• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      等深流沉積:物理海洋學(xué)、過(guò)程沉積學(xué)和石油地質(zhì)學(xué)

      2017-05-12 06:19:03SHANMUGAM
      石油勘探與開發(fā) 2017年2期
      關(guān)鍵詞:底流潮汐泥質(zhì)

      SHANMUGAM G

      (Department of Earth and Environmental Sciences, The University of Texas at Arlington, Arlington, TX 76019, USA)

      等深流沉積:物理海洋學(xué)、過(guò)程沉積學(xué)和石油地質(zhì)學(xué)

      SHANMUGAM G

      (Department of Earth and Environmental Sciences, The University of Texas at Arlington, Arlington, TX 76019, USA)

      主要闡述與等深流沉積以及其他底流沉積相關(guān)的基本原理。深海底流分為溫鹽引起的自轉(zhuǎn)型等深流、風(fēng)力驅(qū)動(dòng)底流、潮汐驅(qū)動(dòng)底流(大多在海底峽谷)、內(nèi)波/內(nèi)潮汐驅(qū)動(dòng)的斜壓流4種基本類型,均常見牽引構(gòu)造。等深流沉積是溫鹽引起的自轉(zhuǎn)型等深流沉積體,粒級(jí)可為泥級(jí)或細(xì)砂級(jí),含硅質(zhì)或鈣質(zhì)碎屑。在古代等深流與其他等深流的區(qū)分方面,目前尚無(wú)沉積學(xué)或地震學(xué)診斷標(biāo)準(zhǔn)。在巖心和露頭上,雙黏土層是識(shí)別深海潮汐沉積的可靠指標(biāo)。加的斯灣雖然是泥質(zhì)等深流沉積相模式的代表,但并無(wú)真正的等深流沉積,僅受與地中海流出水(MOW)有關(guān)的短暫等深流影響,并受內(nèi)波和內(nèi)潮汐、濁流、海嘯、颶風(fēng)、泥火山、煤成氣滲漏、沉積物供給、孔隙水排出和海底地形等其他復(fù)雜因素的影響。在加的斯灣綜合大洋鉆探(IODP)339項(xiàng)目巖心中沒有發(fā)現(xiàn)能用于解釋沉積過(guò)程的原生沉積構(gòu)造,因此等深流沉積相模式應(yīng)予廢棄。4類底流改造砂體均具備成為油氣儲(chǔ)集層的潛力。在佛羅里達(dá)海峽大巴哈馬淺灘(Great Bahama Bank)附近的等深流沉積,因?yàn)槠渲械哪噘|(zhì)成分被強(qiáng)烈的等深流從粒間原生孔隙中簸選出來(lái),最大測(cè)量孔隙度為40%,最大滲透率達(dá)9 881×10?3μm2?,F(xiàn)代等深流的實(shí)證數(shù)據(jù)也顯示其具有發(fā)育蓋層和烴源巖的潛力。因此,未來(lái)石油勘探與開發(fā)應(yīng)重點(diǎn)關(guān)注這些經(jīng)常被忽視的深海硅質(zhì)和鈣質(zhì)碎屑等深流沉積儲(chǔ)集層。圖15表2參162

      底流;等深流沉積儲(chǔ)集層;加的斯灣;佛羅里達(dá)海流;牽引構(gòu)造;過(guò)程沉積學(xué)

      引用:SHANMUGAM G. 等深流沉積: 物理海洋學(xué)、過(guò)程沉積學(xué)和石油地質(zhì)學(xué)[J]. 石油勘探與開發(fā), 2017, 44(2): 177-195.

      SHANMUGAM G. Contourites: Physical oceanography, process sedimentology, and petroleum geology[J]. Petroleum Exploration and Development, 2017, 44(2): 177-195.

      1 研究背景及思路

      一直以來(lái),深海底流及其沉積領(lǐng)域(見圖1)對(duì)物理海洋學(xué)和過(guò)程沉積學(xué)研究具有重大的貢獻(xiàn),過(guò)去42年中,Shanmugam對(duì)深海沉積各個(gè)方面(包括底流)進(jìn)行了研究探討。與順坡沉積過(guò)程不同,等深流平行于區(qū)域斜坡,砂體展布和儲(chǔ)集層發(fā)育均受其影響。因此,等深流沉積研究對(duì)認(rèn)識(shí)底流改造砂體[1]的經(jīng)濟(jì)潛力具有重要意義。總的來(lái)說(shuō),目前有關(guān)現(xiàn)代等深流沉積方面的研究主要是基于地震和海底觀測(cè)數(shù)據(jù)反映的大規(guī)模沉積特征及一些沉積物巖心數(shù)據(jù)等;而古代等深流沉積研究著作則基于豐富的露頭和常規(guī)巖心數(shù)據(jù)的小規(guī)模沉積特征[1-6],僅能得到有限的古海洋學(xué)和大規(guī)模的沉積特征信息。二者的差異性及與深水沉積過(guò)程和沉積相有關(guān)的其他問(wèn)題給古代等深流沉積等方面的解釋帶來(lái)了諸多挑戰(zhàn)。

      圖1 復(fù)雜深海沉積環(huán)境示意圖(水深大于200 m(陸棚坡折);據(jù)文獻(xiàn)[7],獲Elsevier許可)

      在進(jìn)行等深流沉積研究時(shí),首先要解決所有基礎(chǔ)問(wèn)題。為此,本文旨在幫助了解底流及其沉積物的物理海洋學(xué)和過(guò)程沉積學(xué)特征,重點(diǎn)關(guān)注等深流沉積。另外,提出實(shí)證數(shù)據(jù)證實(shí)等深流沉積在石油地質(zhì)中作為蓋層、烴源巖和儲(chǔ)集層的潛力。本文選取了全球21個(gè)現(xiàn)代和古代沉積體系的重點(diǎn)研究案例(見圖2、表1,A至U)。在探討底流改造砂巖的經(jīng)濟(jì)意義時(shí),重點(diǎn)考慮了全球范圍內(nèi)35個(gè)深水地層研究案例(見表1,①—),涵蓋32個(gè)油氣田,包括123口井,7 832 m常規(guī)巖心,巖心和露頭描述比例為1∶20到1∶50,所述的現(xiàn)代及古代深水體系包括海洋與湖泊環(huán)境,底流形成的牽引構(gòu)造常見于該35個(gè)案例研究(見圖2、表1)。

      本文的研究重點(diǎn)是深海沉積環(huán)境,但為保證闡述觀點(diǎn)的完整,也提及了受溫鹽流影響的一些陸架邊緣沉積環(huán)境(例如厄加勒斯角和日本釧路)。

      2 大洋環(huán)流和底流

      2.1 全球溫鹽環(huán)流

      全球海洋深層水團(tuán)是由溫度和鹽度的差異引起的。極地大陸架海域凍結(jié)形成海冰,由于結(jié)冰脫鹽作用和溫度下降造成海水鹽度相應(yīng)增長(zhǎng)。位于冰蓋正下方的冷鹽水密度增加(即溫鹽)導(dǎo)致水團(tuán)沿大陸斜坡沉降(見圖3)并擴(kuò)散到海洋的其他部分,被稱為溫鹽水團(tuán)。南極底層水(AABW)就是一個(gè)典型的深層水團(tuán)。南極底層水由Brennecke在南極地區(qū)威德爾海西北角首次證實(shí)。

      圖2 本次研究所用案例的位置示意圖

      表1 深海底流研究案例(A—U、1—13具體位置見圖2,作者描述的巖石總長(zhǎng)度為11 463 m)

      圖3 南大洋概念模型(據(jù)文獻(xiàn)[41],獲Elsevier許可)

      Stommel[48]首先提出溫鹽水團(tuán)全球循環(huán)和表層輕水向海洋深層重水團(tuán)垂向轉(zhuǎn)移的概念。Broecker[49]把風(fēng)力驅(qū)動(dòng)的表層循環(huán)與溫鹽驅(qū)動(dòng)的深層循環(huán)機(jī)制相結(jié)合,提出了全球海洋“傳送帶”的統(tǒng)一概念。水團(tuán)大規(guī)模水平運(yùn)移被稱為“溫鹽環(huán)流”(THC),在某些部位會(huì)出現(xiàn)下沉和上升?!皽佧}環(huán)流”涉及高緯度區(qū)制冷驅(qū)動(dòng)機(jī)制,是一個(gè)物理概念,且不可測(cè)量[50]。北大西洋的全球傳送帶系統(tǒng)源于格陵蘭島和冰島附近,此處由于海冰的產(chǎn)生而形成了低溫高鹽的北大西洋深層水團(tuán)(NADW)。北大西洋深層水團(tuán)下沉,沿北美和南美大陸斜坡往南向南極洲流動(dòng),然后圍繞南極大陸向西流動(dòng)(見圖 4)。根據(jù) Talley[51]的觀點(diǎn),全球翻轉(zhuǎn)環(huán)流(GOC)包括在南大洋的大型風(fēng)力驅(qū)動(dòng)上涌,以及印度洋和太平洋深層重要的內(nèi)部混合轉(zhuǎn)換(見圖5)。

      圖4 跨洋流動(dòng)經(jīng)向剖面示意圖(據(jù)文獻(xiàn)[55]修改)

      2.2 深海底流類型

      根據(jù)底流的起源,Southard和Stanley[52]在陸架坡折帶識(shí)別出 5種底流。這些底流源于:①溫鹽差異;②風(fēng)力驅(qū)動(dòng);③潮汐;④內(nèi)波;⑤表面波。此外,推測(cè)與海嘯相關(guān)的牽引流發(fā)生在深海水域[53-54]。與颶風(fēng)相關(guān)的底流普遍常見[56],但這些底流的形成機(jī)制還不十分清楚[56-57]。本文選擇了 4種主要的深水底流[58],即:①溫鹽引起的自轉(zhuǎn)型等深流;②風(fēng)力驅(qū)動(dòng)底流;③潮汐驅(qū)動(dòng)底流(大多在海底峽谷);④內(nèi)波/內(nèi)潮汐驅(qū)動(dòng)的斜壓流。研究表明,這 4種類型的底流均產(chǎn)生了類似的底形和牽引構(gòu)造(見圖 6)[58]。鑒于沉積結(jié)構(gòu)中的這種相似性,需要更好地了解這 4種底流的沉積過(guò)程和沉積機(jī)理,以便制定相應(yīng)的區(qū)分標(biāo)準(zhǔn)?;趯?duì)沉積物源的了解,需要指出的是,4種底流都是起砂巖改造作用,通常不會(huì)將大量粗粒碎屑沉積物(如礫石、粗砂和中砂)從源巖區(qū)搬運(yùn)到沉積區(qū)。

      圖5 全球翻轉(zhuǎn)環(huán)流(GOC)圖(本文增加了加的斯灣的位置,該地點(diǎn)是等深流沉積學(xué)模式的代表。據(jù)文獻(xiàn)[51]修改,獲海洋學(xué)協(xié)會(huì)許可)

