方肖晨,王春紅,張榮華,張光燦?,邢先雙,楊銳,趙潔
(1.山東省土壤侵蝕與生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室/山東農(nóng)業(yè)大學(xué)林學(xué)院,271018,山東泰安;2.水利部水利水電規(guī)劃設(shè)計(jì)總院,100120,北京;3.山東省水文局,250012,濟(jì)南)
伏牛山區(qū)迎河小流域不同土地利用類型的土壤粒徑分布特征
方肖晨1,王春紅2,張榮華1,張光燦1?,邢先雙3,楊銳1,趙潔1
(1.山東省土壤侵蝕與生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室/山東農(nóng)業(yè)大學(xué)林學(xué)院,271018,山東泰安;2.水利部水利水電規(guī)劃設(shè)計(jì)總院,100120,北京;3.山東省水文局,250012,濟(jì)南)
為探討伏牛山區(qū)坡耕地土壤物理性能的退化特征,在河南省魯山縣迎河小流域,利用激光粒度儀和土壤分形模型,比較分析了4種土地利用類型的土壤粒徑分布(PSD)及其分形特征。研究結(jié)果表明:1)土壤PSD簡單分維(Dv)以喬木林地最高(2.658),坡耕地最低(2.489),多重分維(容量維D0、信息維D1、關(guān)聯(lián)維D2)以喬木林地最高(0.941、0.926、0.91),坡耕地最低(0.927、0.899、0.849)。不同分形參數(shù)均表現(xiàn)為:坡耕地<灌草坡地和水平梯田<喬木林地;2)土壤PSD的Dv、D0、D1和D2,與黏粒和粉粒體積分?jǐn)?shù)顯著正相關(guān),與砂粒體積分?jǐn)?shù)顯著負(fù)相關(guān)。因此,利用土壤PSD簡單分形和多重分形維數(shù),可量化表征土壤質(zhì)地的粗細(xì)程度和非均勻性質(zhì)的差別;坡耕地土壤質(zhì)地的粗?;潭群头蔷鶆蛐悦黠@大于其他土地利用類型;土壤細(xì)粒(黏粒和粉粒)物質(zhì)流失是坡耕地土壤質(zhì)地粗?;头蔷鶆虺潭仍龃蟮闹匾?。
土壤顆粒分布; 分形維數(shù); 多重分形; 土地利用類型; 迎河小流域
伏牛山區(qū)屬于全國水土保持區(qū)劃的“土壤保持-水源涵養(yǎng)功能區(qū)”[1],是淮河流域乃至北方土石山區(qū)土壤侵蝕最為嚴(yán)重的區(qū)域之一[2]。土地利用類型是影響土壤侵蝕的重要因素,坡耕地是伏牛山區(qū)土壤侵蝕的主要策源地[3],亦是坡面侵蝕程度與危害最大的土地利用類型。坡面侵蝕引發(fā)土壤細(xì)顆粒物質(zhì)流失,導(dǎo)致土壤質(zhì)地粗化和土壤結(jié)構(gòu)與性能的退化[4]。土壤顆粒組成或粒徑分布與土壤質(zhì)地、結(jié)構(gòu)和性能密切相關(guān)[5-6],研究不同土地利用類型下的土壤粒徑分布特征,對于深入認(rèn)識坡耕地侵蝕對土壤結(jié)構(gòu)與性能的危害具有重要作用。
目前,分形理論與方法已成為定量化研究土壤粒徑分布(particle size distribution,PSD)特征的重要手段。在以往的報(bào)道中,多見于利用傳統(tǒng)吸管法或比重計(jì)法測定土壤顆粒組成[7-8],研究土壤PSD簡單分形的質(zhì)量維數(shù)[7-10]。近年來,隨著激光衍射法(激光粒度儀)在土壤顆粒組成測定中的應(yīng)用[7-8,11-12],對土壤PSD多重分形特征的研究報(bào)道逐漸增多[13-16]。研究認(rèn)為,多重分形可對土壤PSD的復(fù)雜性和非均勻性給予一定的解釋[15]。其中,已有研究報(bào)道了不同土地利用類型或植被類型下土壤PSD多重分形維數(shù)與非均勻性質(zhì)的變化[5-6,17-20],但少見有關(guān)坡耕地這一土地利用類型的報(bào)道。
筆者以伏牛山區(qū)迎河小流域內(nèi)坡耕地、水平梯田、灌草坡地和喬木林地為對象,利用簡單分形和多重分形方法,分析不同土地利用類型的土壤PSD特征,以量化坡耕地土壤PSD粗細(xì)程度、非均勻性與其他土地利用類型的差別,為定量評價(jià)坡耕地土壤物理性狀的退化程度提供試驗(yàn)證據(jù)。
迎河小流域地處河南省魯山縣,位于伏牛山脈東麓外方山余脈、淮河水系沙河上游,地理坐標(biāo)E 112° 42′49″~112° 44′20″,N 33° 54′16″~33° 56′34″,總面積約5.83 km2。魯山縣屬暖溫帶大陸性季風(fēng)氣候,多年平均年降水量685.4 mm,多年平均年蒸發(fā)量965.1 mm,多年平均氣溫為15.3 ℃,年日照時(shí)間1 625.9 h,無霜期245 d。迎河小流域地貌以低山丘陵為主,海拔在224.3~732.5 m之間。母巖主要有石灰?guī)r、風(fēng)化片麻巖,土壤質(zhì)地以粉質(zhì)及砂質(zhì)壤土為主[2]。
