鄭偉平 梁翔 鄒原方 劉玉峰 蘇曉燕
·實(shí)驗(yàn)研究·
氧化應(yīng)激拮抗劑對(duì)1型糖尿病大鼠腎臟皮質(zhì)血管緊張素原表達(dá)的影響
鄭偉平 梁翔 鄒原方 劉玉峰 蘇曉燕
目的 研究1型糖尿病大鼠早期腎臟皮質(zhì)血管緊張素原(angiotensinogen,AGT)表達(dá)的改變以及抗氧化應(yīng)激干預(yù)對(duì)其表達(dá)的影響,分析腎素-血管緊張素系統(tǒng)(renin-angiotensin system,RAS)與氧化應(yīng)激作用的關(guān)系。方法 將正常雄性SD大鼠隨機(jī)分為兩組,糖尿病(diabetes mellitus,DM)大鼠組腹腔注射鏈脲佐菌素(streptozotocin,STZ)造1型糖尿病大鼠模型,需鑒定其成模,非糖尿病(Non-DM)大鼠組腹腔注射同等劑量的載體溶劑(1 ml/100 g),觀察至4周末;對(duì)比2組大鼠體質(zhì)量、血糖水平、血壓水平及腎臟皮質(zhì)AGT的表達(dá)水平。分別選用氯沙坦、肼屈嗪以及氧化應(yīng)激反應(yīng)拮抗劑作為干預(yù)手段,對(duì)成模后的DM大鼠進(jìn)行干預(yù),持續(xù)至4周末,與陽性對(duì)照組相比,對(duì)比各干預(yù)組糖尿病大鼠體質(zhì)量、血糖水平、血壓水平及腎臟皮質(zhì)AGT的表達(dá)水平。結(jié)果 與Non-DM組大鼠比較,4周末DM大鼠體質(zhì)量、血糖水平均有顯著性差異(P<0.05),而血壓水平無顯著性差異(P>0.05);腎臟皮質(zhì)AGT表達(dá)水平顯著升高(P<0.05);與陽性對(duì)照組比較,4周末各干預(yù)組大鼠體質(zhì)量、血糖水平、血壓水平均無顯著性差異(P>0.05);氯沙坦和氯化應(yīng)激反應(yīng)拮抗劑組腎臟皮質(zhì)AGT的表達(dá)有所下調(diào)(P<0.05),肼屈嗪組AGT表達(dá)沒有顯著改變(P>0.05)。結(jié)論 1型糖尿病大鼠早期腎臟皮質(zhì)AGT表達(dá)有所上調(diào),抗氧化應(yīng)激干預(yù)與RAS受體阻斷劑干預(yù)均能降低AGT的表達(dá)水平,這說明RAS和氧化應(yīng)激作用有一定的關(guān)聯(lián)性。
糖尿?。宦阅I臟??;腎素-血管緊張素系統(tǒng);血管緊張素原;氧化應(yīng)激
隨著社會(huì)經(jīng)濟(jì)的發(fā)展,人們的生活質(zhì)量普遍提高,但隨之而來的健康問題也日益凸顯。糖尿病(diabetes mellitus,DM)作為一類代謝性疾病已經(jīng)對(duì)人類健康構(gòu)成了極大的威脅。在DM患者中,將有1/3的人有機(jī)會(huì)并發(fā)糖尿病腎病(diabetic nephropathy,DN)[1]。DN作為一種慢性腎臟病,不僅具有DM的疾病特點(diǎn),更重要的是其最終結(jié)果會(huì)導(dǎo)致慢性腎衰竭。
慢性腎臟病的發(fā)生和發(fā)展與腎素-血管緊張素系統(tǒng)(renin angiotensin system,RAS)功能異常密切相關(guān)[2]。RAS作為一個(gè)完整的神經(jīng)內(nèi)分泌調(diào)節(jié)軸宏觀存在于整個(gè)機(jī)體,同時(shí)機(jī)體的各器官組織內(nèi)都幾乎分布著RAS的組分[3]。研究發(fā)現(xiàn),因糖基化終產(chǎn)物蓄積導(dǎo)致的氧化應(yīng)激損傷是糖尿病并發(fā)癥產(chǎn)生的關(guān)鍵[4]。RAS與氧化應(yīng)激損傷共同參與介導(dǎo)了疾病的發(fā)生和發(fā)展過程,并且大量研究表明RAS與氧化應(yīng)激作用有著密切的關(guān)系[5]。
