聶晨曦, 徐景濤,2, 武道吉,2*, 王 寧, 丁國(guó)村
1.山東建筑大學(xué)市政與環(huán)境工程學(xué)院, 山東 濟(jì)南 250101 2.山東省綠色建筑協(xié)同創(chuàng)新中心, 山東 濟(jì)南 250101
青貯秸稈活性炭的制備和改性及其對(duì)阿莫西林的吸附特性
聶晨曦1, 徐景濤1,2, 武道吉1,2*, 王 寧1, 丁國(guó)村1
1.山東建筑大學(xué)市政與環(huán)境工程學(xué)院, 山東 濟(jì)南 250101 2.山東省綠色建筑協(xié)同創(chuàng)新中心, 山東 濟(jì)南 250101
為提高秸稈活性炭性能及其對(duì)AMX(阿莫西林)的吸附效果,研究了青貯秸稈活性炭的制備和改性方法及其對(duì)AMX的吸附特性. 以青貯玉米秸稈為原料,通過響應(yīng)面法(RSM),在活化溫度為584 ℃、浸漬比為1∶1.9的條件下,制備了AC-S(青貯活性炭)和AC-SA(改性青貯活性炭). 通過比表面積和孔徑分析,AC-S和AC-SA的SBET(比表面積)分別為1 521、1 347 m2/g,兩種活性炭兼具中孔和微孔. 研究了吸附動(dòng)力學(xué)、熱力學(xué)特性及初始ρ(AMX)、pH對(duì)吸附結(jié)果的影響. 結(jié)果表明,AC-S和AC-SA對(duì)AMX的最大吸附量分別為39.69、45.60 mg/L,均符合偽二級(jí)動(dòng)力學(xué)模型和Langmuir吸附等溫模型(R2>0.99),吸附形式主要為化學(xué)吸附,在酸性條件下吸附量增加. 研究顯示,改性后AC-SA的酸性官能團(tuán)增加45.31%,提高了其與AMX的堿性基團(tuán)結(jié)合能力,因此對(duì)AMX的吸附效果更好.
響應(yīng)面; 青貯活性炭; 丁二酸; 阿莫西林; 吸附
Abstract: Activated carbon derived from silage stalks and modified activated carbon were investigated to improve the adsorption performance of amoxicillin. Based on response surface method (RSM), silage corn stalks were used as raw material to prepare the activated carbon (AC-S) at 584 ℃ and the succinic acid-modified activated carbon (AC-SA) (succinic acid dosage of 0.005 mol/g) with impregnation ratio of 1∶1.9. The specific surface areas of AC-S and AC-SA were 1521 and 1347 m2/g, respectively, both of which contained certain amount of mesopores and micropores. The effects of adsorption kinetics, thermodynamic properties, initial concentrations of amoxicillin and pH on adsorption were studied, and the results showed that the maximum adsorption capacities of AC-S and AC-SA were 39.69 and 45.60 mg/L, respectively. Both adsorption processes were well fitted by pseudo-second-order kinetic model and Langmuir isotherm (R2>0.99), implying the mechanism favored chemical adsorption. After modification, the acidic functional groups on AC-SA increased by 45.31%, enhancing the binding ability of the basic groups of amoxicillin. The results showed that the adsorption capacity of amoxicillin on succinic acid modified activated carbon was higher.
Keywords: response surface methodology; silage activated carbon; succinic acid; amoxicillin; adsorption
AMX(阿莫西林)是一種最常用的半合成青霉素類廣譜β-內(nèi)酰胺類抗生素,常用于治療細(xì)菌感染的胃腸疾病及其他疾病,在臨床治療中應(yīng)用廣泛[1],有報(bào)道[2]指出,口服500 mg的AMX在人類消化系統(tǒng)消化2 h后,仍然有86%±8%排泄到外界. AMX難以降解,在水產(chǎn)養(yǎng)殖業(yè)、畜牧業(yè)等有著廣泛應(yīng)用,有報(bào)道[1]指出大約30%~90%AMX將通過人畜糞便等其他途徑排放到環(huán)境中. 由于AMX過度使用,會(huì)導(dǎo)致致病菌耐藥性增加[3-4],對(duì)地下水和地表水產(chǎn)生極大威脅與污染. 因此,如何高效去除水中AMX的殘余是當(dāng)今科技研究的熱點(diǎn)之一.
玉米秸稈作為一種副產(chǎn)物,除少數(shù)作為飼料外,大部分采用露天焚燒等方式處理,不僅浪費(fèi)能源,也污染環(huán)境[5]. 因此,玉米秸稈的資源化利用成為人們關(guān)注的熱點(diǎn). 活性炭作為一種廉價(jià)吸附劑,具有比表面積大、吸附能力強(qiáng)、化學(xué)性能穩(wěn)定、易再生等特點(diǎn)[6-7],將玉米秸稈制成活性炭是近年來玉米秸稈資源化研究的熱點(diǎn). 研究人員將玉米秸稈和玉米芯以H3PO4[8]、ZnCl2[9]、KOH[10]、丙烯晴[11]為改性劑制備活性炭,制成的活性炭可有效去除水中鉻、鎘等重金屬,去除率達(dá)16.0%~99.2%[11-12],對(duì)直接紅-23[13]、亞甲基藍(lán)[9]等染料的去除率也在90%以上,此外以玉米秸稈為原料制成的活性炭在化學(xué)性質(zhì)穩(wěn)定的硬水中如十二烷基苯磺酸鹽污染水[14]中也取得了良好的處理效果.