迎河小流域植被類型屬于暖溫帶落葉闊葉林,喬木植物主要有麻櫟(Quercusacutissima)、黃連木(Pistaciachinensis)、油桐(Verniciafordii)等,灌木植物主要有荊條(Vitexnegundovar.heterophylla)、胡枝子(Lespedezabicolor)、酸棗(Ziziphusjujubavar.spinosa)、扁擔(dān)木(Grewiabiloba)等,草本植物主要有苔草(Carextristachya)、白蓮蒿(Artemisiasacrorum)、益母草(Leonurusartemisia)、艾蒿(Artemisiaeargyi)、茅葉藎草(Arthraxonlanceolatus)、早熟禾(Poaannua)等。
2.1 樣品采集
在小流域踏查的基礎(chǔ)上,選取4種土地利用類型(5種植被類型)為研究對象設(shè)置樣地(表1),其中喬木林地和灌草坡地處于封禁保育狀態(tài)。在每種土地利用類型中,設(shè)置3個(gè)臨時(shí)樣地(20 m×20 m),每個(gè)樣地內(nèi)采用5點(diǎn)取樣法[17-18]挖取表層(0~20 cm)土壤,帶回實(shí)驗(yàn)室將同一樣地的土壤混合均勻,經(jīng)風(fēng)干處理后進(jìn)行土壤顆粒組成測定。
表1 不同土地利用類型樣地概況Tab.1 Structural situation of different land use types in the experimental area
2.2 測試方法
2.2.1 土壤顆粒組成測定 土壤顆粒組成采用激光粒度儀測定。將野外采集的土壤中>2 mm的石礫篩除,測定≤2 mm土粒的顆粒組成。取0.3 g土樣加入10%的H2O2溶液去除有機(jī)質(zhì),之后加入10%的HCl溶液去除碳酸鹽。加去離子水并除上清液,反復(fù)靜置調(diào)pH值為6.5~7.0。加入0.1 mL/L的六偏磷酸鈉,超聲振蕩10 min后,使用激光粒度儀(LS13320)測量土壤顆粒(0.02~2 000 μm)體積比例[18]。
2.2.2 簡單分形維數(shù)計(jì)算 根據(jù)美國制分級標(biāo)準(zhǔn)[21]將土壤粒徑分為7個(gè)級別,即黏粒<0.002 mm、粉粒0.002~0.05 mm、極細(xì)砂粒0.05~0.1 mm、細(xì)砂粒0.1~0.25 mm、中砂粒0.25~0.5 mm、粗砂粒0.5~1.0 mm、極粗砂粒1~2 mm,采用土壤顆粒體積分形模型,計(jì)算土壤PSD的簡單分形維數(shù)(Dv)。具體計(jì)算方法詳見文獻(xiàn)[18]和[22]。
2.2.3 多重分形維數(shù)計(jì)算 利用廣義分形維數(shù)譜函數(shù)(q-Dq)表述土壤PSD的多重分形特征,將土壤顆粒組成測定的粒徑范圍(0.02~2 000 μm)劃分為64個(gè)小區(qū)間,利用q-Dq譜函數(shù)計(jì)算在-10≤q≤10范圍內(nèi)(步長為1)的Dq值,得到土壤PSD的q-Dq關(guān)系曲線。其中:當(dāng)q=0、1、2時(shí),即容量維數(shù)D0、信息維數(shù)D1和關(guān)聯(lián)維數(shù)D2。具體計(jì)算方法詳見文獻(xiàn)[15]和[17-18]
2.3 數(shù)據(jù)處理
數(shù)據(jù)處理制圖采用Office Excel 2003制作,相關(guān)性分析采用SPSS19.0軟件,方差分析采用最小顯著性差異(LSD)法。
3.1 土壤粒徑分布頻率特征
土壤粒徑分布頻率曲線(圖1)比較直觀地表明,不同土地利用類型的土壤粒徑分布(PSD)具有明顯差別。在坡耕地中,PSD高峰區(qū)出現(xiàn)在粒徑為
0.25~1.0 mm的中粗砂粒范圍,且明顯高于其他粒徑的土粒體積分?jǐn)?shù);在喬木林地中,PSD高峰區(qū)出現(xiàn)在粒徑為0.002~0.05 mm的粉粒范圍,與其他粒徑中土粒體積分?jǐn)?shù)的差別相對較小。按美國制土壤質(zhì)地的粒級分類標(biāo)準(zhǔn)[21]分析,不同土地利用類型土壤顆粒組成表(表2)可得,不同土地利用類型土壤中的黏粒體積分?jǐn)?shù),以喬木林地的最高(5.98%~7.94%),坡耕地的最低(2.38%),灌草坡地和水平梯田的介于二者之間,喬木林地的2種植被類型分別比坡耕地高151%、234%;而砂粒體積分?jǐn)?shù)以坡耕地的最高(73.94%),喬木林地的最低(35.82%~36.60%),坡耕地分別比喬木林地的2種植被類型高106%、102%。