腎素、血管緊張素原(angiotensinogen,AGT)、血管緊張素Ⅱ(angiotensin Ⅱ,AngⅡ)、Ⅰ型血管緊張素Ⅱ受體(type Ⅰangiotensin Ⅱreceptor,AT1)等都是RAS的主要組成部分,其中AngⅡ與AT1結(jié)合產(chǎn)生生物學(xué)效應(yīng)。AGT作為AngⅡ生成的重要前體分子,其本身不具有發(fā)揮RAS功能的作用,但其表達(dá)水平的高低可間接反映RAS水平活化的程度。本實(shí)驗(yàn)擬用AGT作為監(jiān)測指標(biāo),用以研究在1型DM大鼠模型中,氧化應(yīng)激作用對(duì)腎臟皮質(zhì)RAS的活化水平的影響。
一、動(dòng)物模型的制備及分組
本研究選用經(jīng)典1型DM大鼠模型[6]的制作方法進(jìn)行造模。實(shí)驗(yàn)大鼠購自南方醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心;第一部分實(shí)驗(yàn):雄性SD大鼠體質(zhì)量250~300 g,12只隨機(jī)均分為2組即非糖尿病(Non-DM)組和DM組。對(duì)DM組大鼠進(jìn)行腹腔注射鏈脲佐菌素(STZ約100 g/ml,溶于pH值4.2的檸檬酸鈉溶液中),劑量為60 mg/kg。Non-DM組大鼠腹腔注射pH值4.2的檸檬酸鈉溶液,劑量為1 ml/100 g。造模后,整個(gè)實(shí)驗(yàn)過程所有大鼠均在SPF級(jí)環(huán)境、室溫、45%相對(duì)濕度環(huán)境下自由進(jìn)食和飲水飼養(yǎng)4周。隨后在注射STZ后的第3 d、第5 d、第7 d時(shí)間點(diǎn)分別對(duì)DM組大鼠進(jìn)行鼠尾靜脈采血檢測血糖值,3次隨機(jī)血糖含量均值>16.8 mol/ml即可認(rèn)為造模成功,未達(dá)標(biāo)的則棄之不用。之后所有大鼠繼續(xù)飼養(yǎng)4周,然后處死取腎組織。第二部分實(shí)驗(yàn):24只雄性 SD大鼠體質(zhì)量250~300 g,按第一部分DM大鼠造模方法,將所有大鼠造模,待鑒定成模后,隨機(jī)將所有大鼠均分為4組,每組6只,分別命名為陽性對(duì)照組、氯沙坦組、氧化應(yīng)激反應(yīng)拮抗劑組以及肼屈嗉組。根據(jù)文獻(xiàn)報(bào)道劑量,所有大鼠均予口服灌胃方法處理,各組分別以雙蒸水每日灌胃一次、氯沙坦、氧化應(yīng)激反應(yīng)拮抗劑[7]、肼屈嗪。陽性對(duì)照組即造模組,飼料及飲水同其他組大鼠相同。由于本實(shí)驗(yàn)的研究目的是探討氧化應(yīng)激對(duì)RAS活性的影響,而氯沙坦的降壓效果勢必會(huì)對(duì)實(shí)驗(yàn)的嚴(yán)謹(jǐn)性產(chǎn)生影響,故設(shè)計(jì)肼屈嗪組DM大鼠目的在于為了排除血壓變化對(duì)最終結(jié)果產(chǎn)生的影響。
二、動(dòng)物標(biāo)本和實(shí)驗(yàn)數(shù)據(jù)采集
1.體質(zhì)量、血壓、血糖值的測定 所有大鼠體質(zhì)量用電子分析天平(Meilte公司,德國)測量;血壓值用大鼠無創(chuàng)血壓計(jì)(softron BP-98A,Japan)進(jìn)行尾動(dòng)脈血壓測量,血糖值用血糖試紙測定。
2.大鼠腎臟皮質(zhì)新鮮組織及固定組織的留取 大鼠用3%戊巴比妥鈉腹腔注射麻醉(0.15 ml/100 g),隨后開腹,從腹主動(dòng)脈穿刺采血后迅速打開胸腔,用16#灌胃針從左心室穿刺入主動(dòng)脈弓,同時(shí)剪開右心耳,4 ℃預(yù)冷的生理鹽水(含肝素20 U/ml)200 ml快速灌注,可看到肝臟、肺皮膚和肌肉等快速變蒼白,右心耳流出液體無色清亮則認(rèn)定灌注結(jié)束。用外科剪將大鼠腎臟取下,冠狀切面切開,取皮質(zhì)層組織,一部分組織于液氮中保存;另一部分腎皮質(zhì)組織浸入4%多聚甲醛溶液中24 h,后予繼續(xù)脫水、透明、浸蠟等處理,做成石蠟塊后切0.4 μm厚組織片待染色。