以玉米秸稈為原料,將新型方法——青貯法,引入活性炭制備過程,制備AC-S(青貯活性炭). 青貯法具有新型、高效、不采用化學(xué)劑綠色環(huán)保無污染的優(yōu)勢(shì)[15],同時(shí)青貯過程中產(chǎn)生部分酸性官能團(tuán),有助于活性炭表面酸性官能團(tuán)的富集. AC-S的制備可節(jié)約資源,降低成本,不僅有利于生物秸稈的回收利用, 更能推動(dòng)其他的環(huán)保產(chǎn)業(yè)進(jìn)展. 為了獲得更高吸附性能的活性炭,在制備青貯玉米秸稈的活化劑磷酸中摻入丁二酸來替代單一的活化劑的方法,目前鮮有文獻(xiàn)報(bào)道. 丁二酸具有活潑的亞甲基,羧基,在工業(yè)、食品加工、醫(yī)藥衛(wèi)生、農(nóng)業(yè)等方面得到廣泛應(yīng)用. 因此,該文以青貯玉米秸稈為原料制備活性炭,采用響應(yīng)面法(RSM)中心組合(BBD)設(shè)計(jì)[16-17]試驗(yàn)方案,考察活性炭制備時(shí)磷酸與原料的浸漬比、改性劑丁二酸投加量、炭化溫度的影響,對(duì)AC-S的改性制備工藝進(jìn)行優(yōu)選,在優(yōu)選條件下,同時(shí)制備未改性活性炭,以期探究AC-S及AC-SA (改性青貯活性炭)對(duì)AMX的吸附性能及相關(guān)機(jī)理.
1.1 試驗(yàn)材料
試驗(yàn)所用玉米秸稈取自山東省濟(jì)南市安家村.
AMX(C16H25N3O8S,北京華邁科制藥有限公司);磷酸、丁二酸、氫氧化鈉等試劑均采用分析純;試驗(yàn)水樣采用去離子水配制. 比表面積及孔徑自動(dòng)分析儀(Quadrasorb SI,美國(guó)康塔儀器公司);馬弗爐(KSY,山東省龍口市先科儀器公司);紫外可見分光光度計(jì)(UV-752,上海光譜儀器有限公司);精密酸度計(jì)(PHS-3C,上海大普儀器有限公司)等.
1.2 試驗(yàn)方法
1.2.1 青貯玉米秸稈的制備
將剛收獲的玉米秸稈(水分40%~50%)破碎至6 mm以下,直接進(jìn)行青貯(封壇、壓實(shí)、泥封、于20 ℃避光貯藏),青貯約20 d. 玉米秸稈呈黃綠色、柔軟稍濕潤(rùn)、有一股濃酒酸味即可證明青貯成功. 作為制備活性炭的原料.
1.2.2 AC-S與AC-SA的優(yōu)選制備
該試驗(yàn)采用常規(guī)活性炭制備方法.
活化:將青貯原料粉碎分篩至0.18 mm為活化原料. 按青貯原料與活化劑磷酸浸漬比不同,浸漬時(shí)間10 h. AC-SA活化劑需要添加丁二酸.
炭化:將浸漬好的原料置于馬弗爐中,按一定溫度炭化1 h.
洗滌:將炭化好的活性炭用去離子水多次洗滌至中性.
烘干及研磨:將活性炭置于105 ℃烘箱中烘干至恒質(zhì)量后研磨過篩至0.075~0.106 mm,得到活性炭.
為了得到最佳的工藝條件,采用響應(yīng)面法中心組合設(shè)計(jì)試驗(yàn)方案. 隨著溫度的升高,更多的活化試劑分子擴(kuò)散到前體,形成廣泛的孔隙網(wǎng)絡(luò)[9],而過高的溫度和浸漬比會(huì)導(dǎo)致活性炭產(chǎn)率較低[18],導(dǎo)致介孔擴(kuò)大,過多的改性劑會(huì)堵塞活性炭的介孔[19]. 因此該試驗(yàn)借鑒其他試驗(yàn)經(jīng)驗(yàn),選用活性炭制備時(shí)磷酸與原料的浸漬比不同、改性劑丁二酸投加量不同、炭化溫度不同,3個(gè)變量進(jìn)行三因素三水平響應(yīng)面分析設(shè)計(jì),對(duì)青貯活性炭改性制備工藝進(jìn)行優(yōu)選. 試驗(yàn)因素及水平如表1所示.