QM-M:麻櫟林,QM-Z:雜木林,GC:灌草坡地,TT:水平梯田,PG:坡耕地. 下同。QM-M:Quercus acutissima forest. QM-Z: Weed tree forest. GC: Shrub-grass land. TT: Terraced land. PG: Sloping farmland. The same below.圖1 不同土地利用類型土壤顆粒體積含量頻率分布Fig.1 Frequency distribution of volume of soil particles under different land use types
土地利用類型Landusetype植被類型Vegetationtype土壤粒級Soilseparate/mm黏粒Clay粉粒Silt砂粒Sand合計(jì)Total極細(xì)砂粒Veryfinesand細(xì)砂粒Finesand中砂粒Middlesand粗砂粒Coarsesand極粗砂粒Verycoarsesand<00020002~005005~20005~0101~025025~0505~11~2QMQM?M749559136607649855901069252QM?Z598582035828131090819724136GCGCC57230446384606121916602088811TTNZW296430254028328099291903929PGNZW23823687394516144022162640582平均值A(chǔ)verage-45341775370719108814131674476
注:土壤粒級中的相同粒徑包含在較大的粒級范圍中。如粒徑為0.05 mm的土粒包含在0.002~0.05 mm的粒級之中。Note: The same particle size in soil separate is included in larger size range, for instance, soil particle with a diameter of 0.05 mm,is included in the 0.002-0.05 mm soil separate.
不同土地利用類型下的土壤質(zhì)地屬性(表3),喬木林地屬于粉壤土,灌草坡地和水平梯田屬于砂壤土,坡耕地為壤砂土。以上結(jié)果表明,細(xì)粒物質(zhì)(粉、黏粒)體積分?jǐn)?shù)的不同使5種土地利用類型土壤質(zhì)地表現(xiàn)出差異性,坡耕地與其他土地利用類型相比,其質(zhì)地粗化最明顯。
3.2 土壤粒徑分布分形特征
3.2.1 簡單分形 土壤PSD簡單分形維數(shù)可定量化表征土壤顆粒組成的性質(zhì),即反映土壤顆粒的大小及其比例關(guān)系和土壤質(zhì)地的粗細(xì)程度[5,10]。分形維數(shù)由小到大,可表征土壤質(zhì)地由粗到細(xì)或由疏松到緊實(shí)變化[12]。由表3可看出,不同土地利用方式下土壤PSD的簡單分形維數(shù)(體積維數(shù)Dv)在2.489~2.658之間,表現(xiàn)為喬木林地(2.658和2.627)>灌草坡地(2.613)>水平梯田(2.540)>坡耕地(2.489),且不同土地利用類型之間Dv大小差異極顯著(P<0.01)。
由表4可看出,土壤PSD的Dv與土壤黏粒體積分?jǐn)?shù)呈極顯著正相關(guān),與粉粒體積分?jǐn)?shù)顯著正相關(guān),與砂粒體積分?jǐn)?shù)顯著負(fù)相關(guān)。綜上,土壤PSD的分形維數(shù)Dv可量化表征不同土地利用類型土壤質(zhì)地粗細(xì)程度的差別,坡耕地土壤質(zhì)地的粗?;潭让黠@高于灌草坡地、水平梯田和喬木林地。坡耕地中土壤黏粒體積分?jǐn)?shù)較低和砂粒體積分?jǐn)?shù)較高,是土壤Dv較低和粗?;潭容^高的重要原因。
表3 不同土地利用類型土壤質(zhì)地與PSD簡單 分形維數(shù)(Dv)Tab.3 Fractal dimension (Dv) and soil texture under different land use types
注:不同小寫字母表示不同植被類型間差異極顯著(P<0.01)。Note: Different lowercase letters refer to very significant difference among vegetation types atP<0.01.