3.采用Western blot及免疫組化方法檢測腎臟皮質(zhì)AGT的表達(dá)情況
(1)腎臟皮質(zhì)WB檢測:提取腎皮質(zhì)蛋白,隨后進(jìn)行電泳、轉(zhuǎn)膜、封閉,AGT一抗(abclonal,美國)孵育,洗膜,二抗(武漢博士德,中國)孵育,顯影,拍片,圖像分析,通過半定量計(jì)算測量腎臟皮質(zhì)AGT的表達(dá)情況。
(2)腎臟皮質(zhì)免疫組化檢測:固定腎皮質(zhì)組織,隨后脫水,透明、浸蠟、包埋、切片、脫蠟、水化、封閉,AGT一抗(abclonal,美國)孵育,洗膜,二抗(武漢博士德,中國)孵育,洗片,二抗孵育,DAB染色,封片,排片。通過軟件經(jīng)行半定量計(jì)算腎臟皮質(zhì)AGT的表達(dá)情況。
三、統(tǒng)計(jì)學(xué)處理
采用SPSS 13.0統(tǒng)計(jì)軟件包進(jìn)行統(tǒng)計(jì)分析,使用Image-Pro Plus 7.0軟件處理分析免疫組化圖像,使用Image J軟件處理分析蛋白表達(dá)水平,數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差表示,2組大鼠組間均數(shù)采用兩樣本獨(dú)立t檢驗(yàn);多組間樣本均數(shù)采用單因素方差分析并進(jìn)行方差齊性檢驗(yàn),方差不齊時(shí)采用 welch校正。組間比較采用LSD法(方差齊)或Tamhane’s T3 法(方差不齊),P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
一、Non-DM組和DM組大鼠體質(zhì)量、血糖、血壓的比較
2組大鼠在造模4周后,DM組大鼠體質(zhì)量顯著低于Non-DM組大鼠(P<0.05),DM組大鼠血糖顯著高于Non-DM組(P<0.05),而在血壓方面,2組大鼠則沒有顯著性差異(P>0.05)。(表1)
表1 Non-DM組和DM組大鼠體質(zhì)量、血糖、血壓比較
注:與Non-DM組比較,aP<0.05,bP>0.05
二、Non-DM組和DM組大鼠腎臟皮質(zhì)AGT的表達(dá)情況的比較
與Non-DM大鼠比較,DM組大鼠腎臟皮質(zhì)AGT表達(dá)均顯著高于Non-DM組(P<0.05)。(圖1~2)
三、不同干預(yù)組DM大鼠的比較
各個(gè)干預(yù)組之間,大鼠體質(zhì)量、血糖水平、血壓均沒有顯著性差異(P>0.05)。(表2)
注:與Non?DM組比較,aP<0.05圖1 Non?DM組與DM組大鼠腎臟皮質(zhì)AGT的免疫組化結(jié)果
注:與Non?DM組比較,aP<0.05圖2 Non?DM組與DM組大鼠腎臟皮質(zhì)AGT的Westernblot結(jié)果
表2 不同干預(yù)組大鼠體質(zhì)量、血糖、血壓情況比較±s)
四、不同干預(yù)組大鼠腎臟皮質(zhì)AGT的表達(dá)情況比較
氯沙坦和氧化應(yīng)激反應(yīng)拮抗劑組腎臟皮質(zhì)AGT的表達(dá)有所下調(diào),陽性對(duì)照組與肼屈嗪組AGT表達(dá)沒有顯著改變。(圖3~4)
注:與陽性對(duì)照組比較,aP<0.05圖3 各組大鼠腎臟皮質(zhì)AGT的免疫組化結(jié)果
注:與陽性對(duì)照組比較,aP<0.05圖4 不同組大鼠腎臟皮質(zhì)AGT的表達(dá)情況
