• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles investigations on the mechanical,thermal, electronic,and optical properties of the defect perovskites Cs2Sn X6(X=Cl,Br,I)?

    2017-08-30 08:26:16HaiMingHuang黃海銘ZhenYiJiang姜振益andShiJunLuo羅時(shí)軍
    Chinese Physics B 2017年9期
    關(guān)鍵詞:黃海

    Hai-Ming Huang(黃海銘),Zhen-Yi Jiang(姜振益),and Shi-Jun Luo(羅時(shí)軍)

    1 Shaanxi Key Laboratory for Theoretical Physics Frontiers,Institute of Model Physics, Northwest University,Xi’an 710069,China

    2 School of Science,Hubei University of Automotive Technology,Shiyan 442002,China

    First-principles investigations on the mechanical,thermal, electronic,and optical properties of the defect perovskites Cs2Sn X6(X=Cl,Br,I)?

    Hai-Ming Huang(黃海銘)1,2,Zhen-Yi Jiang(姜振益)1,?,and Shi-Jun Luo(羅時(shí)軍)2

    1 Shaanxi Key Laboratory for Theoretical Physics Frontiers,Institute of Model Physics, Northwest University,Xi’an 710069,China

    2 School of Science,Hubei University of Automotive Technology,Shiyan 442002,China

    The mechanical properties,thermal properties,electronic structures,and optical properties of the defect perovskites Cs2Sn X6(X=Cl,Br,I)were investigated by first-principles calculation using PBE and HSE06 hybrid functional.The optic band gaps based on HSE06 are 3.83 eV for Cs2SnCl6,2.36 eV for Cs2SnBr6,and 0.92 eV for Cs2SnI6,which agree with the experimental results.The Cs2SnCl6,Cs2SnBr6,and Cs2SnI6are mechanically stable and they are all anisotropic and ductile in nature.Electronic structures calculations show that the conduction band consists mainly of hybridization between the halogen p orbitals and Sn 5s orbitals,whereas the valence band is composed of the halogen p orbitals.Optic properties indicate that these three compounds exhibit good optical absorption in the ultraviolet region,and the absorption spectra red shift with the increase in the number of halogen atoms.The defect perovskites are good candidates for probing the lead-free and high power conversion efficiency of solar cells.

    first-principles calculation,perovskites,elastic properties,optical properties

    1.Introduction

    Perovskites compounds,especially pure inorganic and inorganic/organic halides,such as CsSnI3,methyl ammonium lead iodide CH3NH3PbI3,and for mamidinium lead iodide HC(NH2)2PbI3,have been proved to be some of the most promising materials in solar cells.[1–3]The ABX3type halidebased hybrid per-ovskites,where A is a metal atom or molecular cation,B is Sn or Pb,and X is a halide atom(Cl,Br, or I),are attracting an increasing amount of attention for applications due to advantageous optical properties and high power conversion efficiency.[4–10]Since Miyasaka et al.[11]pioneered the incorporation of the hybrid organic–inorganic per-ovskite halides CH3NH3PbI3into solar cells,the power conversion efficiency of this kind of solar cell increased from the begging of 3.8%to the current 20.1%in a few years.[12]However,the presence of toxic elements and instabilities of these per-ovskites halides greatly limit their widespread applications in efficient field-effect transistors light-emitting diodes,and photovoltaic devices.[13–17]Therefore,looking for non-toxic, environmentally friendly,and high conversion efficiency of new per-ovskite-type solar cell materials has become a current research hotspot.

    Recently,Falaras et al.[18]reported three defect perovskites compounds Cs2Sn X6(X=Cl,Br,I).They found Cs2SnCl6,Cs2SnBr6,and Cs2SnI6are all direct band gap semiconductors and can be used in dye-sensitized solar cells. They also found these three compounds are air-stable,and the dye-sensitized solar cells based on Cs2SnI6hole-transporting materials present a power conversion efficiency of 4.23%at 1 sun illumination.Neilson et al.[19]pointed out that the greatest advantage of this kind of defect perovskites is that the Cs2Sn X6compounds contain Sn4+rather than Sn2+in the B-site,which makes it more stable under exposure to air and moisture.However,Xiao[20]and colleagues indicated the real valence state of Sn in Cs2SnI6is+2 rather than+4.Although there are different opinions about the valence state of Sn cations in the defect perovskites compounds,it does not prevent the researchers from doing theoretical and experimental investigations on the new lead-free perovskite solar cell materials.[21–23]

    The mechanical and thermal properties of perovskite are important for practical applications in solar cells.On the one hand,the absorption performances of perovskite solar cell strongly rely on the crystallinity and stress state of the perovskite layer.[24]On the other hand,as very important thermal parameters,the Debye temperature and melting temperature are related to the bond strength,which is important for the preparation of solar cell devices.Therefore,it is essential to study the mechanical and thermal properties of perovskite type solar cell materials.In this paper,we study the structural, mechanical,thermal,electronic and optical properties of the defect perovskites Cs2Sn X6(X=Cl,Br,I)by first-principlescalculations.Our findings shed light on the key properties that are hard to measure experimentally and probing the lead-free solar cells materials.