表1 響應(yīng)面分析的因素水平表
1.2.3 活性炭性能表征
采用美國(guó)康塔Quadrasorb SI全自動(dòng)比表面積及孔隙度分析儀測(cè)定活性炭的孔徑結(jié)構(gòu)[20]. 在低溫(77 K)下測(cè)定氮的吸附/脫附等溫線. 由BET法計(jì)算SBET(比表面積),密度函數(shù)理論計(jì)算孔徑分布;總孔容和平均孔徑由系統(tǒng)軟件計(jì)算得到;用t-plot法計(jì)算Vmic(微孔孔容)和Sext(外表面積),Smic(微孔表面積)為SBET和Sext之差.
1.2.4 活性炭吸附性能測(cè)試
取一定質(zhì)量濃度的AMX溶液50 mL于100 mL容量瓶中,加入一定量的活性炭(AC-S或未AC-SA),混合均勻. 以160 r/min的頻率在恒溫水浴搖床中振蕩一定時(shí)間,待平衡后用0.45 μm濾膜過濾,取其濾液,采用紫外分光光度計(jì),測(cè)量波長(zhǎng)為230 nm[21].
吸附劑投加量、平衡時(shí)間、溶液初始濃度、pH等是影響水體中污染物去除效果的重要因素. 因此該試驗(yàn)選取這些變量的影響進(jìn)行單因素試驗(yàn).
1.2.4.1 最適投加量的選擇
在室溫(25±1)℃下,配置30 mg/L AMX溶液. 活性炭投加量選取0.2、0.4、0.6、0.8、1.0 g/L,振蕩平衡后測(cè)得吸附質(zhì)平衡吸附量及去除率,選取最適投加量.
1.2.4.2 吸附動(dòng)力學(xué)測(cè)定
采用動(dòng)力學(xué)試驗(yàn)考查吸附隨著時(shí)間的變化的情況. 具體方法:配制一定質(zhì)量濃度的AMX溶液,投加最適投加量的活性炭,混合均勻在磁力攪拌器上攪拌. 在設(shè)定時(shí)間范圍內(nèi),按一定的時(shí)間間隔每次抽取20 mL溶液,用0.45 μm濾膜過濾取其濾液,測(cè)定吸附質(zhì)的剩余濃度,直至吸附達(dá)到平衡.
1.2.4.3 吸附熱力學(xué)測(cè)定
選取初始ρ(AMX)為20、25、30、35、40、50、80、100 mg/L;活性炭投加量為最適投加量,振蕩時(shí)間為到達(dá)平衡時(shí)間,吸附平衡后測(cè)定ρ(AMX).
1.2.4.4 等電點(diǎn)測(cè)定
配制50 mL、0.01 mol/L的NaCl溶液,用HCl和NaOH將溶液pH調(diào)至2.00~12.00. 然后分別加入0.15 g的活性炭,混合均勻,置于恒溫振蕩器上在室溫下振蕩48 h后,測(cè)定溶液的pH. 作圖時(shí),以原始pH為橫坐標(biāo),反應(yīng)后的pH為縱坐標(biāo),當(dāng)原始pH與反應(yīng)后pH相等時(shí),所對(duì)應(yīng)的pH即為pHpzc(等電點(diǎn))[22].
1.2.4.5 Boehm滴定
分別稱取0.5 g活性炭樣品置于4只錐形瓶中,再分別加入25 mL 0.1 mol/L的NaOH、Na2CO3、NaHCO3溶液和0.1 mol/L的HCl溶液,振蕩1 h后,置于室溫靜置24 h,過濾,用適量去離子水洗滌濾紙及活性炭,將表面游離的過量酸或堿洗入濾液. 最后分別以甲基橙和酚酞為指示劑,用0.1 mol/L的HCl或NaOH溶液滴定剩余的酸或堿[23-24].
1.2.4.6 pH對(duì)活性炭吸附性能的影響
在初始ρ(AMX)為30 mg/L、活性炭最適投加量,溫度(25±1)℃的條件下,用HCL和NaOH將溶液pH調(diào)至2.00~12.00,測(cè)定活性炭對(duì)AMX的吸附量,以研究溶液pH對(duì)活性炭吸附性能的影響[25].
2.1 響應(yīng)面優(yōu)化結(jié)果及分析
以活性炭對(duì)AMX的吸附量為響應(yīng)值,根據(jù)試驗(yàn)因素水平設(shè)計(jì)的17個(gè)點(diǎn)(見表2)建立響應(yīng)面模型.
利用Design-Expert 8.0軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行回歸擬合,得AMX吸附量(Y1)與各個(gè)因素浸漬比(X1)、丁二酸投加量(X2)、炭化溫度(X3)之間的關(guān)系:
Y1=43.48-0.67X1+1.65X2+7.45X3-
0.38×X1X2-0.41X1X3-0.52X2X3-
1.20X12+0.04X22-6.80X32
(1)
該模型的P值小于0.000 1,模型屬于高度顯著,失擬項(xiàng)為 0.055 9>0.05,表明模型失擬不顯著,對(duì)模型建立有利. 因此,該研究采用式(1)對(duì)響應(yīng)面結(jié)果進(jìn)行優(yōu)選.