      圖6 牽引構(gòu)造特征(作為所有類型底流的再改造作用的指示。每種特征都隨機(jī)發(fā)生,不應(yīng)該被視作垂直相模型的一部分。據(jù)文獻(xiàn)[1],獲美國(guó)石油地質(zhì)學(xué)家協(xié)會(huì)(AAPG)許可)

      2.2.1 溫鹽引起的自轉(zhuǎn)型等深流

      溫鹽驅(qū)動(dòng)底流在海底對(duì)沉積物進(jìn)行簸選、改造和沉積,并持續(xù)一段時(shí)間,因其沿等深線流動(dòng)通常被稱為等深流[8]。表2列出了全球海洋不同地區(qū)底流的最大流速。Hollister和Heezen[59]指出,在超過(guò)100 cm/s的極高底流速下,在荒蕪的海底可見砂巖和礫石的殘留口袋(relict pocket)。根據(jù)Bulfinch和Ledbetter[60]的觀點(diǎn),西部邊界深潛流(DWBUC)沿著北美大陸斜坡向南流動(dòng),上升1 000~5 000 m。西部邊界深潛流(DWBUC)有一個(gè) 300 km寬的高速流動(dòng)帶,最大測(cè)量流速 73 cm/s,簸選除去了細(xì)砂和極細(xì)砂,同時(shí)沉積了中粗粒砂。牽引構(gòu)造在等深流沉積中常見(見圖7)[61-62]。

      2.2.2 風(fēng)力驅(qū)動(dòng)底流

      風(fēng)力驅(qū)動(dòng)底流是由海面風(fēng)應(yīng)力(即大氣外力作用)形成的,它可以使底流垂向上一直延伸至數(shù)千米的海底,這在全球海洋領(lǐng)域均有據(jù)可查。例如,起源于弗羅里角的灣流是一支強(qiáng)勁、溫暖、流速很快的大西洋海流,在穿越大西洋之前沿美國(guó)和紐芬蘭島東海岸流動(dòng)。灣流向西逐漸增強(qiáng),很大程度上是由風(fēng)應(yīng)力驅(qū)動(dòng)。在墨西哥灣東部的Loop海流是風(fēng)力驅(qū)動(dòng)表面流[63],這些流體可以改造海底的細(xì)砂巖。目前在墨西哥灣水深3 091 m的海底砂中形成的流水波痕,是風(fēng)力驅(qū)動(dòng)底流活動(dòng)的最有力的證據(jù)[63]。另一個(gè)風(fēng)力驅(qū)動(dòng)底流的例子是向東流動(dòng)的南極繞極流(ACC),影響了Falkland海槽西斜坡和底部的沉積物,在這里風(fēng)力驅(qū)動(dòng)底流的軸部受地形限制[64]。這種深水流(低于3 000 m)在海槽底部產(chǎn)生了一個(gè)對(duì)稱的沉積物漂積體,在坡腳的非沉積邊緣顯示出更高的流速。

      Loop海流的沉積物在墨西哥灣上新統(tǒng)—更新統(tǒng)尤英淺灘(Ewing Bank)826區(qū)塊巖心中得到解釋。尤英淺灘 826區(qū)塊位于墨西哥灣北部,距路易斯安那海岸近100 km,該油田產(chǎn)油儲(chǔ)集層為底流改造砂巖[1],其與鄰近區(qū)域的巖心均可見牽引構(gòu)造(見圖8),如水平層理、低角度交錯(cuò)層理、波狀交錯(cuò)層理、脈狀層理、近岸泥質(zhì)沉積、被侵蝕和保存的波痕以及逆遞變層理。

      2.2.3 潮汐驅(qū)動(dòng)底流

      為研究潮汐引起的底流,Shepard等在全球25個(gè)海底峽谷用懸浮海流計(jì)測(cè)量了水深46~4 200 m的流速,通常在海底以上 3 m處。Keller和 Shepard[65]對(duì)Hydrographer峽谷的研究發(fā)現(xiàn)底流流速達(dá)70~75 cm/s時(shí)甚至足以搬運(yùn)粗砂巖。

      表2 世界海洋不同地區(qū)底流的最大流速

      圖7 等深流沉積構(gòu)造

      圖8 牽引構(gòu)造

      尼日利亞近海和孟加拉灣的深水砂巖儲(chǔ)集層發(fā)育雙黏土層和平行層理。其中,雙黏土層是淺水[98-99]和深水[4,6-7,100-101]環(huán)境下的潮汐底流沉積物的特有標(biāo)志(見圖9);而平行層理不具備特有性,有時(shí)會(huì)被錯(cuò)認(rèn)為是Bouma序列Tb段,使儲(chǔ)集層被誤解為濁積巖[27,31]。

      圖9 潮汐底流沉積的雙黏土層結(jié)構(gòu)

      2.2.4 內(nèi)波/內(nèi)潮汐驅(qū)動(dòng)的斜壓流

      內(nèi)波是沿兩個(gè)不同密度水層(即密度躍層)界面振蕩的重力波:在正壓(表面)波中整個(gè)水柱中的流體團(tuán)沿同一方向、以同一速度一起移動(dòng),而在斜壓(內(nèi)部)波中,淺層和深層水柱中的流體團(tuán)則沿不同方向、以不同速度移動(dòng)[102]。Shanmugam[20]對(duì)與內(nèi)波和內(nèi)潮汐相關(guān)的斜壓流進(jìn)行沉積學(xué)和海洋學(xué)研究,內(nèi)波是沿海洋密度躍層振蕩的重力波(見圖 10a)。在一個(gè)分層海洋環(huán)境中,內(nèi)潮汐普遍產(chǎn)生于陡峭的海底地形之上,如陸架坡折、海山等。Brandt等[103]研究數(shù)據(jù)顯示存在3種大振幅的內(nèi)孤立波。脈沖型的內(nèi)孤立波擾動(dòng)可朝北—北西方向直立傳播至巴西陸架。這些內(nèi)波的特點(diǎn)是最大水平速度約 200 cm/s、最大垂直速度約20 cm/s。

      在日本的駿河海槽,底流的半日潮汐振動(dòng)明顯,在水深1 730 m處波動(dòng)總幅度達(dá)50 cm/s。這些底流均與內(nèi)潮汐有關(guān)[104]。在臺(tái)灣西南海域高平海底峽谷,測(cè)得的與內(nèi)潮汐相關(guān)的流速最大值超過(guò)100 cm/s[105],在這樣的流速下,甚至礫級(jí)顆粒都可以被斜壓潮汐底流剝蝕、搬運(yùn)和再沉積。事實(shí)上,Lonsdale等[36]在深度1 630~1 632 m的中太平洋平頂海山的平坦頂部記錄了用側(cè)視聲納和照片觀察到的不對(duì)稱沙丘和不對(duì)稱波痕(見圖10b)。

      已發(fā)表的大量?jī)?nèi)波和內(nèi)潮汐的研究成果[106]缺乏有關(guān)斜壓流沉積學(xué)方面的細(xì)節(jié)研究[20],這方面認(rèn)知的缺失阻礙了從古代地層記錄的等深流沉積中識(shí)別斜壓巖(即斜壓流沉積物)。

      2.3 沉積學(xué)中的海洋學(xué)問(wèn)題

      2.3.1 復(fù)雜外力作用

      大洋溫鹽環(huán)流(THC)受風(fēng)應(yīng)力、對(duì)流和(潮汐)渾流/湍流的聯(lián)合驅(qū)動(dòng)[12,49,51]。全球海洋環(huán)流模式受兩個(gè)獨(dú)立水團(tuán)的溫鹽驅(qū)動(dòng),即北大西洋深層水團(tuán)(NADW)或“大洋傳送帶”[49]和南極底層水團(tuán)(AABW)[107]。全球海洋環(huán)流起源于南大洋(南極洲),是以下幾種作用的累積結(jié)果:①風(fēng)力驅(qū)動(dòng)(隔熱)上升;②表面浮力通量;③冷卻和脫鹽(即溫鹽)形成深水。大氣外力作用(即表面風(fēng)應(yīng)力)和溫鹽作用(即底水形成)是誘發(fā)和維持全球海洋環(huán)流的必要條件[51]。例如,南極繞極流(ACC)被廣泛認(rèn)為主要是風(fēng)力驅(qū)動(dòng)底流。由于絕大多數(shù)水團(tuán)的復(fù)雜外力作用,將一個(gè)古洋流層歸類為常規(guī)等深流層是不合適的,這一做法過(guò)于強(qiáng)調(diào)溫鹽外力作用,且完全忽略了大氣外力的作用。

      2.3.2 連續(xù)性原理

      Rebesco等[108]的研究中使用了三角圖,三角圖的3個(gè)端元分別是等深流沉積、濁流沉積和海底錳結(jié)核,該三角圖是基于這 3種基本深海沉積類型的連續(xù)統(tǒng)一原則建立的,然而濁流和等深流之間的過(guò)程很難連續(xù)。根據(jù)定義,“連續(xù)”的概念是指從一個(gè)端元逐步過(guò)渡到另一個(gè)端元,不發(fā)生突變。而順坡濁流和沿坡等深流幾乎成直角,因此連續(xù)原則是不成立的,即使兩者之間存在相互作用,這種相互作用也轉(zhuǎn)瞬即逝,沒有沉積學(xué)意義。

      圖10 海洋學(xué)和沉積學(xué)概念框架

      2.3.3 等深流沉積與等深巖丘

      基于大西洋美國(guó)東部附近陸隆研究成果,等深流沉積被定義為深海環(huán)境中溫鹽驅(qū)動(dòng)的自轉(zhuǎn)型等深流沉積體(見圖11)。

      圖11 4種類型底流及其沉積相(據(jù)文獻(xiàn)[109],獲Elsevier許可)

      “等深巖丘”在地質(zhì)文獻(xiàn)中比較常見[110]。這些沖積物是沿等深線流動(dòng)的產(chǎn)物,因此可以歸為等深流沉積。然而這些沖積物絕大多數(shù)是風(fēng)力驅(qū)動(dòng)底流的產(chǎn)物,而不是溫鹽驅(qū)動(dòng)底流,因此不是真正的“等深流沉積”,換句話說(shuō),等深流沉積可以由不止一種類型的底流產(chǎn)生。目前沒有可以區(qū)分“完全的風(fēng)力驅(qū)動(dòng)底流沉積物”與“溫鹽驅(qū)動(dòng)底流沉積物”的沉積學(xué)標(biāo)準(zhǔn),且在古代地層記錄中,有關(guān)底流作用機(jī)制的信息很少,“等深流沉積”概念的應(yīng)用須較謹(jǐn)慎,可將成因性術(shù)語(yǔ)“等深巖丘”用非成因性術(shù)語(yǔ)“沉積物漂積體”代替。