表4 土壤PSD分形維數(shù)與土壤顆粒組成相關(guān)性分析Tab.4 Correlation analysis between soil particle composition and fractal dimension
注:*表示在0.05水平上顯著(P<0.05),**表示在0.01水平上顯著(P<0.01)。Note: * refers to significantly different at 0.05 level (P< 0.05), ** refers to significantly different at 0.01 level (P< 0.01).
圖2 土壤粒徑分布的廣義分形維數(shù)DqFig.2 Multi-fractal spectra Dq of soil particle distributions
3.2.2 多重分形 多重分形的廣義維數(shù)(Dq,如圖2)利用概率密度權(quán)重(q)的大小,量化分形測度的統(tǒng)計(jì)屬性,可從不同局域或?qū)哟紊狭炕碚魍寥繮SD分形結(jié)構(gòu)的復(fù)雜程度和非均勻性質(zhì)[15]。q<0時(shí)的Dq突出小概率測度區(qū)域的性質(zhì),可反映PSD分形結(jié)構(gòu)的復(fù)雜或精細(xì)特征[17-18],其變化幅度(如D-10-D0值)越大,表征分形結(jié)構(gòu)越精細(xì)或越復(fù)雜。q>0時(shí)的Dq突出大概率測度區(qū)域的性質(zhì),可反映PSD整體的非均勻性質(zhì)[13,16,23-24],其變化幅度(如D0-D10值)越大,表征土壤PSD越不均勻。容量維數(shù)D0描述PSD整體的基本性質(zhì)[5,13,15],可反映PSD顆粒群體數(shù)目的多少和粒徑范圍的大小[25];D0越大,表征土壤PSD的顆粒群體數(shù)目越多、粒徑范圍越大或缺失粒徑越少。信息維數(shù)D1反映PSD測度在局域的集中程度[13-14,18],D1越大,表征PSD測度在局域分布的粒徑范圍越寬、集中程度越低,土壤PSD越均勻。關(guān)聯(lián)維數(shù)D2反映PSD測度在局域間的離散程度[13],D2越大,表征PSD測度在不同局域間分布的差別越小、離散性越大,土壤PSD越均勻。
表5 不同土地利用類型土壤PSD的多重分形特征參數(shù)Tab.5 Multi-fractal parameters of soil particle distributions of different land use types
注:不同小寫字母表示不同植被類型間差異顯著(P<0.05)。Note: Different lowercase letters refer to significant difference among vegetation type (P<0.05).