多參數(shù)響應(yīng)面方法可以根據(jù)工程目標(biāo)優(yōu)化反應(yīng)控制條件. 試驗(yàn)中,控制條件包括確定炭化溫度、浸漬比、丁二酸投加量、AMX吸附量等,其中以AMX吸附量為最大確定工藝條件. 最終確定以炭化溫度584 ℃、浸漬比1∶1.9、丁二酸投加量0.005 mol/g為活性炭制備初始條件制得AC-SA,以炭化溫度584 ℃、浸漬比1∶1.9制得AC-S. 預(yù)測(cè)AC-SA對(duì)AMX吸附量為45.84 mg/g.
2.2 活性炭性能表征
AC-S與AC-SA的N2吸/脫附等溫曲線及孔徑分析如圖1所示. 根據(jù)IUPAC分類[26],該N2吸/脫附等溫曲線屬于Ⅳ型吸附等溫線,具有H4型滯后環(huán),屬于典型的介孔材料. 吸附前半段(相對(duì)壓力為0~0.4)偏y軸說明活性炭與N2有較強(qiáng)作用力,由于微孔內(nèi)強(qiáng)吸附勢(shì),吸附曲線起始時(shí)呈Ⅰ型;吸附后半段(相對(duì)壓力為0.4~1.0)兼具微孔和中孔吸附,屬于多分子層吸附. 根據(jù)H4滯后環(huán),可以推測(cè)有一些類似層狀結(jié)構(gòu)產(chǎn)生的狹縫孔.
表2 響應(yīng)面試驗(yàn)設(shè)計(jì)及試驗(yàn)響應(yīng)結(jié)果
圖1 AC-S和AC-SA的氮?dú)馕?脫附特征曲線和孔徑分布曲線Fig.1 N2 adsorption/desorption isotherm and pore size distribution of AC-S and AC-SA
根據(jù)BET法可計(jì)算比表面[27],BJH法計(jì)算孔徑,結(jié)果如表3所示. AC-S和AC-SA的SBET分別為 1 521、1 347 m2/g,可以推測(cè)是由于改性劑丁二酸的添加導(dǎo)致部分孔被堵住,使AC-SA的SBET降低. AC-SA的Smic占SBET的48.87%,略高于AC-S(41.80%);AC-SA 的平均孔徑(3.58 nm)小于AC-S(4.63 nm). 由此可見,兩種活性炭兼具微孔和中孔,其中AC-SA 中的Smic更大,結(jié)合AMX分子式,可以推斷微孔有利于AMX的吸附.
2.3 活性炭吸附性能
表3 AC-S、AC-SA比表面積和孔徑分析
注:Vtot為總孔容;Vmic為微孔孔容;Dp為平均孔徑.
2.3.1 最適投加量的選擇
不同投加量條件下活性炭對(duì)AMX的去除效率不同,分別采用式(2)(3)計(jì)算吸附質(zhì)的平衡吸附量和去除率(f):
(2)
(3)
式中:C0、Ce分別為初始和平衡時(shí)的ρ(AMX),mg/L;V為溶液體積,L;W為吸附劑活性炭的質(zhì)量,g.
隨著活性炭投加量的增加,對(duì)AMX的吸附量先顯著增大后逐漸趨于平衡. 當(dāng)投加量大于0.6 g/L時(shí),AC-SA對(duì)AMX的吸附效率達(dá)到99%以上,投加量繼續(xù)增加,吸附效率變化不大. 因此選擇0.6 g/L作為活性炭最適投加量進(jìn)行后續(xù)試驗(yàn).
2.3.2 吸附動(dòng)力學(xué)
吸附動(dòng)力學(xué)是研究吸附過程的重要方法,是對(duì)吸附速率及吸附機(jī)理進(jìn)行研究的重要手段. 在AC-S、AC-SA投加量為0.6 g/L、初始ρ(AMX)為30 mg/L、溫度為(25±1)℃的條件下,分別使用AC-S和AC-SA 吸附溶液中AMX,連續(xù)測(cè)量溶液中剩余ρ(AMX),計(jì)算吸附量. 并對(duì)其進(jìn)行偽一級(jí)動(dòng)力學(xué)和偽二級(jí)動(dòng)力學(xué)擬合,擬合結(jié)果如圖2和表4所示. 由圖2可見,在較短時(shí)間內(nèi),活性炭吸附量顯著增大;吸附4 h后,AC-S和AC-SA對(duì)溶液中AMX吸附量分別達(dá)到35.55和44.72 mg/L. 隨著時(shí)間的增加吸附速率放緩;24 h后,吸附基本達(dá)到平衡. 其中AC-SA對(duì)AMX的最大吸附量為45.60 mg/g,高于AC-S(39.69 mg/g),吸附能力提高14.89%. 同時(shí),AC-SA對(duì)AMX最大吸附量與模型預(yù)測(cè)吸附量(45.84 mg/g)僅相差0.5%,模型預(yù)測(cè)可靠. 相對(duì)于廣泛應(yīng)用于水溶液的一級(jí)動(dòng)力學(xué)模型,AC-S和AC-SA動(dòng)力學(xué)模型擬合更符合偽二級(jí)動(dòng)力學(xué)模型,該模型描述的是整個(gè)吸附過程,是一個(gè)偽化學(xué)模型,認(rèn)為吸附的限制因素是吸附機(jī)制,而不是單純的顆粒內(nèi)傳質(zhì)[28].