    2.Computational details

    First-principles calculations were carried out to study various physical properties of the defect perovskites by using the Vienna ab initio simulation package(VASP).[25]Generalized gradient approximation(GGA)of Perdew–Burke–Ernzerh(PBE)was used to describe the exchange-correlation functional.[26]It is well known that PBE usually underestimates the band-gap,which will result in unreasonable optic properties.In order to overcome this predicament,band gap correction was considered by using range separated hybrid functional(HSE06),[27]which can give improved approximate results to match with experimental data.The electronic configurations:6s1for Cs,5s25p2for Sn,3s23p5for Cl,4s24p5for Br,and 5s25p5for I were used in calculations.The plane wave cut-off energy was set to 450 eV.A mesh of 9×9×9 k-points was used for calculating the electronic,mechanical,thermal, and optic properties.The convergence tolerances of the energy and the force are 1.0×10?6eV and 1.0×10?2eV/?A, respectively.

    3.Results and discussion

    3.1.Structural properties

    Cs2Sn X6chemical composition presents the cubic anti-fluorite phase with the space group F m-3m in cubic structure as shown in Fig.1.In this structure,the defect perovskites Cs2Sn X6own the same structure with K2PtCl6,in which the isolated[Sn X6]2?anions octahedra bridged by Cs+cations, the Sn4+cations formed a face centered cubic lattice and are surrounded by an X6octahedral.[17,18,28]Firstly,a volume optimization process was carried out to predict the optimal structure.Calculated equilibrium lattice constants are summarized and compared with available theoretical and experimental data in Table 1.

    One can observe that the optimized lattice constants of Cs2SnCl6are almost the same as those of the experimental results.However,there is a slight deviation for Cs2SnBr6and for Cs2SnI6,respectively.This slight deviation does not affect further research.On the whole,there is a good agreement between the optimized lattice constants and the experimental findings and available theoretical data.Furthermore, one can see that the lattice constants increase in the order from Cs2SnCl6to Cs2SnBr6to Cs2SnI6.The phenomenon is due mainly to the size differences between the univalent anion Cl?, Br?,and I?.

    Fig.1.(color online)Crystal structure of the defect perovskites Cs2Sn X6(X=Cl,Br,I).Thick blue lines represent the unit cell edges.

    Table 1.Optimized lattice constants(?A)of Cs2Sn X6(X=Cl,Br,I). Experimental and other theoretical values are included.

    3.2.Mechanical properties

    It is known that first-principles methods are often used to calculate reliable elastic properties of solid materials.The criterions for mechanical stability of cubic crystals are given by[33]

    Table 2 summarizes the calculated elastic constants Cijof the defect perovskites Cs2Sn X6.One can see that the elastic constants satisfy these generalized stability criterions,indicating these three compounds are mechanically stable.Meanwhile,the elastic constant C11decreases from chlorine to bromine to iodine in Cs2Sn X6(X=Cl,Br,I),meaning that the trend of resistance one-way compression declines.Cs2SnCl6presents more strong resistance for one-way compression as compared to Cs2SnBr6and Cs2SnI6.At the same time,the value of elastic constant C44is less than that of C11,which indicates that their resistance to pure shear deformation is weaker than that of the one-way compression.

    Using the elastic constants,some mechanical properties including shear anisotropy factor(A),bulk modulus(B),shear modulus(G),Pough’s ratio(B/G),Frantesvich ratio(G/B), Young’s modulus(Y),Poisson’s ratio(υ)and Kleinman parameter(ξ)are also calculated and presented in Table 2.The shear anisotropy factor A is used to decide the anisotropic or isotropic characteristic of a solid.In general,the shear anisotropic factor for isotropic crystals is A=1,while for anisotropic crystals it is A/=1.The shear anisotropic factors reported in Table 2 indicate Cs2Sn X6compounds are all anisotropic.It is clear that the level of anisotropy for Cs2SnBr6is the highest among these three defect perovskites. Pough’s ratio B/G and Frantesvich G/B ratio provide the brittleness or ductility of a compound.If B/G<1.75(G/B>0.571),the material is brittle,otherwise,the ductile behavior is predicted.[34]Present values of Pough’s ratio for Cs2SnCl6, Cs2SnBr6and Cs2SnI6are bigger than 1.75,therefore these defect perovskites are ductile in nature.