在DM疾病過程中,體內(nèi)會(huì)蓄積大量糖基化終產(chǎn)物(advanced glycation end products,AGEs),這類物質(zhì)不僅可以直接對(duì)腎實(shí)質(zhì)各類細(xì)胞有毒性傷害作用,而且可以提高組織器官內(nèi)的氧化應(yīng)激反應(yīng),而氧化應(yīng)激反應(yīng)又與交感興奮性和RAS的活化有著密切的聯(lián)系,這無疑又間接或直接地促進(jìn)了腎臟損傷的進(jìn)程。氧化應(yīng)激作用在DM的腎臟損傷進(jìn)程中起到了關(guān)鍵作用。DM患者體內(nèi)會(huì)產(chǎn)生大量的活性氧或活性氮簇物質(zhì),這些物質(zhì)遠(yuǎn)遠(yuǎn)超過了體內(nèi)清除的速率。因此,這些活性氧化物在體內(nèi)不斷蓄積,最終對(duì)體內(nèi)各組織器官產(chǎn)生損傷作用[8]。在DM疾病過程中,血液和組織器官中會(huì)蓄積大量AGEs,這類物質(zhì)不僅可以直接對(duì)腎實(shí)質(zhì)各類細(xì)胞有毒性傷害作用,而且還可以提高組織器官內(nèi)的氧化應(yīng)激反應(yīng)[9]。
研究發(fā)現(xiàn),在 DM患者人群中,心血管交感神經(jīng)興奮性普遍增高[10]。在DM大鼠模型中,大鼠血液內(nèi)的血管緊張素II含量也會(huì)顯著升高。在DM狀態(tài)下,機(jī)體排尿量的增加導(dǎo)致全身體液平衡發(fā)生變化,刺激體內(nèi)壓力和容量感受器,RAS活性顯著升高[11],腎臟RAS活性的持續(xù)升高可促進(jìn)腎臟纖維化的發(fā)生、發(fā)展,損傷腎功能[12]。高糖內(nèi)環(huán)境可以蓄積大量糖基化終產(chǎn)物導(dǎo)致氧化應(yīng)激反應(yīng)增高[13],同時(shí)還升高了體內(nèi)腎素、血管緊張素等RAS成分的含量[14-15],這無疑進(jìn)一步加速了糖尿病腎病的發(fā)生和發(fā)展。在動(dòng)物研究中,人為提高大鼠體內(nèi)血管緊張素Ⅱ水平可以促進(jìn)氧化應(yīng)激指標(biāo)Nox的水平[16-17]。臨床研究報(bào)道Tempol可以有效拮抗氧化應(yīng)激作用,從而下調(diào)RAS活性,從而達(dá)到改變血管內(nèi)血流動(dòng)力學(xué)的目的[18],進(jìn)而達(dá)到改善腎功能的目的。對(duì)早期糖尿病患者使用RAS阻斷劑可以有效延緩慢性腎臟病的進(jìn)程[19]。在鹽敏感性高血壓大鼠模型中,在大鼠血壓升高之前氧化應(yīng)激指標(biāo)就有所升高,氧化應(yīng)激作用先于RAS的活化,促進(jìn)了血壓升高[20]。種種研究結(jié)果表明,RAS的活化與氧化應(yīng)激作用二者有著密不可分的聯(lián)系。我們觀察了所有DM大鼠發(fā)現(xiàn)其血糖值雖然有所升高,但血壓水平卻并未因腎臟RAS的活性增高而升高,這與文獻(xiàn)報(bào)道一致[21]。腎小管上皮細(xì)胞RAS的過度活化可以加速細(xì)胞凋亡,而氧化應(yīng)激反應(yīng)也參與到這一過程中[22-23]。這一點(diǎn)也可以解釋1型糖尿病患者雖然血壓不高,但DN發(fā)病率高的現(xiàn)象。
DN作為DM的主要并發(fā)癥之一,往往是DM患者致死、致殘的主要原因。DM治療的一個(gè)重要目標(biāo)就是預(yù)防和延緩其并發(fā)癥的發(fā)生和發(fā)展,提高生存質(zhì)量。因此,明確DN發(fā)病機(jī)制有利于發(fā)現(xiàn)探索新的治療方案和治療靶點(diǎn),為臨床治療提供更加可靠的理論基礎(chǔ)。
致謝 誠摯地感謝中山大學(xué)高血壓病研究所實(shí)驗(yàn)室的實(shí)驗(yàn)員對(duì)本研究的支持和幫助。
[1] Gallagher H, Suckling RJ. Diabetic nephropathy-where are we on the journey from pathophysiology to treatment?[J]. Diabetes Obes Metab, 2016 , 18(7): 641-647.