圖2 AMX在AC-S和AC-SA上的吸附動(dòng)力學(xué)曲線及偽一級(jí)和偽二級(jí)模型擬合結(jié)果Fig.2 AMX adsorption kinetics fitted by the pseudo-first-order and pseudo-second-order models
表4 偽一級(jí)和偽二級(jí)吸附動(dòng)力學(xué)參數(shù)
注:k1為偽一級(jí)吸附動(dòng)力學(xué)模型速率參數(shù);Qcal為擬合最大吸附量;k2為偽二級(jí)吸附動(dòng)力學(xué)模型速率參數(shù);V0為初始速率;Qexp為最大吸附量試驗(yàn)值.
2.3.3 吸附熱力學(xué)
活性炭對(duì)AMX的吸附量與初始ρ(AMX)有關(guān). 采用Langmuir[29]和Freundlich[30]吸附等溫模型對(duì)吸附過程進(jìn)行描述,結(jié)果如圖3和表5所示.
AC-S和AC-SA對(duì)AMX的吸附效果均較好. 由圖3可見,兩種擬合模型與實(shí)際試驗(yàn)結(jié)果相關(guān)性較好. 其中,在Langmuir吸附等溫模型擬合中,相關(guān)系數(shù)(R2)均大于0.99(見表5),更適合于擬合兩種活性炭的吸附情況,這也表明AC-S和AC-SA對(duì)AMX的吸附多集中在單分子層特定位點(diǎn)吸附. 對(duì)AC-SA而言,F(xiàn)reundlich吸附等溫模型也具有較好的擬合度,因此,相比AC-S,AC-SA對(duì)AMX可能還存在一部分多分子層不均勻吸附. AMX吸附機(jī)理的復(fù)雜性和活性炭表面吸附位點(diǎn)的多樣性,使得化學(xué)吸附和物理吸附均可能發(fā)生. Freundlich常數(shù)n值均大于1,說明AMX在AC-S和AC-SA上的吸附較容易進(jìn)行[31].
注:AC-S、AC-SA投加量0.6 g/L,溫度(25±1)℃.圖3 AMX在AC-S和AC-SA上的吸附等溫線Fig.3 AMX adsorption isotherm for AC-S and AC-SA
表5 AMX在AC-S和AC-SA上的吸附等溫模型參數(shù)
注:Qm為最大吸附量試驗(yàn)值;b為L(zhǎng)angmuir常數(shù);KF為Freundich常數(shù);RL為無量綱常數(shù);n為活性炭吸附強(qiáng)度.
2.3.4 等電點(diǎn)分析
pHpzc是表征活性炭表面酸堿性的一個(gè)重要參數(shù),是指水溶液中固體表面凈電荷為零時(shí)的pH,可以用來表征活性炭表面的酸性強(qiáng)弱[32]. 當(dāng)初始pH和反應(yīng)后pH相等時(shí),其對(duì)應(yīng)的pH即為活性炭的pHpzc. 當(dāng)溶液pH
圖4 AC-S和AC-SA等電點(diǎn)Fig.4 The point of zero charge of AC-S and AC-SA
2.3.5 Boehm滴定分析
Boehm滴定法是計(jì)算活性炭表面化學(xué)性質(zhì)的有效手段. 該研究中具體測(cè)試了四種酸性含氧基團(tuán):羧基、內(nèi)酯基、酚羥基和羰基. AC-SA酸性官能團(tuán)總量為2.274 mmol/g,高于AC-S(2.092 mmol/g). HUANG等[33]的丙酮酸活性炭羧基濃度分別為1.91、2.49 mmol/g,進(jìn)一步驗(yàn)證了等電點(diǎn)的降低有可能是表面酸性含氧官能團(tuán)含量增加導(dǎo)致的. 青貯增加了一部分酸性官能團(tuán),丁二酸改性進(jìn)一步增加了酸性官能團(tuán). 這是由于在四種酸性基團(tuán)中,羧基在AC-SA 的濃度(1.386 mmol/g)高于AC-S(0.982 mmol/g),AC-SA表面負(fù)載更多的酸性官能團(tuán),這些酸性官能團(tuán)使活性炭等電點(diǎn)降低表面酸性增強(qiáng),因此可以有效的促進(jìn)自身與AMX分子上的堿性基團(tuán)結(jié)合,有利于吸附.
2.3.6 pH對(duì)吸附性能的影響
溶液pH不僅會(huì)影響活性炭表面的電荷量、官能團(tuán)和活性位點(diǎn),還會(huì)影響AMX的存在形態(tài),因此是吸附過程中一個(gè)非常重要的控制因素[34-35]. 該試驗(yàn)研究了不同初始pH下AC-S和AC-SA對(duì)AMX的吸附效果,結(jié)果如圖5所示. 由圖5可見,AMX的吸附量在酸性條件下吸附量較高,這也和活性炭所在等電點(diǎn)有關(guān).