    Young’s modulus Y is an important parameter in showing the stiffness of a solid material.The larger the Young’s modulus,the stiffer the solid material will be.From Table 2,it is clear that the Young’s modulus decreases with large anion size, indicting Cs2SnCl6is stiffer than Cs2SnBr6and Cs2SnI6,and the capability of resisting elastic deformation decreases from Cs2SnCl6to Cs2SnBr6to Cs2SnI6.Poisson’s ratio υ gives some informations about the character of force acting on solid materials.The forces among the atoms constituting the material are central if the value of υ lies between 0.25 and 0.50. The obtained Poisson ratio υ for Cs2SnCl6,Cs2SnBr6and Cs2SnI6are just in this range which means that interatomic forces in Cs2Sn X6are central.

    3.3.Thermal properties

    Debye temperature ΘDis a fundamental parameter for materials’thermodynamic properties,and it is closely related to specific heat,bond strength,elastic constants,and melting temperature.[35]ΘDcan be predicted by the average sound velocity Vmaccording to[33,36]

    where h represents Plank’s constant,k is the Boltzman constant,n is the number of atoms per molecule,NAis the Avogadro number,ρ is the density of the solid,and M represents the molecular weight.The average sound velocity Vmwas calculated by[33,36]

    where vtand vlare the transverse and longitudinal sound velocity,respectively,which is calculated by[37]

    The calculated Debye temperatures of Cs2Sn X6(X=Cl, Br,I)are also listed in Table 2.Obviously,the values of Debye temperature ΘDdecrease in the following sequence: Cs2SnCl6>Cs2SnBr6>Cs2SnI6.The Cs2SnCl6presents the highest Debye temperature indicating the higher melting temperature.At present,there are no theoretical calculations as well as experimental measurements reported on the Debye temperature for Cs2SnCl6and Cs2SnBr6.However,there is a large deviation for the Debye temperature of Cs2SnI6between the present work 96.8 K and experimental result 149 K obtained by heat capacity data.[18]The main reason is the difference of lattice constant between theoretical calculations and experimental measurement.In general,the lattice constant has an important influence on the calculation of Debye temperature.As a comparison,we use the experimental lattice constant of 11.6527?A[22]to calculate the Debye temperature of Cs2SnI6;the obtained value of ΘD=141.2 K is very close to the experimental results.

    The Deby temperature corresponds to the highest frequency of the lattice vibration,which is actually a reflection of the strongest bonding of the crystal.Recently,Kumar et al.[38]obtained a linear relation between Deby temperature and melting temperature for II–VI and III–V semiconductors. In general,for the same compound,a larger Debye temperature means a higher melting temperature.[39]The melting temperature Mtof Cs2Sn X6can be calculated by elastic constants C11according to the following expression:[33,40]

    Calculated melting temperatures are also shown in Table 2.It is clear that the melting temperature of Cs2SnCl6is higher than that of Cs2SnCl6and Cs2SnBr6.The results are in agreement with the results of Debye temperature.

    3.4.Electronic properties

    Density of states and band structures calculations predict the direct band gaps at the Γ point for Cs2SnCl6,Cs2SnBr6and Cs2SnI6.The results are consistent with the ones of other investigators.[18,22]Band gap values,as obtained by PBE and HSE06 using the optimized lattice constants,are listed in Table 3.Obviously,the HSE06 results are a lot closer to the experimental measurements as compared to the PBE ones.The band structure of Cs2SnCl6indicates a band gap of 3.83 eV, which consists with the experimentally measured optical gap of 3.9 eV and is better than other theoretical calculations.For the Cs2SnBr6and Cs2SnI6,the direct band gaps are 2.36 and 0.92 eV,respectively,which is lower than the experimentally measured optical gap.There are two main reasons for this discrepancy:one is the difference of lattice constants between theoretical calculations and experimentally measured ones,the other arises from the fact that first-principles calculations often underestimate the band gap.

    Table 3.Calculated band gap(eV)of Cs2 Sn X6(X=Cl,Br,I)using the PBE and HSE06 functional.Experimental and other theoretical values are also included.

    Fig.2.(color online)(a)Band structures,(b)total and orbital-projected densities of states for Cs2SnCl6 based on the HSE06.

    Fig.3.(color online)(a)Band structures,(b)total and orbital-projected densities of states for Cs2SnBr6 based on the HSE06.