[2] Klein IH, Ligtenberg G, Neumann J, et al. Sympathetic nerve activity is inappropriately increased in chronic renal disease[J]. J Am Soc Nephrol, 2003, 14: 3239-3244.
[3] De Mello WC. Local renin angiotensin aldosterone systems and cardiovascular diseases[J]. Med Clin North Am, 2017, 101: 117-127.
[4] Rochette L, Zeller M, Cottin Y, et al. Diabetes, oxidative stress and therapeutic strategies[J]. Biochim Biophys Acta, 2014, 1840: 2709-2729.
[5] Peng T, Wang J, Zhen J, et al. Effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats[J]. Biomed Rep, 2014, 2: 490-494.
[6] Inada A, Kanamori H, Arai H, et al. A model for diabetic nephropathy: advantages of the inducible cAMP early repressor transgenic mouse over the streptozotocin-induced diabetic mouse[J]. J Cell Physiol, 2008, 215: 383-391.
[7] Cao W, Li A, Wang L, et al. A salt-induced reno-cerebral reflex activates renin-angiotensin systems and promotes CKD progression[J]. J Am Soc Nephrol, 2015, 26: 1619-1633.
[8] Piwkowska A, Rogacka D, Audzeyenka I, et al. High glucose concentration affects the oxidant-antioxidant balance in cultured mouse podocytes[J]. J Cell Biochem, 2011, 112: 1661-1672.
[9] Wu J, Mei C, Vlassara H, et al. Oxidative stress-induced JNK activation contributes to proinflammatory phenotype of aging diabetic mesangial cells[J]. Am J Physiol Renal Physiol, 2009, 297: F1622-1631.
[10]Thackeray JT, DeKemp RA, Beanlands RS, et al. Early diabetes treatment does not prevent sympathetic dysinnervation in the streptozotocin diabetic rat heart[J]. J Nucl Cardiol, 2014, 21: 829-841.
[11]Patel KP, Mayhan WG, Bidasee KR, et al. Enhanced angiotensin II-mediated central sympathoexcitation in streptozotocin-induced diabetes: role of superoxide anion[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 300: R311-320.
[12]Stock J, Kuenanz J, Glonke N, et al. Prospective study on the potential of RAAS blockade to halt renal disease in Alport syndrome patients with heterozygous mutations[J]. Pediatr Nephrol, 2017, 32: 131-137.
[13]Brezniceanu ML, Liu F, Wei CC, et al. Catalase over expression attenuates angiotensinogen expression and apoptosis in diabetic mice[J]. Kidney Int, 2007, 71: 912-923.
[14]Minuz P, Patrignani P, Gaino S, et al. Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease[J]. Circulation, 2002, 106: 2800-2805.
[15]Matz R. Renovascular hypertension, endothelial function, and oxidative stress[J]. N Engl J Med , 2002, 347: 1528-1530.