注:AC-S、AC-SA投加量0.6 g/L,初始ρ(AMX)為30 mg/L,溫度(25±1)℃.圖5 溶液pH對(duì)AC-S和AC-SA吸附AMX的影響Fig.5 Effect of solution pH on AMX removal by AC-S and AC-SA
AMX可以以不同形式存在于水溶液中. 其解離常數(shù)pKa1=2.60,pKa2=7.30,pKa3=9.70. pH
如圖5所示,在多數(shù)情況下,AC-SA的吸附量明顯大于AC-S;當(dāng)溶液酸性很大時(shí)(pH為2.00~3.00),AC-SA的吸附量略高于AC-S,這是因?yàn)樵損H范圍大于AC-SA的pHpzc(2.40),小于AC-S的pHpzc(3.19),AC-SA表面帶負(fù)電荷與AMX的存在形式為AMX+與活性炭發(fā)生靜電引力,AC-S與AMX+與活性炭發(fā)生靜電斥力影響吸附. 活性炭吸附主要發(fā)生在AMX表現(xiàn)形式為AMX±,和少量AMX-中. 最佳吸附量發(fā)生在pH為3.00~8.00之間,這可能存在幾種吸附機(jī)制(如陽離子交換、靜電作用以及π-π EDA作用[37]). 當(dāng)pH>pKa3,AMX分子水中存在的形式為AMX2-,與帶有負(fù)電荷的活性炭產(chǎn)生更多的靜電斥力,因此導(dǎo)致對(duì)AMX較低的吸附量. Moussavi等[36]也發(fā)現(xiàn)了類似的結(jié)果,由NHCl4改性的活性炭(pHpzc=6.60)吸附AMX時(shí)吸附能力隨著pH的增加而減少.
2.4 不同吸附劑對(duì)AMX吸附效果比較
不同吸附劑對(duì)阿莫林的吸附效果如表4所示. 由表4可見,該研究中的AC-S、AC-SA表現(xiàn)出較高的吸附容量. 究其原因,AC-S,AC-SA的SBET遠(yuǎn)高于磁性石墨烯,石墨烯納米片等,微孔比例高,對(duì)AMX有較大吸附作用. 磁性石墨烯與磁性碳納米管都用含F(xiàn)e2+/Fe3+溶液進(jìn)行表面陽離子改性,進(jìn)一步產(chǎn)生二次污染,與沒有添加改性劑的AC-S相比吸附污染物效果較差. 與原材料以亞麻落麻木質(zhì)素所制備的活性炭相比,玉米秸稈青貯前處理的方式制備的活性炭吸附效果提高了2倍,進(jìn)一步肯定了青貯的效果. AC-SA比以氫氧化鈉改性的亞麻落麻木質(zhì)素所消耗改性劑量少9倍,但是吸附效果明顯提高. 與十六烷基三甲基胺改性的膨潤(rùn)土相比,同樣添加改性劑,AC-SA吸附容量為膨潤(rùn)土的10倍. 因此,從一個(gè)新穎的青貯玉米秸稈預(yù)處理方法制備低成本的活性炭是對(duì)AMX廢水處理的一種有效方法;進(jìn)一步采用丁二酸制備AC-SA,是對(duì)AMX廢水處理的一種更加高效的方法.
表6 不同吸附劑對(duì)AMX吸附效果比較
a) 該試驗(yàn)采用響應(yīng)面法(RSM)中心組合(BBD)設(shè)計(jì)試驗(yàn)方案,優(yōu)選試驗(yàn)方案為584 ℃,浸漬比1∶1.9,改性劑丁二酸投加量0.005 mol/g. 以活性炭對(duì)AMX的吸附量為響應(yīng)值,預(yù)測(cè)模型高度顯著.
b) 對(duì)所制取活性炭進(jìn)行比表面積與孔徑分析,AC-S與AC-SA的SBET分別為 1 521、1 347 m2/g;AC-SA 的平均孔徑(3.58 nm)遠(yuǎn)小于AC-S(4.63 nm). 由此可見,兩種活性炭兼具微孔和中孔.
c) AC-S與AC-SA均能有效去除水中的AMX,吸附量分別為39.69和45.60 mg/g,吸附動(dòng)力學(xué)均符合偽二級(jí)動(dòng)力學(xué)吸附,主要為化學(xué)吸附. 吸附熱力學(xué)更適合用Langmuir等溫吸附模型,兩種活性炭主要為單分子層吸附,其中AC-SA有部分多分子層吸附. pH對(duì)吸附效果影響較大,在酸性條件下吸附效果更好. 吸附機(jī)理可能存在靜電作用、陽離子交換,π-π EDA等.
[1] DE BAERE S,DE BACKER P.Quantitative determination of amoxicillin in animal feed using liquid chromatography with tandem mass spectrometric detection[J].Analytica Chimica Acta,2007,586(1/2):319- 325.
[2] KANAKARAJU D,KOCKLER J,MOTTI C A,etal.Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin[J].Applied Catalysis B:Environmental,2015,166:45- 55.
[3] AKSU Z,TUNC O.Application of biosorption for penicillin G removal:comparison with activated carbon[J].Process Biochemistry,2005,40:831- 847.