由圖2和表5可看出,在q<0時(shí)Dq的變化幅度(D-10-D0)表現(xiàn)出坡耕地(0.757)<灌草坡地和水平梯田(0.801和0.829)<喬木林地(1.192和1.240),這表征坡耕地土壤PSD分形結(jié)構(gòu)的精細(xì)或復(fù)雜程度明顯低于其他土地利用類型。而q>0時(shí)Dq的變化幅度(D0-D10)表現(xiàn)出坡耕地(0.209)>水平梯田(0.196)>灌草坡地(0.154)>喬木林地(0.098和0.068),這表征坡耕地土壤PSD整體的均勻性明顯低于其他土地利用類型。容量維D0、信息維D1和關(guān)聯(lián)維D2,以坡耕地<灌草坡地和水平梯田<喬木林地(表5),且在不同土地利用方式之間差異顯著(P<0.05),這表征坡耕地土壤PSD顆粒群的數(shù)量、局域或整體的均勻性顯著低于其他土地利用類型。由表4可看出,D0、D1和D2均與土壤黏粒、粉粒體積分?jǐn)?shù)和簡單維數(shù)Dv顯著正相關(guān),與砂粒體積分?jǐn)?shù)顯著負(fù)相關(guān),其中D1、D2與土壤黏粒、砂粒體積分?jǐn)?shù)相關(guān)性極顯著。這表明土壤黏粒和砂粒體積分?jǐn)?shù)對PSD均勻性影響較大,黏粒越多或砂粒越少,土壤PSD越均勻。
綜上,廣義分形維數(shù)(Dq)可量化表征不同土地利用類型土壤PSD均勻程度,坡耕地土壤PSD的均勻程度明顯低于喬木林地、灌草坡地和水平梯田。土壤黏粒體積分?jǐn)?shù)較低和砂粒體積分?jǐn)?shù)較高,是坡耕地土壤PSD均勻程度較低的重要原因。
本研究表明:土壤PSD的簡單分形維數(shù)(Dv)和廣義分形維數(shù)(Dq)可量化表征不同土地利用類型土壤質(zhì)地粗細(xì)程度和非均勻性質(zhì)的差別。坡耕地土壤質(zhì)地的粗?;潭群头蔷鶆蛐悦黠@高于灌草坡地、水平梯田和喬木林地;坡耕地中土壤細(xì)粒(黏粒和粉粒)物質(zhì)流失是土壤質(zhì)地粗化和非均勻程度增大的重要原因。
目前,利用土壤PSD簡單分形維數(shù)定量化表征土壤質(zhì)地粗細(xì)程度方面的研究結(jié)果[6-7,11,26-27]比較一致。主要結(jié)論為分形維數(shù)的大小與土壤黏粒、粉粒體積分?jǐn)?shù)顯著正相關(guān),與砂粒體積分?jǐn)?shù)顯著負(fù)相關(guān);分形維數(shù)由小到大,反映了土壤質(zhì)地由粗到細(xì)的變化;與本研究結(jié)果(表3、表4)相同。已有研究表明,土壤質(zhì)地和性能較好時(shí)PSD的體積分維(Dv)大約在2.55~2.80之間,如三峽庫區(qū)耕地壤土的Dv為2.65~2.75[27],江西省林地壤土的Dv為2.70~2.80[7],西安市園地和農(nóng)田壤土的Dv為2.55~2.75[26]。相比上述結(jié)果,本研究區(qū)喬木林地、灌草坡地和水平梯田的Dv與其比較接近,坡耕地的Dv明顯較低(表3)。也有研究[6,11]報(bào)道了沂蒙山區(qū)和陜北黃土區(qū)坡耕地土壤的Dv和細(xì)粒(黏粒、粉粒)體積分?jǐn)?shù)明顯小于其他土地利用類型,這與本研究結(jié)果一致。
利用廣義分形維數(shù)(Dq)可對不同土壤PSD的復(fù)雜性和非均勻性給予一定的解釋[15]。已有研究報(bào)道了Dq中D0、D1和D2與土壤顆粒組成的關(guān)系[5-6,13-14,16,17-18],但不同研究報(bào)道的結(jié)果還很不一致。以土壤黏粒體積分?jǐn)?shù)與Dq中D0、D1和D2的關(guān)系為例,不同的結(jié)果有黏粒體積分?jǐn)?shù)與D0顯著正相關(guān)[7]或無相關(guān)[5,13,17-18],與D1顯著正相關(guān)[5-6,14,17-18]或負(fù)相關(guān)[16],與D2顯著正相關(guān)[5]、負(fù)相關(guān)[16]或無相關(guān)[13],本研究結(jié)果為土壤黏粒體積分?jǐn)?shù)與D0、D1、D2均有顯著正相關(guān)(表4)。不同研究之間結(jié)果不一致的原因還需要進(jìn)一步研究。本研究在一定程度上反映了不同質(zhì)地土壤(粉壤土、砂壤土、壤砂土)PSD廣義維數(shù)和非均勻性的差別(表3、圖2和表5),但迄今為止,關(guān)于土壤質(zhì)地屬性與土壤PSD多重分形及非均勻性關(guān)系的報(bào)道還較少見,需要開展進(jìn)一步研究。
[1] 水利部.《全國水土保持區(qū)劃(試行)》的通知[EB/OL]. [2016-12-22]. https://wenku.baidu.com/view/a7132100763231126edb11e0.html The Ministry of Water Resources of the People′s Republic of China.《Division of soil and water conservation in the whole country (for Trial Implementation)》[EB/OL]. [2016-12-22].https://wenku.baidu.com/view/a7132100763231126edb11e0.html
[2] 徐志強(qiáng),張光燦,劉霞,等. 淮河流域伏牛山區(qū)水土保持生態(tài)自然修復(fù)適宜性評價(jià)與分區(qū)[J]. 中國水土保持科學(xué), 2013,11(3):17. XU Zhiqiang, ZHANG Guangcan, LIU Xia, et al. Suitability evaluation and zoning in ecological natural restoration of soil and water conservation in Funiu Mountains Area of Huaihe River Valley[J]. Science of Soil and Water Conservation, 2013, 11(3):17.