[16]Wingler K, Wunsch S, Kreutz R, et al. Up regulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo[J]. Free Radic Biol Med, 2001, 31: 1456-1464.
[17]Wang HD, Johns DG, Xu S, et al. Role of superoxide anion in regulating pressor and vascular hypertrophic response to angiotensin II[J]. Am J Physiol Heart Circ Physiol, 2002, 282: H1697-1702.
[18]Wang D, Chen Y, Chabrashvili T, et al. Role of oxidative stress in endothelial dysfunction and enhanced responses to angiotensin II of afferent arterioles from rabbits infused with angiotensin II[J]. J Am Soc Nephrol, 2003, 14: 2783-2789.
[19]Schievink B, Kropelin T, Mulder S, et al. Early renin-angiotensin system intervention is more beneficial than late intervention in delaying end-stage renal disease in patients with type 2 diabetes[J]. Diabetes Obes Metab, 2016, 18: 64-71.
[20]Chabrashvili T, Tojo A, Onozato ML, et al. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney[J]. Hypertension, 2002, 39: 269-274.
[21]Shi XY, Hou FF, Niu HX, et al. Advanced oxidation protein products promote inflammation in diabetic kidney through activation of renal nicotinamide adenine dinucleotide phosphate oxidase[J]. Endocrinology, 2008, 149: 1829-1839.
[22]Lodha S, Dani D, Mehta R, et al. Angiotensin II-induced mesangial cell apoptosis: role of oxidative stress[J]. Mol Med, 2002, 8: 830-840.
[23]Bhaskaran M, Reddy K, Radhakrishanan N, et al. Angiotensin II induces apoptosis in renal proximal tubular cells[J]. Am J Physiol Renal Physiol, 2003, 284: F955-965.
Effect of oxidative stress on kidney cortex angiotensinogen expression in rate type 1 diabetes model
ZHENGWei-ping,LIANGXiang,ZOUYuan-fang,LIUYu-feng,SUXiao-yan.
DonghuaHospital,SunYat-senUniversity,Dongguan523110,ChinaCorrespondingauthor:SUXiao-yan,E-mail:suxiaoyan769@hotmail.com
Objective To observe the changes of kidney cortex angiotensinogen (AGT) expression in rate type Ⅰ diabetes model, and the effect of the anti-oxidative stress induction on the kidney cortex AGT expression in order to infer indirectly that there is some relationship between renin-angiotensin system (RAS) and oxidative stress. Methods First part of the experiment: Male Sprague Dawley (SD) rats were randomly divided into two groups: diabetic mellitus (DM) group and non-DM group. Rats in DM group were injected with streptozotocin (STZ) intraperitoneally, and those in non-DM group were given the same dosage of vehicle. The body weight, blood glucose, blood pressure and AGT expression in both groups were measured at the end of 4 weeks. Second part of the experiment: All type Ⅰ diabetes rats were randomly divided into four groups, and administrated with distilled water, Losartan, hydralazine and Tempol respectively. The body weight, blood glucose, blood pressure and AGT expression in all groups were detected after 4 weeks since the type Ⅰ diabetes model was established. Results There were significant differences in body weight, blood glucose and blood pressure between non-DM group and DM group after 4 weeks (P<0.05). The cortex AGT expression was up-regulated in DM group. There was no significant difference in body weight, blood glucose and blood pressure among the four groups. The cortex AGT expression in Losartan group and Tempol group was reduced significantly, and that in hydralazine group had no changes as compared with the distilled water group. Conclusions The cortex AGT expression was up-regulated in DM group. Both anti oxidative stress and Losartan can reduce the AGT expression, suggesting some relationships between the activity of RAS and oxidative stress.
Diabetes mellitus; Chronic kidney disease; Renin angiotensin system; Angiotensinogen; Oxidative stress
10.3969/j.issn.1671-2390.2017.05.010
廣東省醫(yī)學(xué)科學(xué)技術(shù)研究基金面上項(xiàng)目(No.20161122099434)
523110 東莞,中山大學(xué)附屬東華醫(yī)院腎病風(fēng)濕科
蘇曉燕,E-mail:suxiaoyan769@hotmail.com
2017-02-06
2017-03-25)