[4] ALCOCK R E,SWEETMAN A,JONES K C.Assessment of organic contanhnant fate in waste water treatment plants I:selected compounds and physicochemical properties[J].Chemosphere,1999,38:2247- 2262.
[5] LI Siyu,SUN Lili,WANG Lina,etal.Preparation and electrochemical performance of corn straw-based nanoporous carbon[J].Journal of Porous Materials,2015,22:1351- 1355.
[6] 董宇.秸稈糖化殘?jiān)苽浠钚蕴考捌湮叫阅艿难芯縖D].上海:上海交通大學(xué),2012.
[7] LIU Hai,LIANG Shuang,GAO Jinhong,etal.Enhancement of Cr (VI) removal by modifying activated carbon developed from Zizania caduciflora with tartaric acid during phosphoric acid activation[J].Chemical Engineering Journal,2014,246:168- 174.
[8] WANG Zhiqi,WU Jingli,HE Tao,etal.Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor[J].Bioresource Technology,2014,167:551- 554.
[9] LI Yili,LI Yanling,LI Liping,etal.Preparation and analysis of activated carbon from sewage sludge and corn stalk[J].Advanced Powder Technology,2016,27:684- 691.
[10] CAO Yuhe,WANG Keliang,WANG Xiaomin,etal.Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation[J].Electrochimica Acta,2016,212:839- 847.
[11] ZHENG Liuchun,DANG Zhi,ZHU Chaofei,etal.Removal of cadmium(Ⅱ) from aqueous solution by corn stalk graft copolymers[J].Bioresource Technology,2010,101:5820- 5826.
[12] CHEN Suhong,YUE Qinyan,GAO Baoyu,etal.Removal of Cr(VI) from aqueous solution using modified corn stalks:Characteristic,equilibrium,kinetic and thermodynamic study[J].Chemical Engineering Journal,2011,168:909- 917.
[13] FATHI M R,ASFARAM A,FARHANGI A.Removal of direct red 23 from aqueous solution using corn stalks:isotherms,kinetics and thermodynamic studies[J].Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy,2014,135:364- 372.
[14] MILENKOVIC D D,BOJIC A L,VELJKOVIC V B.Ultrasound-assisted adsorption of 4-dodecylbenzene sulfonate from aqueous solutions by corn cob activated carbon[J].Ultrasonics Sonochemistry,2013,20:955- 962.
[15] POBEHEIM H,MUNK B,LINDORFER H,etal.Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage[J].Water Research,2011,45:781- 787.
[16] TAN I,AHMAD A,HAMEED B.Preparation of activated carbon from coconut husk:optimization study on removal of 2,4,6-trichlorophenol using response surface methodology[J].Journal of Hazardous Materials,2008,153:709- 717.
[17] 張華,羅柳丹,張學(xué)洪,等.響應(yīng)面法優(yōu)化柚皮基活性炭對(duì)Cr(Ⅵ) 的吸附條件[J].桂林理工大學(xué)學(xué)報(bào),2015,35:555- 559. ZHANG Hua,LUO Liudan,ZHANG Xuehong,etal.Adsorption condition of Cr(Ⅵ) by grapefruit peel-based activated carbon with optimized response surface methodology[J].Journal of Guilin University of Technology,2015,35(3):555- 559.
[18] ZHANG Tingwei,LI Wenzhi,XU Zhiping,etal.Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone[J].Bioresource Technology,2016,209:108- 114.
[19] GUO Zizhang,ZHANG Jian,LIU Hai.Ultra-high Rhodamine B adsorption capacities from an aqueous solution by activated carbon derived fromPhragmitesaustralisdoped with organic acid by phosphoric acid activation[J].RSC Advances,2016,6:40818- 40827.
[20] LIU Hai,WANG Xuezhen,ZHAI Guiyuan,etal.Preparation of activated carbon from lotus stalks with the mixture of phosphoric acid and pentaerythritol impregnation and its application for Ni(Ⅱ) sorption[J].Chemical Engineering Journal,2012,209:155- 162.
[21] PUTRA E K,PRANOWO R,SUNARSO J,etal.Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater:mechanisms,isotherms and kinetics[J].Water Research,2009,43:2419- 2430.
[22] VILLANUEVA M E,SALINAS A,COPELLO G J,etal.Point of zero charge as a factor to control biofilm formation of Pseudomonas aeruginosa in sol-gel derivatized aluminum alloy plates[J].Surface & Coatings Technology,2014,254:145- 150.
[23] BOEHM H P.Chemical identification of surface groups[J].Advances in Catalysis,1996,16:179- 274.
[24] 周潔,李靜,謝正苗,等.熱解炭黑對(duì)水溶液中 Cr (Ⅵ) 的吸附-催化過程機(jī)理研究[J].工業(yè)催化,2007,15:47- 51. ZHOU Jie,LI Jing,XIE Zhengmiao,etal.Adsorption-catalytic mechanism for pyrolytic carbon black from waste tires on Cr(Ⅵ) in aqueous solution[J].Industrial Catalysis,2007,15(7):47- 51.