      2.3.4 等深流沉積間斷

      在深海環(huán)境中,底流導(dǎo)致數(shù)千平方千米海底區(qū)域剝蝕[111-112]。在 Haq等[113]的全球年代地層表中,海平面升降形成4個(gè)超級(jí)旋回(Ⅱ級(jí))和23個(gè)旋回(Ⅲ級(jí))。Viana[114]以巴西附近的 Santos漂積體為例,指出在地震剖面上以等深流沉積為“層序邊界”存在曲解區(qū)域不整合面的潛在風(fēng)險(xiǎn)[115],顯然底流引起的剝蝕面(不整合)和海平面升降沒有直接的相關(guān)性。產(chǎn)生該問(wèn)題的原因在于沒有客觀的標(biāo)準(zhǔn)來(lái)區(qū)分地震剖面上侵蝕面是由深海底流造成的還是由其他作用造成的。

      2.3.5 侵蝕特征成因

      “等深流沉積體系”定義中的侵蝕特征在概念上是混亂的,不利于區(qū)分侵蝕和沉積。一個(gè)解決辦法是將侵蝕和沉積都簡(jiǎn)單歸為“等深流體系”。另外,可以采用兩種不同的體系,即等深流沉積體系和等深流侵蝕體系。

      侵蝕作用本身不會(huì)在巖石記錄中留下任何有助于確定侵蝕過(guò)程類型的線索。此外,現(xiàn)代的未填充海底水道和峽谷也證實(shí),過(guò)去形成侵蝕特征的過(guò)程與其后的充填過(guò)程是不一樣的。因此,有必要建立相應(yīng)的標(biāo)準(zhǔn)來(lái)區(qū)分等深流形成的侵蝕和其他過(guò)程造成的侵蝕,如濁流。

      2.3.6 加的斯灣模式

      Hernández-Molina等[67]稱加的斯灣為世界首屈一指的等深流實(shí)驗(yàn)室。在加的斯灣,雖然地中海流出水(MOW)是一種溫鹽驅(qū)動(dòng)的水團(tuán)[116],但并非真正的等深流。加的斯灣的實(shí)證數(shù)據(jù)也證實(shí)了地中海流出水的轉(zhuǎn)變。從經(jīng)直布羅陀海峽進(jìn)入加的斯灣開始,到從圣文森特角退出加的斯灣進(jìn)入大西洋,地中海流出水經(jīng)歷了 3個(gè)演化階段,換句話說(shuō),真正的等深流不會(huì)在加的斯灣流動(dòng)(見圖12)。此外,加的斯灣是研究真正的等深流沉積和侵蝕的一個(gè)高度復(fù)雜的海洋學(xué)位置,因?yàn)樵摵车纳詈3练e物受以下因素控制(見圖12):短暫的地中海流出水[117]、內(nèi)波和內(nèi)潮汐[118-119]、沉積物重力流[67]、中上層和半深海沉積、海嘯[120]、熱帶風(fēng)暴[120]、泥火山[121]、煤成氣滲漏[122]、沉積物供給[76]、孔隙水排出和液壓[123]、水道和海嶺及Camarinal底梁[124]。

      圖12 加的斯灣位置和地中海流出水復(fù)雜流動(dòng)示意圖(涉及3個(gè)演化階段:①海峽流階段;②混合和擴(kuò)展(即過(guò)渡)階段;③真正的等深流階段[117]。據(jù)文獻(xiàn)[109],獲Elsevier許可)

      針對(duì)加的斯灣這樣的復(fù)雜地區(qū),需要了解相互關(guān)聯(lián)的所有過(guò)程,因?yàn)椤吧钏边^(guò)程與海洋波浪“淺水”過(guò)程緊密相關(guān),如內(nèi)波和海嘯。因此,過(guò)去對(duì)“深水”過(guò)程(如等深流)進(jìn)行獨(dú)立分析的方法失去了意義。21世紀(jì),需要解決整體過(guò)程沉積學(xué)的嚴(yán)謹(jǐn)性問(wèn)題。

      2.3.7 深海平原等深流沉積

      通常,“深海平原”指的是海底平坦的區(qū)域,通常在陸隆上,坡度小于1∶1 000[125],在美國(guó)大西洋邊緣的4 000~6 500 m處,代表了海底最深和平坦的部分。一個(gè)更常用的術(shù)語(yǔ)“盆地平原”通常用于古代巖石研究中[126]。Hernández-Molina等[67]認(rèn)為深海平原或盆地平原包括多達(dá)10個(gè)不同的形態(tài)要素:陸隆、深海平原、大洋中隆、遠(yuǎn)端扇和濁積水道、沉積物漂積體、深海丘陵、海山、斷裂轉(zhuǎn)換帶、洋中水道和海溝。

      深海平原的重新分類忽略了基于海底深度位置對(duì)大陸架、斜坡和隆起的基本分類原則,不僅沒必要而且容易造成混亂。這種分類方法違背了“等深流”的基本概念,等深流是沿著大陸坡和隆起等深線流動(dòng)的底流,而不是在平坦的深海平原上的底流。

      3 過(guò)程沉積學(xué)及相關(guān)問(wèn)題

      3.1 過(guò)程沉積學(xué)

      Sanders[127]發(fā)表過(guò)一篇過(guò)程沉積學(xué)的開創(chuàng)性論文“原生沉積構(gòu)造揭示的流體力學(xué)概念”,Brush提出基礎(chǔ)物理、土壤力學(xué)和流體力學(xué)的綜合知識(shí)對(duì)解釋各種流體-沉積-重力流的力學(xué)過(guò)程至關(guān)重要[128],作者認(rèn)為原生沉積構(gòu)造持續(xù)觀測(cè)與過(guò)程解釋的一致性是基本原則。

      3.2 等深流沉積相模式

      3.2.1 5個(gè)內(nèi)部分段

      Faugères等[129]于1984年建立了無(wú)內(nèi)部分段的原始相模型。Stow和Faugères[14]用5個(gè)內(nèi)部分段(C1,C2,C3,C4,C5)修改了原模型(見圖13a),類似于鮑馬濁積模型。在最新版本中,F(xiàn)augères和Mulder[130]又恢復(fù)到1984年的模型,即沒有5個(gè)內(nèi)部分段。為了便于相關(guān)研究者的理解,需要在文獻(xiàn)中解釋為什么同一批研究人員所作的相模型會(huì)出現(xiàn)反復(fù)變化。如果能在古代巖石記錄中識(shí)別出來(lái),就可以揭示這 5個(gè)分段其實(shí)與深水環(huán)境中溫鹽驅(qū)動(dòng)的自轉(zhuǎn)型等深流沉積物無(wú)關(guān)。

      3.2.2 流速

      垂直相模型包含一個(gè)由底向上變粗的沉積序列,緊跟著一個(gè)向上變細(xì)的序列(見圖13),歸因于等深流流速和能量的連續(xù)增加和降低[129]。然而,Mulder等[17]指出該垂直序列形成的原因要比簡(jiǎn)單的速度變化復(fù)雜得多,等深流沉積序列不僅與底流流速和流體能量變化相關(guān),也可能與較粗粒的陸源碎屑供給有關(guān),這些物源或由狹窄的等深流水道側(cè)翼固結(jié)的泥(泥屑)受侵蝕形成,或由河流攜帶的沉積物供給(石英顆粒)和大陸架、上部斜坡的順坡塊體搬運(yùn)造成。經(jīng)典的等深流沉積相組合可能并非受流速單獨(dú)控制,而是各種沉積歷史的產(chǎn)物。

      3.2.3 內(nèi)部間斷

      Faugères等[129]的原始沉積相模式中不包括內(nèi)部間斷(此模式不包含圖13a中的5個(gè)內(nèi)部分段)。然而Stow 和 Faugères[14]在其修改的等深流沉積相模型中(見圖13,包含圖13a中的 5個(gè)內(nèi)部分段),C3段包含內(nèi)部間斷(見圖13b中水平紅箭頭)。注意該模式的最新版本[130]既不包括5個(gè)內(nèi)部分段,在C3段中也不包含沉積間斷(紅色箭頭)。

      圖13 等深流沉積相模型(據(jù)文獻(xiàn)[14,129]修改)

      Wetzel等[131]指出,當(dāng)?shù)琢髯柚沽碎L(zhǎng)時(shí)間跨度的沉積和(或)侵蝕沉積物,水下沉積間斷形成,表現(xiàn)為半固結(jié)/硬質(zhì)沉積物/穩(wěn)定銜接部分脫水的泥質(zhì)基質(zhì)。因間斷出現(xiàn)在C3段,其上和其下必定代表了兩種不同的沉積事件。通常,具成因意義的巖相模型只適用于獨(dú)立的沉積事件,內(nèi)部沒有間斷(例如濁積巖相模型)[61]。事實(shí)上,瓦爾特定律[132]對(duì)于含有內(nèi)部間斷的層序沒有意義,因?yàn)殚g斷可以代表缺失沉積記錄的相當(dāng)長(zhǎng)的一段時(shí)間(長(zhǎng)達(dá)數(shù)百萬(wàn)年)[100]。

      3.2.4 生物擾動(dòng)作用

      等深流沉積相模式的一個(gè)特征就是生物擾動(dòng)(見圖13b),對(duì)此存在一定爭(zhēng)論[133]。等深流沉積和生物擾動(dòng)之間的聯(lián)系是基于如下觀點(diǎn):活躍的等深流將增加水團(tuán)的氧氣濃度[134],從而增加底棲生物的活性。通常來(lái)說(shuō),相模型(例如,濁積巖相模型)[61]基于基本物理沉積結(jié)構(gòu)的垂向分布建立。這是因?yàn)槲锢斫Y(jié)構(gòu)可以用來(lái)解釋巖石記錄中的特定物理過(guò)程,但生物擾動(dòng)不能作為單個(gè)沉積過(guò)程沉積物的解釋標(biāo)準(zhǔn)(即等深流)。生物擾動(dòng)的標(biāo)準(zhǔn)是有缺陷的,因?yàn)楣糯钏疂岱e巖(例如,加利福尼亞圣地亞哥附近上白堊統(tǒng)Loma組)中也廣泛存在生物擾動(dòng),甚至含有痕跡化石Ophiomorpha[135]。且?guī)r石記錄中發(fā)現(xiàn)了等深流沉積不發(fā)育生物擾動(dòng)的實(shí)例[136]。在描述西南太平洋的Canterbury漂積體時(shí),Carter[33]提出“生物擾動(dòng)作用適度,幾乎不破壞大的沉積背景,且在地層微掃描成像中顯示出厘米級(jí)泥質(zhì)和砂質(zhì)淤泥的交替”。總之,強(qiáng)調(diào)生物擾動(dòng)的泥質(zhì)等深流相模型違背了過(guò)程沉積學(xué)的首要原則,即用基礎(chǔ)物理沉積結(jié)構(gòu)解釋沉積過(guò)程的流體力學(xué)作用[127]。因此,該等深流相模式應(yīng)予廢棄。

      3.2.5 多元交互過(guò)程

      位于歐洲大陸的加的斯灣就物理海洋學(xué)而言,背景極其復(fù)雜,包括多個(gè)過(guò)程(如地中海流出水、內(nèi)波和內(nèi)潮汐)和海底地形(如水道、山脊和底梁)。深水沉積過(guò)程隨時(shí)間和空間變化。此外,深海洋流中豐富的氧氣涌入造成廣泛的生物擾動(dòng),掩蓋了巖石物理結(jié)構(gòu)。從解釋等深流古代沉積的實(shí)用角度來(lái)看,當(dāng)?shù)壬盍鞒练e在陸地上時(shí)是無(wú)法推斷古代海底等深線的??傊瑢?duì)等深流沉積相模型的全球適用性是存疑的。