[3] 姚孝友,劉霞,張光燦. 淮河流域坡耕地水土流失特點(diǎn)與綜合整治模式[J]. 中國水土保持科學(xué),2012,10(1):94. YAO Xiaoyou, LIU Xia, ZHANG Guangcan. Characteristics of soil and water loss and the comprehensive control patterns of slope farmland in Huaihe River Basin[J]. Science of Soil and Water Conservation, 2012, 10(1):94.
[4] 張洪江. 土壤侵蝕原理 [M]. 2版. 北京:中國林業(yè)出版社,2008:62. ZHANG Hongjiang. Principle of soil erosion[M]. 2nd ed. Beijng: China Forestry Publishing House, 2008:62.
[5] 白一茹,汪有科. 黃土丘陵區(qū)土壤粒徑分布單重分形和多重分形特征[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(5):43. BAI Yiru, WANG Youke. Monofractal and multifractal analysis on soil particle distribution in hilly and gully areas of the Loess Plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(5):43.
[6] 董莉麗,鄭粉莉. 陜北黃土丘陵溝壑區(qū)土壤粒徑分形特征[J]. 土壤,2010,42(4):302. DONG Lili,ZHENG Fenli. Fractal characteristics of soil particle size distributions in gully-hilly regions of the loess plateau, north of Shaanxi, China[J]. Soil, 2010,42(4):302.
[7] 楊金玲,李德成,張甘霖,等.土壤顆粒粒徑分布質(zhì)量分形維數(shù)和體積分形維數(shù)的對比[J].土壤學(xué)報(bào),2008,45(3): 413. YANG Jinling,LI Decheng, ZHANG Ganlin,et al. Comparison of mass and volume fractal dimensions of soil particle size distributions[J]. Acta Pedologica Sinica,2008,45(3):413.
[8] 楊艷芳,李德成,楊金玲,等. 激光衍射法和吸管法分析黏性富鐵土顆粒粒徑分布的比較[J]. 土壤學(xué)報(bào), 2008,45(3): 405. YANG Yanfang,LI Decheng,YANG Jinling,et al. Comparison between laser diffraction and pipette methods in analyses of PSD of clayey ferrisol[J]. Acta Pedologica Sinica,2008,45(3):405.
[9] 李德成,張?zhí)伊? 中國土壤顆粒組成的分形特征研究[J]. 土壤與環(huán)境,2000,9(4):263. LI Decheng, ZHANG Taolin. Fractal features of particle size distribution of soils in china[J]. Soil and Environmental Sciences,2000,9(4):263.
[10] 楊培嶺,羅元培,石元春. 用粒徑的重量分布表征的土壤分形特征[J]. 科學(xué)通報(bào),1993,38(20):1896. YANG Peiling, LUO Yuanpei, SHI Yuanchun. With the particle weight distribution characterization to represent soil fractal characteristics[J]. Chinese Science Bulletin.1993, 38(20):1896.
[11] 徐萍,劉霞,張光燦,等. 魯中山區(qū)小流域不同土地利用類型的土壤分形及水分入滲特征[J]. 中國水土保持科學(xué), 2013,11(5):89. XU Ping,LIU Xia,ZHANG Guangcan,et al. Fractal features and infiltration characteristics of soil of different land uses in a small watershed of Rocky Mountainous Area in the Middle of Shandong Province[J]. Science of Soil and Water Conservation,2013,11(5):89.
[12] 王國梁,周生路,趙其國. 土壤顆粒的體積分形維數(shù)及其在土地利用中的應(yīng)用[J]. 土壤學(xué)報(bào),2005,42(4):545. WANG Guoliang, ZHOU Shenglu, ZHAO Qiguo. Volume fractal dimension of soil particles and its applications to land use[J]. Acta Pedologica Sinica, 2005, 42(4):545.
[13] 孫梅,孫楠,黃運(yùn)湘,等. 長期不同施肥紅壤粒徑分布的多重分形特征[J]. 中國農(nóng)業(yè)科學(xué),2014,47(11):2173. SUN Mei,SUN Nan,HUANG Yunxiang,et al. Multifractal characterization of soil particle size distribution under long-term different fertilizations in upland red soil[J]. Scientia Agricultura Sinica, 2014, 47(11):2173.
