最大av| 国产成人精品在线电影| 国产日韩欧美视频二区| 国产精品亚洲av一区麻豆 | 欧美日韩视频精品一区| 国产色婷婷99| 天美传媒精品一区二区| 天天操日日干夜夜撸| 免费黄网站久久成人精品| www.熟女人妻精品国产| 美女脱内裤让男人舔精品视频| 性色av一级| 视频区图区小说| 国产又色又爽无遮挡免| 夜夜骑夜夜射夜夜干| 一区在线观看完整版| 欧美精品一区二区大全| 成人影院久久| 黄片小视频在线播放| 久久影院123| 国产在线视频一区二区| 天美传媒精品一区二区| 女性生殖器流出的白浆| 国语对白做爰xxxⅹ性视频网站| 国产免费福利视频在线观看| 狂野欧美激情性bbbbbb| 国产精品国产三级专区第一集| 婷婷成人精品国产| 波多野结衣一区麻豆| 久久久久久人人人人人| 婷婷色综合大香蕉| 在线亚洲精品国产二区图片欧美| 极品人妻少妇av视频| 秋霞伦理黄片| 欧美日韩国产mv在线观看视频| 青草久久国产| 久久精品熟女亚洲av麻豆精品| 在线观看免费高清a一片| freevideosex欧美| 午夜影院在线不卡| 久久国产亚洲av麻豆专区| 婷婷色麻豆天堂久久| videos熟女内射| 免费观看性生交大片5| 日韩一本色道免费dvd| 亚洲精品中文字幕在线视频| 亚洲美女视频黄频| 国产又爽黄色视频| 久久精品亚洲av国产电影网| 啦啦啦视频在线资源免费观看| 人人妻人人澡人人爽人人夜夜| 亚洲精品国产av成人精品| 成年美女黄网站色视频大全免费| 九色亚洲精品在线播放| 婷婷色综合大香蕉| 一个人免费看片子| 丰满迷人的少妇在线观看| 黑丝袜美女国产一区| 狂野欧美激情性bbbbbb| 美女主播在线视频| 欧美在线黄色| 国产日韩一区二区三区精品不卡| 亚洲国产日韩一区二区| 午夜福利影视在线免费观看| 1024视频免费在线观看| 婷婷成人精品国产| 最近最新中文字幕免费大全7| 热99久久久久精品小说推荐| 免费观看性生交大片5| 免费观看av网站的网址| 激情视频va一区二区三区|