      3.2.6 粒徑數(shù)據(jù)

      許多沉積學(xué)研究都是基于沉積學(xué)日志中繪制的詳細(xì)垂向粒度變化記錄,鑒于其重要性,當(dāng)今學(xué)者甚至在沉積學(xué)日志中給粒徑分配了最大空間(即豎列延伸寬度分別代表粉砂、極細(xì)砂巖、中砂巖等)。而在Stow 和 Faugères[14,137]發(fā)表的文章中未涉及這些能夠描述砂質(zhì)等深流沉積垂向粒徑變化和其他沉積學(xué)細(xì)節(jié)的沉積學(xué)記錄。

      3.2.7 綜合大洋鉆探339 結(jié)果

      在總結(jié)綜合大洋鉆探(IODP)339考察項(xiàng)目的巖心成果時(shí),Stow等[138]提出了以下特征:泥質(zhì)等深流沉積物均勻、巖心主要呈灰綠色、一般缺乏原生沉積構(gòu)造、沉積物生物擾動(dòng)斑塊發(fā)生同質(zhì)化、生物碎屑組分混合均勻、沉積相具周期性、粒度雙向漸變。

      大洋綜合鉆探項(xiàng)目 339的巖心中明顯可見兩個(gè)基本問(wèn)題。首先,原生沉積構(gòu)造的缺失使它無(wú)法解釋沉積過(guò)程[127],其次,薄層雙漸變泥質(zhì)單元在古老地層記錄的壓實(shí)泥巖段不可識(shí)別。

      3.3 牽引構(gòu)造

      如前文所述,波紋和沙丘與內(nèi)潮汐流相關(guān)[78],且牽引構(gòu)造還與海嘯和颶風(fēng)相關(guān)的底流有關(guān)[57],即牽引構(gòu)造和河床與所有類型的底流均有關(guān)聯(lián)?,F(xiàn)在面臨的挑戰(zhàn)是如何在古代地層記錄中將等深流形成的牽引構(gòu)造(如波紋層理或平行層理)與其他類型底流形成的牽引構(gòu)造進(jìn)行區(qū)分。

      3.4 頁(yè)巖碎屑

      在討論泥質(zhì)和砂質(zhì)等深流沉積中頁(yè)巖碎屑的來(lái)源時(shí),Stow和Faugères[14]聲稱,“頁(yè)巖碎屑粒徑大小一般是毫米級(jí),長(zhǎng)軸近似平行于層理面,也近似平行于流動(dòng)方向”。換言之,該碎屑物(碎屑長(zhǎng)軸平行于層理面)可以解釋為層狀碎屑流的證據(jù)[139-141]。但是沒有可靠的、可用于解釋古代砂質(zhì)等深流沉積記錄的沉積學(xué)標(biāo)準(zhǔn)。

      3.5 底形-速度矩陣

      Rooij[142]利用 Stow 等人[143]的底形-速度矩陣討論與深水底流作用過(guò)程和產(chǎn)物相關(guān)的問(wèn)題。底形-速度矩陣存在的問(wèn)題如下:①矩陣的基本假設(shè)是所有4種類型的深水底流流體動(dòng)力學(xué)相同[143],如前所述,該假設(shè)并不成立;②矩陣建立缺乏必要的實(shí)證數(shù)據(jù)[143];③該矩陣并非基于實(shí)驗(yàn)提出,“數(shù)據(jù)”不可驗(yàn)證,亦是不可重復(fù)的;④沒有考慮底流的持續(xù)時(shí)間和沉積物的有效性。因此,用底形-速度矩陣預(yù)測(cè)現(xiàn)代海底流速是不可靠的。

      3.6 地震剖面、聲納圖像和海底照片

      Nelson等[144]基于地震資料解釋了加的斯灣的砂質(zhì)等深流沉積,但缺少關(guān)鍵沉積學(xué)數(shù)據(jù)。在地震剖面上可見波形發(fā)育,解釋為在葡萄牙西南由地中海流出水形成的大型沉積物波[145]。然而地震波的幾何形態(tài)也與內(nèi)孤立波形成的沙丘有關(guān)[146]。此外,缺少在地震剖面上區(qū)分等深流形成的波形和潮汐流或濁流形成的波形的客觀標(biāo)準(zhǔn)。在綜述等深流沉積體系的地震響應(yīng)特征時(shí),Nielsen等[145]認(rèn)為“……基于沉積序列的物理參數(shù)變化形成的反射特征、地震相和沉積構(gòu)造沒有明確的相關(guān)性。例如,具有平行反射特征的地震相,并不一定對(duì)應(yīng)細(xì)粒平行條帶或沉積物分層”。

      在加的斯灣法魯漂積體的研究中,Alonso等[147]用兩個(gè)觀測(cè)點(diǎn)U1386和U1387的巖心數(shù)據(jù)標(biāo)定了地震剖面。類似于挪威邊緣等深流沉積[148],加的斯灣的泥質(zhì)等深流沉積也顯示平行反射。問(wèn)題是泥質(zhì)等深流沉積的巖心段沒有顯示任何的原生沉積構(gòu)造,而它們是過(guò)程沉積學(xué)的基礎(chǔ),因此在地震剖面或者沉積物巖心上已經(jīng)確定的古代沉積記錄中不能識(shí)別這些泥質(zhì)等深流沉積,顯然用地震相解釋泥質(zhì)和砂質(zhì)底流沉積體存在基本問(wèn)題。底流改造砂體即使是直接觀察巖石都很難辨認(rèn),因?yàn)?類底流形成的沉積體中均存在牽引構(gòu)造。

      海底波痕和其他底形影像資料對(duì)推斷底流方向是有用的,但不能用于推斷底流類型(即水動(dòng)力特征)。在深海,相同的波紋類型可以由多種類型的底流形成。問(wèn)題是,有沒有客觀標(biāo)準(zhǔn)用來(lái)區(qū)分與等深流相關(guān)的波紋和與風(fēng)力驅(qū)動(dòng)底流相關(guān)的波紋。在現(xiàn)代加的斯灣,地中海流出水和內(nèi)潮汐都很活躍,也無(wú)法將與地中海流出水相關(guān)的底流形成的波紋類型和斜壓流形成的波紋區(qū)分開。

      濁流和碎屑流可以分別形成正粒序和反粒序。但是這些內(nèi)部特征無(wú)法在海底表面照片中找到。研究?jī)?nèi)部沉積構(gòu)造最好還是利用巖心和露頭,這是解釋沉積過(guò)程流動(dòng)機(jī)制的關(guān)鍵[13]。

      3.7 沉積物源

      通常,原生沉積構(gòu)造和相應(yīng)的流向可用來(lái)識(shí)別沉積物源[149-151]。然而,與4種類型的底流有關(guān)的復(fù)雜流向?qū)ν茢嘀饕练e物源構(gòu)成巨大的挑戰(zhàn)。例如:等深流循環(huán)模式是全球性的,平行于區(qū)域斜坡走向流動(dòng);深海潮汐流是雙向性質(zhì)的,沿海底峽谷上下流動(dòng);斜壓流相對(duì)于沉積母巖,傳播方向變化非常大。因?yàn)榈琢鲊?yán)格說(shuō)來(lái)是一種改造媒介,其沉積構(gòu)造并不反映主要沉積物源的真正方向,因此利用流水波紋和交錯(cuò)層理推斷物源方向的常規(guī)方法(即沉積物源)在處理深海底流和沉積物時(shí)是靠不住的。解釋沉積物源的另一個(gè)重要標(biāo)準(zhǔn)是碎屑組分[151-152]。然而底流改造作用可能不改變來(lái)自主要物源沉積物的原始組分。

      4 石油地質(zhì)學(xué)

      4.1 潛在封蓋層

      在阿根廷盆地,南極底層水(AABW)底棲生物循環(huán)形成的泥質(zhì)沉積物波的規(guī)模很大,面積為1.0×106km2,振幅平均為26 m,波長(zhǎng)3~7 km[11]。這些泥質(zhì)等深流漂積體可以形成區(qū)域厚層沉積,可能有圈閉油氣的潛力。

      4.2 潛在烴源巖

      已公開的泥質(zhì)等深流沉積的總有機(jī)碳(TOC)數(shù)據(jù)很少。百慕大隆起附近一個(gè)受灣流影響的泥質(zhì)等深流沉積樣品顯示TOC值為0.35%,而大安地列斯群島外脊的泥質(zhì)碎屑等深流沉積TOC值高達(dá)2%[153]。活躍的等深流會(huì)增加水體的含氧濃度和底棲生物的活性[134]。含氧條件不利于等深流沉積中有機(jī)質(zhì)的保存,而Yu等[25]在南中國(guó)海北部利用模擬海底反射討論了等深流沉積中的天然氣水合物聚集(見圖2,位置 L),所以陸源有機(jī)質(zhì)在生油中的重要性[154]及其在深海成烴中的貢獻(xiàn)[27]不應(yīng)被忽視。

      4.3 潛在儲(chǔ)集層

      第 1次將等深流沉積的概念應(yīng)用于主要的油氣儲(chǔ)集層可能是在北海的Frigg氣田[155],研究人員將25/1-1井—25/1-5井地震剖面上的波浪形表面作為等深流的證據(jù)。Frigg氣田被視為20世紀(jì)70年代世界上最大的氣田之一。然而,一些石油地質(zhì)學(xué)家仍然認(rèn)為底流改造砂體(包括等深流沉積)的儲(chǔ)集性比濁積巖儲(chǔ)集性要差。

      討論Makassar海峽Kutei盆地中新統(tǒng)深水砂巖儲(chǔ)集性時(shí),Dunham和Saller[31]認(rèn)為“從勘探地質(zhì)學(xué)家的視角,關(guān)鍵的是底流沒有從原始沉積位置搬運(yùn)或再分配Kutei盆地的儲(chǔ)集砂體。若砂體發(fā)生明顯的再分配則不會(huì)在遠(yuǎn)景區(qū)發(fā)現(xiàn)厚層高品質(zhì)的儲(chǔ)集砂巖”。砂質(zhì)等深流沉積具備最好的儲(chǔ)集層潛力。