[14] 管孝艷,楊培嶺,呂燁. 基于多重分形理論的農(nóng)田土壤特性空間變異性分析[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào), 2011,19(5):712. GUAN Xiaoyan,YANG Peiling,LYU Ye,et al. Analysis on spatial variability of soil properties based on multifractal theory[J]. Journal of Basic Science and Engineering, 2011, 19(5):712.
[15] 李敏,李毅. 土壤顆粒數(shù)量分布的局部分形及多重分形特性[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011,39(11): 216. LI Min, LI Yi. Local fractal and multifractal characteristics of soil number-based particle distributions[J]. Journal of Northwest A&F University(Nat. Sci. Ed.),2011,39(11):216.
[16] MIRANDA J G V, MONTEM E, ALVES M C, et al. Multifractal characterization of saprolite particle-size distributions after topsoil removal[J]. Geodermy, 2006, 134(3-4): 373.
[17] 茹豪,張建軍,李玉婷,等. 黃土高原土壤粒徑分形特征及其對土壤侵蝕的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2015,46(4): 176. RU Hao, ZHANG Jianjun, LI Yuting, et al. Fractal features of soil particle size distributions and its effect on soil erosion of Loess Plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(4):176.
[18] 王德,傅伯杰,陳利頂,等. 不同土地類型下土壤顆粒分形分析:以黃土丘陵溝壑區(qū)為例[J]. 生態(tài)學(xué)報(bào), 2007,27(7): 3081. WANG De,FU Bojie,CHEN Liding,et al. Fractal analysis on soil particle size distributions under different land-use types: a case study in the loess hilly areas of the Loess Plateau China[J]. Acta Ecologica Sinica, 2007, 27(7):3081.
[19] 董莉麗,馬孝燕,胡丹,等. 吳起縣退耕還林樣地土壤粒徑分布的單一和多重分形特征[J]. 干旱區(qū)資源與環(huán)境, 2015,29(7): 111. DONG Lili,MA Xiaoyan,HU dan,et al. Monofractal and multifractal characteristics of soil particle size distribution in sample sites of Grain for Green in Wuqi County[J]. Journal of Arid Land Resources and Environment, 2015, 29(7): 111.
[20] WANG De, FU Bojie, ZHAO Wenwu, et al. Multifractal characteristics of soil particle size distribution under different land-use types on the Loess Plateau, China[J]. Catena, 2008, 72(1): 29.
[21] 黃昌勇. 土壤學(xué)[M]. 北京:中國農(nóng)業(yè)出版社,2004:69. HUANG Changyong. Soil science[M]. Beijing: China Agriculture Press, 2004:69.
[22] 劉霞,姚孝友,張光燦,等. 沂蒙山林區(qū)不同植物群落下土壤顆粒分形與孔隙結(jié)構(gòu)特征[J]. 林業(yè)科學(xué), 2011,47(8): 32. LIU Xia, YAO Xiaoyou, ZHANG Guangcan, et al. Fractal features of soil particle size distribution and characteristics of soil pore space under different plant communities in forests of Yimeng mountains[J]. Scientia Silvae Sinicae, 2011,47(8): 32.
[23] GROUT H, TARQUIS A, WIESNER M R. Multifractal analysis of particle size distributions in soil[J]. Environment Science Technology, 1998, 32: 1176.
[24] 王金滿,張萌,白中科,等. 黃土區(qū)露天煤礦排土場重構(gòu)土壤顆粒組成的多重分形特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014, 30(4):230. WANG Jinman,ZHANG Meng,BAI Zhongke,et al. Multi-fractal characteristics of reconstructed soil particle in opencast coal mine dump in loess area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(4): 230.
[25] 韋偉,杜茂安,朱佳,等. 絮凝過程中絮體生長的多重分形行為[J]. 環(huán)境科學(xué)學(xué)報(bào),2014,34(1):79. WEI Wei,DU Maoan,ZHU Jia,et al. Multifractal behavior of flocs growth in flocculation processes[J]. Acta Scientiae Circumstantiae, 2014, 34(1):79.
[26] 淮態(tài),龐獎(jiǎng)勵(lì),文青,等. 不同土地利用方式下土壤粒徑分布的分維特征[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2008,24(2):41. HUAI Tai, PANG Jiangli, WEN Qing,et al. Fractal characteristics of particle size distribution in soils different in land Use[J]. Journal of Ecology and Rural Environment, 2008, 24(2):41.