[25] LIU Hai,LIANG Shuang,GAO Jinhong,etal.Enhancement of Cr(VI) removal by modifying activated carbon developed from Zizania caduciflora with tartaric acid during phosphoric acid activation[J].Chemical Engineering Journal,2014,246:168- 174.
[26] DONOHUE M,ARANOVICH G.Classification of Gibbs adsorption isotherms[J].Advances in Colloid and Interface Science,1998,76:137- 152.
[27] LIU Hai,ZHANG Jian,ZHANG Chenglu,etal.Activated carbons with well-developed microporosity and high surface acidity prepared from lotus stalks by organophosphorus compounds activations[J].Carbon,2013,60:289- 291.
[28] VELI S,OZTURK T.Kinetic modeling of adsorption of reactive azo dye on powdered activated carbon and pumice[J].Fresenius Environmental Bulletin,2005,14:212- 218.
[29] LANGMUIR I.The adsorption of gases on plane surfaces of glass,mica and platinum[J].Journal of the American Chemical society,1918,40:1361- 1403.
[30] GUO Zizhang,FAN Jinlin,ZHANG Jian,etal.Sorption heavy metal ions by activated carbons with well-developed microporosity and amino groups derived from Phragmites australis by ammonium phosphates activation[J].Journal of the Taiwan Institute of Chemical Engineers,2016,58:290- 296.
[31] SATHISHKUMAR M,VIJAYARAGHAVAN K,BINUPRIYA A R,etal.Porogen effect on characteristics of banana pith carbon and the sorption of dichlorophenols[J].Journal of Colloid & Interface Science,2008,320:22- 29.
[32] KOSMULSKI M.The pH-dependent surface charging and points of zero charge:V.update[J].Journal of Colloid and Interface Science,2011,353:1- 15.
[33] HUANG Yan,ZHENG Xiang,FENG Suping,etal.Enhancement of rhodamine B removal by modifying activated carbon developed fromLythrumsalicariaL.with pyruvic acid[J].Colloids & Surfaces A:Physicochemical & Engineering Aspects,2016,489:154- 162.
[34] PEZOTI O,CAZETTA A L,BEDIN K C,etal.NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal:kinetic,isotherm and thermodynamic studies[J].Chemical Engineering Journal,2016,288:778- 788.
[35] DEMIRAL H,GUNDUZOGLU G.Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse[J].Bioresource Technology,2010,101:1675- 1680.
[36] MOUSSAVI G,ALAHABADI A,YAGHMAEIAN K,etal.Preparation,characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water[J].Chemical Engineering Journal,2013,217:119- 128.
[37] MARTINS A C,PEZOTI O,CAZETTA A L,etal.Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells:kinetic and equilibrium studies[J].Chemical Engineering Journal,2015,260:291- 299.
[38] KERKEZ-KUYUMCU O,BAYAZIT S S,SALAM M A.Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets[J].Journal of Industrial & Engineering Chemistry,2016,36:198- 205.
[39] FAZELIRAD H,RANJBAR M,TAHER M A,etal.Preparation of magnetic multi-walled carbon nanotubes for an efficient adsorption and spectrophotometric determination of amoxicillin[J].Journal of Industrial & Engineering Chemistry,2015,21:889- 892.
[40] HU Dongying,WANG Lijuan.Adsorption of amoxicillin onto quaternized cellulose from flax noil:kinetic,equilibrium and thermodynamic study[J].Journal of the Taiwan Institute of Chemical Engineers,2016,64:227- 234.
[41] JIN Xiaoying,ZHA Shuangxing,LI Shibin,etal.Simultaneous removal of mixed contaminants by organoclays:Amoxicillin and Cu(Ⅱ) from aqueous solution[J].Applied Clay Science,2014,102:196- 201.
Preparation of Activated Carbon with Silage Stalks and its Adsorption of Amoxicillin
NIE Chenxi1, XU Jingtao1,2, WU Daoji1,2*, WANG Ning1, DING Guocun1
1.School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China 2.Co-Innovation Center of Green Building, Shandong, Jinan 250101, China
2016-11-28
2017-03-02
國(guó)家自然科學(xué)基金項(xiàng)目(21307078);國(guó)家科技支撐計(jì)劃課題(2014BAK13B04);住房與城鄉(xiāng)建設(shè)部科學(xué)技術(shù)項(xiàng)目計(jì)劃(2014-K5-015)
聶晨曦(1992-),女,山東泰安人,niechenxi123@163.com.
*責(zé)任作者,武道吉(1966-),男,山東泰安人,教授,博士,主要從事水處理理論與技術(shù)研究,wdj@sdjzu.edu.cn
X524
1001- 6929(2017)07- 1120- 09
A
10.13198/j.issn.1001- 6929.2017.02.18
聶晨曦,徐景濤,武道吉,等.青貯秸稈活性炭的制備和改性及其對(duì)阿莫西林的吸附特性[J].環(huán)境科學(xué)研究,2017,30(7):1120- 1128.
NIE Chenxi,XU Jingtao,WU Daoji,etal.Preparation of activated carbon with silage stalks and its adsorption of amoxicillin[J].Research of Environmental Sciences,2017,30(7):1120- 1128.