      佛羅里達(dá)海流是一個(gè)表面洋流,從墨西哥灣流向大西洋。海水從墨西哥灣被驅(qū)動(dòng)通過(guò)佛羅里達(dá)海峽,沿著美國(guó)東海岸向北流動(dòng),在此與灣流交匯。佛羅里達(dá)海流表面流速在北緯 27°達(dá)到最大,超過(guò) 160 cm/s[156]。在佛羅里達(dá)海峽和布萊克深海高原測(cè)得海底附近流速達(dá)到40~60 cm/s[157-158]。Mullins等[9]討論了佛羅里達(dá)深海底流在佛羅里達(dá)海峽(見圖2,位置B)北部大巴哈馬淺灘(Great Bahama Banks)形成厚層棱柱狀鈣屑改造砂體(中新統(tǒng)中部—更新統(tǒng))的意義(見圖14)。這些鈣屑等深流漂積巖下伏基底侵蝕不整合,為半錐狀砂體,厚度可達(dá)600 m。因此牽引沉積的交錯(cuò)層理是存在的。在這一區(qū)域底流流速可達(dá)60 cm/s[9]。大巴哈馬淺灘附近采集的砂質(zhì)等深流沉積最大孔隙度達(dá)40%,最大滲透率可達(dá)9 881×10-3μm2。高滲透率歸因于底流有孔蟲砂巖中原生粒間孔里的泥質(zhì)被簸選出來(lái)。砂質(zhì)等深流沉積的掃描電子顯微鏡(SEM)照片顯示孔隙中不含泥質(zhì)(見圖14b)。底流改造砂體是潛在的油氣儲(chǔ)集層。這些鈣屑砂巖被早期海底膠結(jié)作用固結(jié),具有保存油氣的潛力。膠結(jié)的硬底部分孔隙度和滲透率要低得多。然而巖生微生物宏觀和微觀鉆孔形成的次生孔隙[159]提高了這些被膠結(jié)的砂質(zhì)等深流沉積的儲(chǔ)集性能。

      以色列(見圖2,位置I)白堊系Talme Yafe地層為等深流沉積[3],厚3 km,寬20 km,長(zhǎng)度近150 km,以侵蝕不整合為特點(diǎn),牽引構(gòu)造(如平行層理和交錯(cuò)層理)常見。由于受斷層控制,這個(gè)巨大的棱柱狀等深流沉積體被保存在大陸斜坡和隆起環(huán)境中[3]。從幾何形態(tài)上來(lái)看,與大巴哈馬淺灘附近的厚層棱柱狀等深流沉積相似。

      Flemming[160]研究了接近南非東南部陸架邊緣的Agulhas洋流改造作用形成的地貌(見圖2,位置J),指出大陸架邊緣附近的碎屑砂質(zhì)和礫質(zhì)等深流沉積可形成高孔隙度和高滲透率儲(chǔ)集層,若能保存,則這些砂質(zhì)和礫質(zhì)等深流沉積可以覆蓋長(zhǎng)數(shù)十千米(平行于陸架邊緣)、寬約5 km(垂直于陸架邊緣)的區(qū)域(見圖15)。

      圖14 現(xiàn)代鈣屑等深流沉積

      圖15 陸架邊緣等深流沉積模式

      在墨西哥灣尤英淺灘826區(qū)塊(見圖2,位置1),底流改造砂體(上新統(tǒng)—更新統(tǒng))實(shí)測(cè)孔隙度為25%~40%,滲透率為(100~1 800)×10-3μm2[1]。單個(gè)改造砂層厚度通常為5~10 cm,但是整個(gè)單元總厚度可達(dá)6 m。

      在孟加拉灣(見圖2,位置13)Krishna-Godavari盆地,發(fā)育深海砂質(zhì)碎屑流和潮汐流形成的高質(zhì)量的上新統(tǒng)產(chǎn)油儲(chǔ)集砂體。潮積砂巖實(shí)測(cè)孔隙度為 34%~41%,滲透率為(525~5 977)×10-3μm2[47]。單個(gè)潮流沉積單元厚度在幾厘米到近1 m變化。

      加的斯灣(見圖2,位置F)10 m厚的席狀砂為等深流沉積[161]。

      過(guò)去的9 000年,在南極洲大陸架和彭內(nèi)爾海岸線上斜坡(見圖2,位置Q)形成了一個(gè)廣泛分布(3 200 km2)的火山碎屑等深流沉積砂體,厚度為10 cm至1 m以上[34]。

      總之,多數(shù)情況下底流改造砂體比濁積巖儲(chǔ)集層質(zhì)量要好[41,162]。

      5 結(jié)論

      深海底流的 4種基本類型為:①溫鹽引起的自轉(zhuǎn)型等深流;②風(fēng)力驅(qū)動(dòng)底流;③潮汐驅(qū)動(dòng)底流,大多在海底峽谷;④內(nèi)波/內(nèi)潮汐驅(qū)動(dòng)的斜壓流。該4類深海底流及其沉積物均具有重要的沉積意義和經(jīng)濟(jì)意義。

      石油企業(yè)在過(guò)去的65年中都把注意力集中在順坡過(guò)程及其形成的沉積體上(例如濁流),而現(xiàn)今背景下的實(shí)證數(shù)據(jù)顯示,類似于順坡沉積的過(guò)程,底流對(duì)于形成油氣儲(chǔ)集層、蓋層和烴源巖同樣重要。因此,未來(lái)的石油勘探與開發(fā)應(yīng)重點(diǎn)關(guān)注常被忽視和低估的底流改造砂體。

      致謝:感謝美孚石油公司在我任職期間(1987—2000年)對(duì)等深流沉積研究的鼓勵(lì),感謝美孚石油全世界范圍的各分支機(jī)構(gòu)準(zhǔn)許我發(fā)表 Krishna-Godavari盆地、孟加拉灣的研究結(jié)果。感謝Mullins H T和Laine E P提供的等深流沉積樣品孔隙度和滲透率的實(shí)測(cè)數(shù)據(jù)。感謝 Elsevier允許我重用數(shù)據(jù)。感謝 Rajat Mazumder和一位匿名審稿人的有益評(píng)論。感謝我的妻子Shanmugam Jean做的總評(píng)。

      [1] SHANMUGAM G, SPALDING T D, ROFHEART D H. Process sedimentology and reservoir quality of deep-marine bottom-current reworked sands (sandy contourites): An example from the Gulf of Mexico[J]. AAPG Bulletin, 1993, 77(7): 1241-1259.

      [2] NATLAND M L. New classification of water-laid clastic sediments[J]. AAPG Bulletin, 1967, 51(3): 476.

      [3] BEIN A, WEILER Y. The Cretaceous Talme Yafe Formation: A contour current shaped sedimentary prism of calcareous detritus at the continental margin of the Arabian craton[J]. Sedimentology, 1976, 23(4): 511-532.

      [4] MUTTI E. Turbidite sandstones[M]. Milan: Agip Special Publication, 1992.

      [5] MARTIN-CHIVELET J, FREGENAL-MARTINEZ M A, CHACóN B. Traction structures in contourites[M]. London: Elsevier, 2008.

      [6] MUTTI E, CARMINATTI M. Deep-water sands in the Brazilian offshore basins: AAPG Search and Discovery article 30219[EB/OL]. [2015-10-29]. http://www.searchanddiscovery.com/documents/2012/ 30219mutti/ndx_mutti.pdf.

      [7] SHANMUGAM G. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons[J]. Marine and Petroleum Geology, 2003, 20(5): 471-491.

      [8] HEEZEN B C, HOLLISTER C D, RUDDIMAN W F. Shaping of the continental rise by deep geostrophic contour currents[J]. Science, 1966, 152(3721): 502-508.

      [9] MULLINS H T, NEUMANN A C, WILBER R J, et al. Carbonate sediment drifts in the Northern Straits of Florida[J]. AAPG Bulletin, 1980, 64(10): 1701-1717.

      [10] LüDMANN T, PAULAT M, BETZLER C, et al. Carbonate mounds in the Santaren Channel, Bahamas: A current-dominated periplatform depositional regime[J]. Marine Geology, 2016, 376: 69-85.

      [11] KLAUS A, LEDBETTER M T. Deep-sea sedimentary processes in the Argentine Basin revealed by high-resolution seismic records (3.5 kHz echograms)[J]. Deep-Sea Research Part A: Oceanographic Research Papers, 1988, 35(6): 899-917.

      [12] STANFORD J D, ROHLING E J, BACON S, et al. A review of the deep and surface currents around Eirik Drift, south of Greenland: Comparison of the past with the present[J]. Global and Planetary Change, 2011, 79(3/4): 244-254.

      [13] MICHELS K H, KUHN G, HILLENBRAND C D, et al. The southern Weddell Sea: Combined contourite-turbidite sedimentation at the southeastern margin of the Weddell Gyre[J]. Geological Society London Memoirs, 2002, 22(1): 305-324.

      [14] STOW D A, FAUGèRES J C. Contourite facies and the facies model[M]//REBESCO M, CAMERLENGHI A. Developments in sedimentology. London: Elsevier, 2008: 223-256.

      [15] GARCíA M, HERNáNDEZ-MOLINA F J, LLAVE E, et al. Contourite erosive features caused by the Mediterranean Outflow Water in the Gulf of Cádiz: Quaternary tectonic and oceanographic implications[J]. Marine Geology, 2009, 257(1): 24-40.

      [16] HERNáNDEZ-MOLINA F J, LLAVE E, STOW D A, et al. The contourite depositional system of the Gulf of Cadiz: A sedimentary model related to the bottom current activity of the Mediterranean outflow water and the continental margin[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53(S11/12/13): 1420-1463.

      [17] MULDER T, HASSAN R, DUCASSOU E, et al. Contourites in the Gulf of Cadiz: A cautionary note on potentially ambiguous indicators of bottom current velocity[J]. Geo-Marine Letters, 2013, 33(5): 357-367.

      [18] STOW D A, HERNáNDEZ-MOLINA F J, LLAVE E, et al. The Cadiz Contourite Channel: Sandy contourites, bedforms and dynamic current interaction[J]. Marine Geology, 2013, 343(9): 99-114.

      [19] POMAR L, MORSILLI M, HALLOCK P, et al. Internal waves, an under-explored source of turbulence events in the sedimentary record[J]. Earth-Science Reviews, 2012, 111(1/2): 56-81.

      [20] SHANMUGAM G. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands[J]. AAPG Bulletin, 2013, 97(5): 767-811.

      [21] CHIGGIATO J, BERGAMASCO A, BORGHINI M, et al. Dense-water bottom currents in the Southern Adriatic Sea in spring 2012[J]. Annals of Internal Medicine, 2015, 116(6): 515-517.

      [22] BRYDEN H L, BEAL L M, DUNCAN L M. Structure and transport of the Agulhas Current and its temporal variability[J]. Journal of Oceanography, 2005, 61(3): 479-492.

      [23] HE Y B, LUO J X, LI X D, et al. Evidence of internal-wave and internal-tide deposits in the Middle Ordovician Xujiajuan Formation of the Xiangshan Group, Ningxia, China[J]. Geo-Marine Letters, 2011, 32(5): 367-372.

      [24] SHANMUGAM G. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands: Reply[J]. AAPG Bulletin, 2014, 98(4): 858-879.

      [25] YU X, WANG J, LIANG J, et al. Depositional characteristics and accumulation model of gas hydrates in northern South China Sea[J]. Marine & Petroleum Geology, 2014, 56(3): 74-86.

      [26] LIEN R C, MA B, LEE C M, et al. The Kuroshio and Luzon undercurrent east of Luzon Island[J]. Oceanography, 2015, 28(4): 54-63.