[27] 韋杰,鮑玉海,金慧芳,等. 三峽庫區(qū)坡耕地有限順坡耕作模式及減蝕效應(yīng)[J]. 灌溉排水學(xué)報(bào),2014,31(6):45. WEI Jie,BAO Yuhai,JIN Huifang,et al. A downslope tillage system with limited slopelength on sloping farmlands in the three gorges area and its erosion reduction effects[J]. Journal of Irrigation and Drainage,2014,31(6):45.
Soil particle size distribution characteristics under different land usetypes in Yinghe Watershed of Funiu Mountain Area
FANG Xiaochen1, WANG Chunhong2, ZHANG Ronghua1, ZHANG Guangcan1, XING Xianshuang3,YANG Rui1, ZHAO Jie1
(1.The Key Laboratory of Soil Erosion and Ecological Restoration of Shandong Province, College of Forestry, Shandong Agricultural University,271018, Tai′an, Shandong, China;2.Water Resources and Hydropower Planning and Design General Institute,Ministry of Water Resources, 100120, Beijing, China;3. Hydrographic Office of Shandong Province, 250002, Jinan, China)
[Background] The soil erosion of Funiu Mountain Area has been one of the most serious problems in Huaihe River Basin even rocky mountain areas of northern China. Sloping farmland is the main source of soil erosion which causes loss of fine particle, degradation of the soil structure and performance. The soil fractal theory has been an important method to quantify particle size distribution (PSD). In this paper, we explore the degradation degree of sloping farmland soil physical property with fractal theory in Funiu Mountain Area in Yinghe Watershed, Lushan County of Henan Province. [Methods] On the basis of small watershed investigation, we selected four land use types (five vegetation types) as research subjects and set sample plots. In every land use type plot, three temporary sample plots (20 m×20 m) were set to dig surface soil (0-20 cm) with 5-point sampling method. The soil from the same plot was well mixed to dry for the determination of particle size distribution. After the determination by the laser granulometer, the frequency distribution of volume of the soil particle (< 2 mm) under different land use types was obtained. Then we divided the volume of soil particle into 7 levels according to American standard: clay: <0.002 mm, silt: 0.002-0.05 mm, very fine sand: 0.05-0.1 mm, fine sand: 0.1-0.25 mm, middle sand: 0.25-0.5 mm, coarse sand: 0.5-1.0 mm, very coarse sand: 1-2 mm. By soil particle volume fractal model and general dimension spectrum, the fractal dimensionDvand multi-fractal parameterDqwere obtained. Among them, whenq= 0, 1, 2, theDqis respectivelyD0,D1,D2. After the above method and comprehensive analysis, we studied the composition of soil particles size, variation of fractal dimension characteristic parameter and effect on PSD uniformity under four land use types. [Results] 1) TheDvwas manifested as: the maximum was arbor forest (2.658), and the sloping farmland was the smallest one by 2.489. The multi-fractal parameters (D0,D1,D2) was manifested as: the maximum was arbor forest (0.941, 0.926, 0.91), and the sloping farmland was the smallest one by 0.927, 0.899, 0.849. All the fractal parameters were manifested as: sloping farmland < shrub-grass slope land and terraced land < arbor forest. 2) There were significant positive correlation betweenDv,D0,D1,D2and clay, silt volume fraction, and all of them had significantly negative correlations with sand volume fraction. [Conclusions] Soil fractal theory and multi-fractal theory can be used to quantitatively characterize differences of soil texture granularity distribution and heterogeneity; the coarse graining and heterogeneity of sloping farmland is higher than other land use types, the loss of soil fine particle (clay and silt) lead to the increase of degree of coarse graining and heterogeneity of sloping farmland.
soil particle size distribution; fractal dimension; multi-fractal; land use type; Yinghe Watershed
2016-12-28
2016-04-24
方肖晨(1990—),男,碩士研究生。主要研究方向:植被重建與水文生態(tài)。E-mail:leomld@163.com
?通信作者簡介: 張光燦(1963—),男,博士,教授,博士生導(dǎo)師。主要研究方向:林業(yè)生態(tài)工程,植物水文生態(tài)。E-mail:zhgc@sdau.edu.cn
S157
A
2096-2673(2017)03-0009-08
10.16843/j.sswc.2017.03.002
項(xiàng)目名稱: 淮河水利委員會(huì)水土保持管理項(xiàng)目“淮河流域國家水土保持重點(diǎn)工程區(qū)水土流失存在問題及防治對策”(HWSBC2015002)