      [27] SALLER A H, LIN R, DUNHAM J. Leaves in turbidite sands: Themain source of oil and gas in the deep-water Kutei Basin, Indonesia[J]. AAPG Bulletin, 2006, 90(10): 1585-1608.

      [28] SALLER A H, DUNHAM J, LIN R. Leaves in turbidite sands: The main source of oil and gas in the deep-water Kutei Basin, Indonesia: Reply[J]. AAPG Bulletin, 2008, 92(1): 139-141.

      [29] SALLER A H, WERNER K, SUGIAMAN F, et al. Characteristics of Pleistocene deep-water fan lobes and their application to an upper Miocene reservoir model, offshore East Kalimantan, Indonesia[J]. AAPG Bulletin, 2008, 92(7): 919-949.

      [30] KNAUSS J. A technique for measuring deep ocean currents close to the bottom with an unattached current meter and some preliminary results[J]. Marine Research, 1965, 23: 237-245.

      [31] DUNHAM J, SALLER A H. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands: Discussion[J]. AAPG Bulletin, 2014, 98(5): 851-857.

      [32] BOYD R, RUMING K, GOODWIN I, et al. Highstand transport of coastal sand to the deep ocean: A case study from Fraser Island, southeast Australia[J]. Geology, 2008, 36(1): 15-18.

      [33] CARTER R M. The role of intermediate-depth currents in continental shelf-slope accretion: Canterbury Drifts, SW Pacific Ocean[J]. Geological Society London Special Publications, 2007, 276(1): 129-154.

      [34] RODRIGUEZ A B, ANDERSON J B. Contourite origin for shelf and upper slope sand sheet, offshore Antarctica[J]. Sedimetology, 2004, 51(4): 699-711.

      [35] KERR B C, SCHOLL D W, KLEMPERER S L. Seismic stratigraphy of Detroit Seamount, Hawaiian-Emperor seamount chain: Post-hot-spot shield-building volcanism and deposition of the Meiji drift[J]. Geochemistry Geophysics Geosystems, 2005, 6(7): Q07L10. [36] LONSDALE P, NORNARK W R, NEWMAN W A. Sedimentation and erosion on Horizon Guyot[J]. Geological Society of America Bulletin, 1972, 83(2): 289-315.

      [37] DUBOIS N, MITCHELL N C. Large-scale sediment redistribution on the equatorial Pacific seafloor[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 69(6): 51-61.

      [38] SHEPARD F P, MARSHALL N F, MCLOUGHLIN P A, et al. Currents in submarine canyons and other sea valleys[M]//BRUNET M F, ERSHOV A V, VOLOZH Y A, et al. AAPG Studies in Geology. Tulsa: AAPG, 1979.

      [39] SHANMUGAM G, MOIOLA R J, MCPHERSON J G, et al. Comparison of turbidite facies associations in modern passive-margin Mississippi Fan with ancient active-margin fans[J]. Sedimentary Geology, 2000, 58(1): 63-77.

      [40] SHANMUGAM G. Deep-water processes and facies models: Implications for sandstone petroleum reservoirs[M]//MCALEESE S. Handbook of petroleum exploration and production 5. Amsterdam: Elsevier, 2006.

      [41] SHANMUGAM G. New perspectives on deep-water sandstones: Origin, recognition, initiation, and reservoir quality[M]//Handbook of petroleum exploration and production 9. Amsterdam: Elsevier, 2012: 524.

      [42] BOUMA A. Reinterpretation of depositional processes in a classic Flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma[J]. AAPG Bulletin, 1997, 81(3): 470-472.

      [43] SHANMUGAM G. The stratigraphy, sedimentology and tectonics of the Middle Ordovician Sevier Shale Basin in East Tennessee[D]. Knoxville: The University of Tennessee, 1978.

      [44] SHANMUGAM G, BLOCH R B, MITCHELL S M, et al. Basin-floor fans in the North Sea: Sequence stratigraphic models vs. sedimentary facies[J]. AAPG Bulletin, 2000, 81(4): 662-665.

      [45] SHANMUGAM G. Deep-water exploration: Conceptual models and their uncertainties[J]. NAPE Bulletin, 1997, 22(1): 11-28.

      [46] FAMAKINWA S B, SHANMUGAM G, HODGKINSON R J, et al. Deep-water slump and debris flow dominated reservoirs of the Zafiro Field area, offshore Equatorial Guinea[C]//AKANI F. Offshore West Africa Conference and Exhibition. Gabon: Offshore, 1996.

      [47] SHANMUGAM G, SHRIVASTAVA S K, DAS B. Sandy debrites and tidalites of Pliocene reservoir sands in upper-slope canyon environments, offshore Krishna-Godavari Basin (India): Implications[J]. Journal of Sedimentary Research, 2009, 79(9): 736-756.

      [48] STOMMEL H. The abyssal circulation[J]. Deep Sea Research, 1958, 5(1): 80-82.

      [49] BROECKER W. The Great Ocean Conveyor[J]. Oceanography, 1991, 4(2): 79-89.

      [50] RAHMSTORF S. Thermohaline ocean circulation[M]//ELIAS S A. Encyclopedia of Quaternary Sciences. Amsterdam: Elsevier, 2006.

      [51] TALLEY L D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports[J]. Oceanography, 2013, 26(1): 80-97.

      [52] SOUTHARD J B, STANLEY D J. Shelf-break processes and sedimentation[C]//STANLEY D J, SWIFT J P. Marine sediment transport and environmental management. New York: John Wiley & Sons, 1976: 351-377.

      [53] YAMAZAKI T, YAMAOKA M, SHIKI T. Miocene offshore tractive current-worked conglomerates: Tsubutegaura, Chita Peninsula, central Japan[M]//TAIRA A, MASUDA F. Sedimentary features in the active plate margin. Tokyo: Terra Scientific, 1989: 483-494.

      [54] SHANMUGAM G. The tsunamite problem[J]. Journal of Sedimentary Research, 2006, 76(5/6): 718-730.

      [55] SCHMITZ W J. On the world ocean circulation: Volume I: Some global features/North Atlantic circulation[C]//Woods Hole Institution. Woods Hole Oceanographic Institution Technical Report. Woods Hole: Woods Hole Oceanographic, 1996.

      [56] SHANMUGAM G. The constructive functions of tropical cyclones and tsunamis on deepwater sand deposition during sea level highstand: Implications for petroleum exploration[J]. AAPG Bulletin, 2008, 92(4): 443-471

      [57] SHANMUGAM G. Process-sedimentological challenges in distinguishing paleo-tsunamis deposits[J]. Natural Hazards, 2012, 63(1): 5-30.

      [58] SHANMUGAM G. Deep-water bottom currents and their deposits[J]. Developments in Sedimentology, 2008, 60(8): 59-81.

      [59] HOLLISTER C D, HEEZEN B C. Geological effects of ocean bottom currents: Western North Atlantic[M]//GORDON A L. Studies in physical oceanography. New York: Gordon and Breach, 1972: 37-66.

      [60] BULFINCH D L, LEDBETTER M T. Deep western boundary undercurrent delineated by sediment texture at base of North American continental rise[J]. Geo-Marine Letters, 1983, 3(1): 31-36.

      [61] BOUMA A H. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962.

      [62] BOUMA A H, HOLLISTER C D. Deep ocean basin sedimentation[M]//MIDDLETON G V, BOUMA A H. Turbidites and deep-water sedimentation. Anabeim: SEPM Pacific Section, 1973: 79-118.

      [63] PEQUEGNAT W E. A deep bottom-current on the Mississippi Cone[M]//CAPURRO L R, REID J L. Contribution on the physical oceanography of the Gulf of Mexico. Houston: Gulf Publishing, 1972: 65-87.

      [64] HOWE J A, PUDSEY C J, CUNNINGHAM A P. Pliocene-Holocene contourite deposition under the Antarctic circumpolar current, western Falkland trough, South Atlantic Ocean[J]. Marine Geology, 1997, 138(1/2): 27-50.

      [65] KELLER G H, SHEPARD F P. Currents and sedimentary processes in submarine canyons off the northeast United States[M]//STANLEY D J, KELLING G. Sedimentation in submarine canyons, fans, and trenches. Stroudsburg, Pennsylvania, United Kingdom: Dowden, Hutchinson & Ross, Inc., 1978: 15-32.

      [66] GONTHIER E G, FAUGERES J C, STOW D A. Contourite facies of the Faro Drift, Gulf of Cadiz[J]. Geological Society London Special Publications, 1984, 15(1): 275-292.

      [67] HERNáNDEZ-MOLINA F J, STOW D, ALVAREZZARIKIAN C. IODP expedition 339 in the Gulf of Cadiz and off West Iberia: Decoding the environmental significance of the Mediterranean outflow water and its global influence[J]. Scientific Drilling, 2013, 16: 1-11.

      [68] VIANA A R, FAUGERES J C, KOWSMANN R O, et al. Hydrology, morphology and sedimentology of the Campos continental margin, offshore Brazil[J]. Sedimentary Geology, 1998, 115(1/2/3/4): 133-157.

      [69] COOPER C, FORRISTALL G Z, JOYCE T M. Velocity and hydrographic structure of two Gulf of Mexico warm-core rings[J]. Journal of Geophysical Research Atmospheres, 1990, 95(C2): 1663-1679.

      [70] CREASE J. The flow of Norwegian sea water through the Faeroe bank channel[J]. Deep Sea Research & Oceanographic Abstracts, 1965, 12(2): 143-150.

      [71] KOCH S P, BARKER J W, VERMERSCH J A. The Gulf of Mexico loop current and deepwater drilling[J]. Journal of Petroleum Technology, 1991, 43(9): 1046-1119.

      [72] RICHARDSON M J, WIMBUSH M, MAYER L. Exceptionally strong near-bottom flows on the continental rise of Nova Scotia[J]. Science, 1981, 213(4510): 887-888.

      [73] TSUJI Y. Tide influenced high energy environments and rhodolithassociated carbonate deposition on the outer shelf and slope off the Miyako Islands, southern Ryukyu Island Arc, Japan[J]. Marine Geology, 1993, 113(3/4): 255-271.

      [74] HOLLISTER C D, JOHNSON D A, LONSDALE P F. Currentcontrolled abyssal sedimentation: Samoan Passage, equatorial west Pacific[J]. Journal of Geology, 1974, 82(3): 275-300.

      [75] HOWE J A, HUMPHREY J D. Photographic evidence for slopecurrent activity, Hebrides slope, NE Atlantic Ocean[J]. Scottish Journal of Geology, 1995, 31(2): 107-115.

      [76] AKHURST M A. Aspects of late Quaternary sedimentation in the Faeroe-Shetland Channel, northwest U.K. continental margin[C]//British Geological Survey Technical Report WB/91/2. Kaivos: British Geological Survey, 1991.

      [77] ROWE G T. Observations on bottom currents and epibenthonic populations in Hatteras submarine canyon[J]. Deep Sea Research & Oceanographic Abstracts, 1971, 18(6): 569-581.

      [78] LONSDALE P, MALFAIT B. Abyssal dunes of foraminiferal sand on the Carnegie Ridge[J]. GSA Bulletin, 1974, 85(11): 1697-1712.

      [79] STEELE T H, BARRETT T R, WORTHINGTON L V. Deep currents south of Iceland[J]. Deep Sea Research & Oceanographic Abstracts, 1962, 9(11/12): 465-474.

      [80] EWING M, ETTRIUM S L, EWING J L, et al. Sediment transport and distribution in the Argentine Basin: Part 3, Nepheloid layer and process of sedimentation[M]//AHRENS L A, PRESS F, RUNCORN S K, et al. Physics and Chemistry of the Earth. London: Pergamon Press, 1971: 55-77.

      [81] JOHNSON D A, DAMUTH J E. Deep thermohaline flow and current controlled sedimentation in the Amirante Passage: Western Indian Ocean[J]. Marine Geology, 1979, 33(1/2): 1-44.

      [82] ZIMMERMAN H B. Bottom currents on the New England continental rise[J]. Journal of Geophysical Research, 1971, 76(24): 5865-5876.

      [83] AMOS A F, GORDON A L, SCHNEIDER E D. Water masses and circulation patterns in the region of the Blake-Bahama Outer Ridge[J]. Deep Sea Research & Oceanographic Abstracts, 1971, 18(2): 145-165.

      [84] ROWE G T, MENZIES R T. Deep bottom currents off the coast of North Carolina[J]. Deep Sea Research & Oceanographic Abstracts, 1968, 15(6): 711-720.

      [85] VOLKMAN C. Deep current observations in the western North Atlantic[J]. Deep Sea Research & Oceanographic Abstracts, 1962, 9(11/12): 493-500.

      [86] BARRETT J R. Subsurface currents off Cape Hatteras[J]. Deep Sea Research & Oceanographic Abstracts, 1965, 12(65): 173-184.

      [87] TUHOLKE B E, WRIGHT W R, HOLLISTER C D. Abyssal circulation over the greater Antilles Outer Ridge[J]. Deep Sea Research & Oceanographic Abstracts, 1973, 20(11): 973-995.

      [88] SWALLOW J C, WORTHINGTON L V. An observation of a deep counter current in the western North Atlantic[J]. Deep Sea Research, 1961, 8(1): 1-9.

      [89] RUDNICK D L, JAN S, LEE C. A new look at circulation in the western North Pacific: Introduction to the special issue[EB/OL]. (2015-12-07)[2016-05-21]. http://dx.doi.org/10.5670/oceanog.2015. 77.

      [90] REID J L. Preliminary results of measurements of deep currents in the Pacific Ocean[J]. Nature, 1969, 221(4): 848.

      [91] WüST G. Block diagramme der Atlantischhen Zirkulation auf Grand der Meteor Ergibribe[J]. Kider Meeresforsch, 1950, 7(1): 24-34.

      [92] ZENK W O. Detection of overflow events in the Shag Rocks Passage, Scotia Ridge[J]. Science, 1981, 213(4512): 1113-1114.

      [93] HOWE J A, PUDSEY C J, CUNNINGHAM A P. Pliocene-Holocene contourite deposition under the Antarctic circumpolar current, western Falkland trough, South Atlantic Ocean[J]. Marine Geology, 1997, 138 (1/2): 27-50.

      [94] WORTHINGTON L V, VOLKMAN G H. The volume transport of the Norwegian Sea overflow in the North Atlantic[J]. Deep Sea Research & Oceanographic Abstracts, 1965, 12(5): 667-676.

      [95] WüST G. On the stratification and circulation in the cold water sphere of the Antillean-Caribbean Basins[J]. Deep Sea Research & Oceanographic Abstracts, 1963, 10(3): 165-167.

      [96] The Cooperative Institute for Marine and Atmospheric Studies. Ocean surface currents[R/OL]. (2015-07-12)[2016-06-16]. http:// oceancurrents.rsmas.miami. edu/.

      [97] HOLLISTER C D. Sediment distribution and deep circulation in thewestern North Atlantic[D]. New York: Columbia University, 1967: 467.

      [98] VISSER M J. Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: A preliminary note[J]. Geology, 1980, 8(11): 543-546.

      [99] SHANMUGAM G, POFFENBERGER M, ALAVA J T. Tide-dominated estuarine facies in the Hollin and Napo (‘T’ and ‘U’) Formations (Cretaceous), Sacha Field, Oriente Basin, Ecuador[J]. AAPG Bulletin, 2000, 84(5): 652-682.

      [100] HOWE J A, STOKER M S, WOOLFE K J, et al. Deep-marine seabed erosion and gravel lags in the northwestern Rockall Trough, North Atlantic Ocean[J]. Journal of the Geological Society, 2001, 158(3): 427-438.

      [101] MAZUMDER R, ARIMA M. Tidal rhythmites in a deep sea environment: An example from Mio-Pliocene Misaki Formation, Miura Peninsula, Japan[J]. Marine and Petroleum Geology, 2013, 43: 320-325.

      [102] GILL A E. Atmosphere-ocean dynamics[M]. San Diego: Academic Press, 1982.

      [103] BRANDT P, RUBINO A, FISCHER J. Large-amplitude internal solitary waves in the North Equatorial Countercurrent[J]. Journal of Physical Oceanography, 2002, 32(5): 1567-1573.

      [104] MATSUYAMA M, OHTA S, HIBIYA T, et al. Strong tidal currents observed near the bottom in the Suruga Trough, central Japan[J]. Journal of Oceanography, 1993, 49(6): 683-696.

      [105] LEE I H, LIEN R C, LI J T, et al. Turbulent mixing and internal tides in Gaoping (Kaoping) Submarine Canyon, Taiwan[J]. Journal of Marine Systems, 2008, 76(4): 383-396.

      [106] APEL J R, OSTROVSKY L A, STEPANYANTS Y A, et al. Internal solitons in the ocean[R]. Woods Hole: Woods Hole Oceanographic Institution, 2006.

      [107] GORDON A L. Is there a global scale ocean circulation?[J]. Eos Transactions American Geophysical Union, 1986, 67(9): 109-110.

      [108] REBESCO M, HERNáNDEZ-MOLINA F J, ROOIJ D V, et al. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations[J]. Marine Geology, 2014, 352(3): 111-154.

      [109] SHANMUGAM G. Slides, slumps, debris flows, turbidity currents, and bottom currents[R]. Arlington: Elsevier, 2016.

      [110] FAUGèRES J C, STOW D A. Contourite drifts: Nature, evolution and controls[M]//REBESCO M, CAMERLENGHI A. Contourites. Amsterdam: Elsevier, 2008: 259-288.

      [111] BERGGREN W A, HOLLISTER C D. Plate tectonics and paleocirculation: Commotion in the ocean[J]. Tectonophysics, 1977, 38(1/2): 11-48.

      [112] VAIL P R, HARDENBOL J, TODD R G. Cenozoic regional erosion of the abyssal sea floor off South Africa[M]//SCHLEE J S. Interregional unconformities and hydrocarbon accumulation. Tulsa: AAPG, 1984: 145-164.

      [113] HAQ B U, HARDENBOL J, VAIL P R. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change[M]//WILGUS C K, HASTINGS B S, KENDALL C G, et al. Sea-level changes: An Integrated Approach. Tulsa: SEPM, 1988: 71-108.

      [114] VIANA A R. Economic relevance of contourites[M]//REBESCO M, CAMERLENGHI A. Contourites. Amsterdam: Elsevier, 2008: 493-510.

      [115] DUARTE C S, VIANA A R. Santos drift system: Stratigraphic organization and implications for late Cenozoic palaeocirculation in the Santos Basin, SW Atlantic Ocean[J]. Minerva Pediatrica, 2007, 276(1): 171-198.

      [116] ALVES J, CARTON X, AMBAR I. Hydrological structure, circulation and water mass transport in the Gulf of Cadiz[J]. International Journal of Geosciences, 2011, 2(4): 432-456.

      [117] ZENK W. Abyssal and contour currents[J]. Developments in Sedimentology, 2008, 1(60):37-58.

      [118] APEL J R, WORCESTER P F. Internal solitons near Gibraltar: A longitudinal study using ERS-1 & 2 SAR imagery[EB/OL]. [2016-06-16]. http://xueshu.baidu.com/s?wd=paperuri%3A%28f5b95 4c3cb1e394e6921af0a5c9e238b%29&filter=sc_long_sign&tn=SE_x ueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fciteseerx.ist.psu. edu%2Fviewdoc%2Fdownload%3Bjsessionid%3D27321A08F1B059 8C9AA6C1F7B3094832%3Fdoi%3D10.1.1.20.6049%26rep%3Drep 1%26type%3Dpdf&ie=utf-8&sc_us=3019250738084173664.

      [119] ALVARADO-BUSTOS R. Mixing in the continental slope: Study case Gulf of Cadiz[D/OL]. Livepool: University of livepool, 2011[2016-06-16]. https://core.ac.uk/download/pdf/1644006.pdf.

      [120] LARIO J, LUQUE L, ZAZO C, et al. Tsunami vs. storm surge deposits: A review of the sedimentological and geomorphological records of extreme wave events (EWE) during the Holocene in the Gulf of Cadiz, Spain[J]. Annals of Geomorphology, 2010, 54(Sup. 3): 301-316.

      [121] PINHEIRO L M, IVANOV M K, SAUTKIN A, et al. Mud volcanism in the Gulf of Cadiz: Results from the TTR-10 cruise[J]. Marine Geology, 2003, 195(1/2/3/4): 131-151.

      [122] MAGALH?ES V H, PINHEIRO L M, IVANOV M K, et al. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz[J]. Sedimentary Geology, 2011, 243(1): 155-168.

      [123] LEóN R, SOMOZA L, MEDIALDEA T, et al. Pockmarks on either side of the strait of Gibraltar: Formation from overpressured shallow contourite gas reservoirs and internal wave action during the last glacial sea-level lowstand[J] Geo-Marine Letters, 2014, 34(2): 131-151.

      [124] GóMEZ-ENRI J, VáZQUEZ A, BRUNO M, et al. Characterization of internal waves in the strait of Gibraltar, using SAR and in-situ measurements[DB/OL]. [2014-04-07]. http://earth.esa.int/workshops/ envisatsymposium/proceedings/posters/4P14/464335go.pdf.

      [125] HEEZEN B C, THARP M, EWING M. The floors of the oceans I: The North Atlantic[R]. New York: Geological Society of America, 1959.

      [126] SHANMUGAM G. Glossary: A supplement to “Submarine fans: A critical retrospective (1950-2015)” in the Journal of Palaeogeography (2016, 5[2])[J]. Journal of Palaeogeography, 2016, 5(3): 258-277.

      [127] SANDERS J E. Concepts of fluid mechanics provided by primary sedimentary structures[J]. Journal of Sedimentary Petrology, 1963, 33(1): 173-179.

      [128] BRUSH L M. Experimental work on primary sedimentary structures[J]. Nursing Times, 1991, 87(33): 17-24.

      [129] FAUGèRES J C, GONTHIER E, STOW D A. Contourite drift moulded by deep Mediterranean outflow[J]. Geology, 1984, 12(5): 296-300.

      [130] FAUGèRES J C, MULDER T. Contour currents and contourite drifts[C]//HüNEKE H, MULDER T. Deep-sea sediments, developments in sedimentology 63. Amsterdam: Elsevier, 2011: 149-214.

      [131] WETZEL A, WERNER F, STOW D A. Bioturbation and biogenicsedimentary structures in contourites[J]. Developments in Sedimentology, 2008, 60: 183-202.

      [132] MIDDLETON G V. Johannes Walther’s Law of the correlation of fades[J]. Geological Society of America Bulletin, 1973, 84(3): 587-596.

      [133] MULDER T, MIGEON S, SAVOYE B, et al. Inversely graded turbidite sequences in the deep Mediterranean: A record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters, 2002, 22(2): 112-120.

      [134] CHOUGH S K, HESSE R. Contourites from Eirik Ridge, south of Greenland[J]. Sedimentary Geology, 1984, 41(2/3/4): 185-199.

      [135] NILSEN T H, ABBOTT P. Upper cretaceous deep-sea fan deposits[R]. San Diego: Annual Meeting of Geological Society of America, 1979.

      [136] DALRYMPLE R W, NARBONNE G M. Continental slope sedimentation in the Sheepbed Formation (Neoproterozoic, Windermere Supergroup), Mackenzie Mountains, N.W.T[J]. Cananadian Journal of Earth Sciences, 2011, 33(6): 848-862.

      [137] STOW D A, HUNTER S, WILKINSON D, et al. The nature of contourite deposition[M]//REBESCO M, CAMERLENGHI A. Developments in sedimentology. Amsterdam: Elsevier, 2008: 143-156.

      [138] STOW D A V, HERNáNDEZ-MOLINA F J, ALVAREZ-ZARIKIAN C. New advances in the contourite paradigm: IODP Expedition 339, Gulf of Cadiz[R]. Ghent: 2nd Deep-Water Circulation Congress, 2014.

      [139] SHANMUGAM G, BENEDICT G L. Fine-grained carbonate debris flow, Ordovician basin margin, southern Appalachians[J]. Journal of Sedimentary Petrology, 1978, 48(4): 1233-1239.

      [140] FISHER R V. Features of coarse-grained, high-concentration fluids and their deposits[J]. Journal of Sedimentary Petrology, 1971, 41(4): 916-927.

      [141] ENOS P. Flow regimes in debris flow[J]. Sedimentology, 1977, 24(1): 133-142.

      [142] ROOIJ D V. Deep-water bottom current dynamics: Processes, products & challenges[M]. Bruges: Vliz Special Publication, 2013.

      [143] STOW D A V, HERNáNDEZ-MOLINA F J, LLAVE E, et al. Bedform-velocity matrix: The estimation of bottom current velocity from bedform observations[J]. Geology, 2009, 37(4): 327-330.

      [144] NELSON C H, BARAZA J, MALDONADO A. Mediterranean undercurrent sandy contourites, Gulf of Cadiz, Spain[J]. Sedimentary Geology, 1993, 82(1/2/3/4): 103-131.

      [145] NIELSEN T, KNUTZ P C, KUIJPERS A. Seismic expression of contourite depositional systems[M]//REBESCO M, CAMERLENGHI A. Developments in Sedimentology. Amsterdam: Elsevier, 2008: 301-321.

      [146] REEDER D B, MA B B, YANG Y J. Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves[J]. Marine Geology, 2011, 279(1): 12-18.

      [147] ALONSO B, ERCILLA G, CASAS D, et al. Contourite vs gravity-flow deposits of the Pleistocene Faro Drift (Gulf of Cadiz): Sedimentological and mineralogical approaches[J]. Marine Geology, 2016, 377(8): 77-94.

      [148] SOLHEIM A, BERG K, FORSBERG C F, et al. The Storegga slide complex: Repetitive large scale sliding with similar cause and development[J]. Marine & Petroleum Geology, 2005, 22(1/2): 97-107.

      [149] PETTIJOHN F J. Sedimentary rocks[M]. New York: Harper & Row Publishers, 1975: 628.

      [150] POTTER P E, PETTIJOHN F J. Paleocurrents and basin analysis[M]. Berlin: Springer, 1977: 425.

      [151] ZUFFA G G. Provenance of Arenites[M]. Dordrecht: D Reidel Publishing, 1985: 407.

      [152] ARRIBAS J, JOHNSSON M J, CRITELLI S. Sedimentary provenance and petrogenesis: Perspectives from petrography and geochemistry[M]. Boulder: GSA, 2007.

      [153] TUCHOLKE B E. Sediment distribution and deposition by the Western Boundary Undercurrent: The Great Antilles Outer Ridge[J]. Journal of Geology, 1975, 83(2): 177-207.

      [154] SHANMUGAM G. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia[J]. AAPG Bulletin, 1985, 69(8): 1241-1254.

      [155] HERITIER F E, LOSSEL P, WATHNE E. Frigg Field: Large submarine-fan trap in Lower Eocene Rocks of the North Sea Viking Graben[J]. AAPG Bulletin, 1979, 63(11): 1999-2020.

      [156] JOHNS E, WILSON W D, MOLINARI R L. Direct observations of velocity and transport in the passages between the Intra-Americas Sea and the Atlantic Ocean, 1984-1996[J]. Journal of Geophysical Research Oceans, 1999, 104(C11): 25805-25820.

      [157] PRATT R M. Bottom currents on the Blake Plateau[J]. Deep Sea Research & Oceanographic Abstracts, 1963, 10(3): 245-249.

      [158] NEUMANN A C, BALL M M. Submersible observations in the Straits of Florida: Geology and bottom currents[J]. Geological Society of America Bulletin, 1970, 81(10): 2861-2873.

      [159] WILBUR R J, NEUMANN A C. Porosity controls in subsea cemented rocks from deep-flank environment of Little Bahama Bank[J]. AAPG Bulletin, 1977, 61: 841.

      [160] FLEMMING B W. Sand transport and bedform patterns on the continental shelf between Durban and Port Elizabeth (southeast African continental margin)[J]. Sedimentary Geology, 1980, 26(1/2/3): 179-205.

      [161] STOW D A V, BRACKENRIDGE R, HERNANDEZ-MOLINA F J. Contourite sheet sands: New deepwater exploration target[R]. Houston: American Association of Petroleum Geologists Annual Conference, 2011.

      [162] SHANMUGAM G. Deep-water processes[N/OL]. (2014-04-07) [2016-06-16]. http://g-shanmugam.blogspot.com/.

      (編輯 魏瑋 王大銳)

      Contourites: Physical oceanography, process sedimentology, and petroleum geology

      SHANMUGAM G
      (Department of Earth and Environmental Sciences, The University of Texas at Arlington, Arlington, TX 76019, USA)

      The purpose of this critical review is to address fundamental principles associated with contourites and other bottom-current deposits. The four basic types of deep-marine bottom currents are: (1) thermohaline-induced geostrophic contour currents, (2) wind-driven bottom currents, (3) tide-driven bottom currents, mostly in submarine canyons, and (4) internal wave/tide-driven baroclinic currents. Contourites are deposits of thermohaline-driven geostrophic contour currents. Contourites can be muddy or sandy in texture, siliciclastic or calciclastic in composition. Traction structures are common in deposits of all four types of bottom currents. However, there are no diagnostic sedimentological or seismic criteria for distinguishing ancient contourites from other three types. The Gulf of Cadiz is the type locality for the contourite facie model based on muddy lithofacies. However, this site is affected not only by contour currents associated with the Mediterranean Outflow Water (MOW) but also by other factors, such as internal waves and tides, turbidity currents, tsunamis, cyclones, mud volcanism, methane seepage, sediment supply, porewater venting, and bottom topography. IODP (Integrated Ocean Drilling Program) 339 cores from the Gulf of Cadiz do not show primary sedimentary structures, which are necessary for interpreting depositional processes. Therefore, the contourite facies model is sedimentologically obsolete. Bottom-current reworked sands of all four types have the potential for developing petroleum reservoirs. Modern sandy carbonate contourites have a measured maximum porosity of 40% and a maximum permeability of 9 881×10?3μm2due to the winnowing away of muds from the intergranular primary pores by vigorous contour currents. These carbonate contourites are hemiconical-shaped bodies that are up to 600 m in thickness and nearly 60 km in length. Empirical data of modern contourites also show potential for seal and source-rock development. Therefore, future petroleum exploration and development should focus attention on these often overlooked siliciclastic and calciclastic deep-marine reservoirs.

      bottom currents; contourite reservoirs; Gulf of Cadiz; Florida Current; traction structures; process sedimentology

      TE<122.2 class="emphasis_bold">122.2 文獻(xiàn)標(biāo)識(shí)碼:A122.2

      A

      1000-0747(2017)02-0177-19

      10.11698/PED.2017.02.02

      Shanmugam G(1944-),男,博士,美國(guó)德克薩斯州立大學(xué)教授,主要從事過(guò)程沉積學(xué)、事件沉積學(xué)、層序地層學(xué)、成巖作用、烴源巖地球化學(xué)等多方面研究。地址:Department of Earth and Environmental Sciences,The University of Texas at Arlington,Arlington, TX 76019, USA。E-mail: shanshanmugam@aol.com

      2016-06-26

      2017-01-18

      猜你喜歡
      底流潮汐泥質(zhì)
      潮汐與戰(zhàn)爭(zhēng)(上)
      拜耳法赤泥底流與燒結(jié)法赤泥濾餅混合預(yù)處理試驗(yàn)
      山東冶金(2019年5期)2019-11-16 09:09:18
      絕美海灘
      跌坎型底流消力池的水力特性與結(jié)構(gòu)優(yōu)化研究
      潮汐式灌溉控制系統(tǒng)的設(shè)計(jì)及應(yīng)用
      電子制作(2017年9期)2017-04-17 03:00:56
      干法紙的潮汐
      生活用紙(2016年6期)2017-01-19 07:36:25
      某泵站廠房泥質(zhì)粉砂巖地基固結(jié)沉降有限元分析
      底流消力池內(nèi)懸柵消能工數(shù)值模擬研究
      曲線形底流消能工設(shè)計(jì)應(yīng)用
      不同泥質(zhì)配比條件下剩余污泥的深度減容研究
      定日县| 凌海市| 拉萨市| 历史| 黑山县| 怀安县| 泰安市| 盖州市| 自治县| 孙吴县| 泰兴市| 隆回县| 临洮县| 石首市| 桑日县| 富源县| 重庆市| 南昌县| 定南县| 蒙城县| 即墨市| 浦江县| 大港区| 勐海县| 衡阳市| 固始县| 濮阳市| 如皋市| 巴楚县| 武穴市| 山阳县| 顺昌县| 房产| 高要市| 武宁县| 托克逊县| 松阳县| 潢川县| 泸州市| 仁布县| 乌拉特前旗|