    Figures 2–4 present the band structures,total and orbital projected densities of states(DOSs)for title compounds based on the HSE06.We have not plotted the projected DOS of Cesium since its negligible contribution to the total DOS.It is clear that these three compounds have very similar electronic structures as well as a delicate difference.The orbital-projected DOSs indicate that the conduction band near the Fermi level is mainly composed of halogen p orbitals hybridized with Sn 5s orbitals,and the upper conduction bands, starting from 7.66,6.12 and 4.38 eV for Cs2SnCl6,Cs2SnBr6and Cs2SnI6,respectively.There is a forbidden gap of 2.86 eV for Cs2SnCl6,2.85 eV for Cs2SnBr6and 2.36 eV for Cs2SnI6between the two conduction bands.On the other hand,the valence band is constituted of the halogen p orbitals,and their band widths are 1.99 eV for Cs2SnCl6,2.08 eV for Cs2SnBr6and 2.22 eV for Cs2SnI6,respectively.Another halogen p orbital presents hybridization with Sn 5p orbital between?3.40 to?2.75 eV.In a deeper band,from?5.91 eV to?5.59 eV for Cs2SnCl6,from?6.73 eV to?6.39 eV for Cs2SnBr6and from?6.95 eV to?6.67 eV for Cs2SnI6,the valence band is mainly made of the Sn 5s orbital.

    Fig.4.(color online)(a)Band structures,(b)total and orbital-projected densities of states for Cs2SnI6 based on the HSE06.

    3.5.Optic properties

    The optical properties of a semiconductor material are closely related to their electronic band structures;it is usually obtained from the dielectric function by the formula that is given by[41,42]

    where ω is the angular frequency,and ε1(ω)and ε2(ω)are the real and the imaginary parts of the complex dielectric function, respectively.

    Fig.5.(color online)Real part of the dielectric function for the defect perovskites Cs2Sn X6(X=Cl,Br,I).

    The dielectric functions of Cs2SnCl6,Cs2SnBr6,and Cs2SnI6with changes in photon energy were calculated up to 20.0 eV and shown in Figs.5 and 6.The static dielectric constants ε0(ω)are 2.17 for Cs2SnCl6,2.53 for Cs2SnBr6, and 3.26 for Cs2SnI6and the values increase with increasing halogen atomic number.The real part ε1(ω)is positive up to 10.1 eV,8.70 eV,and 7.23 eV for Cs2SnCl6,Cs2SnBr6, and Cs2SnI6,respectively.In this area,for Cs2SnI6,the real part has three peaks located at 4.39,7.15,and 8.45 eV.For Cs2SnBr6,it presents several peaks at 2.92,5.93,and 7.03 eV. Also for Cs2SnI6,its three peaks are located at 1.48,4.46,and 5.58 eV.

    Fig.6.(color online)Imaginary part of the dielectric function for the defect perovskites Cs2 Sn X6(X=Cl,Br,I).

    The imaginary dielectric function ε2(ω)gives some important information on the multifarious interband transitions between the valence and conduction bands.The imaginary part for Cs2SnCl6exhibits five major absorption peaks at 3.80, 5.19,7.50,9.49,and 15.23 eV.The five major absorption peaks of Cs2SnBr6are located at 2.32,3.74,6.54,8.65,and 15.05 eV.The five major absorption peaks of Cs2SnI6are located at 0.90,2.30,4.98,7.26,and 14.63 eV.These peaks are associated with the transition from valence bands to conduction ones.The lower energy peaks are relative to the electronic transition between the Cl-3p,Br-4p,and I-5p states in the upper valence bands and the Sn-5s states in conduction bands.

    In addition to the real and imaginary components of the dielectric functions,the refractive index n(ω),extinction coefficient k(ω),absorption coefficient α(ω),reflectivity coefficient R(ω),optical conductivity κ(ω)and energy loss function L(ω)are calculated and plotted in Fig.7.Refractive index is an indispensable parameter to describe the optical properties of materials and has an important impact on optic devices such as solar cell and detectors.[43]From Fig.7(a),the curves of the refractivity index of Cs2SnCl6,Cs2SnBr6and Cs2SnI6coincide with the real part of the dielectric functions.The static refractive index n(0)for low frequency at 0 eV and their peak values are presented in Table 4.It is clear that the n(0)and peak values increase with the increasing of the size of halogen anions.Extinction coefficient k(ω)describes the attenuation of an electromagnetic wave in a material.In the low energy infrared region in Fig.7(b),the value of the extinction coefficient is close to zero,which indicates these three defect perovskites are transmitted to the infrared spectrum.

    Fig.7.(color online)Refractive index n(ω),extinction coefficient k(ω),absorption coefficient α(ω),reflectivity coefficient R(ω), optical conductivity κ(ω)and energy loss function L(ω)of the defect perovskites Cs2Sn X6(X=Cl,Br,I).

    Table 4.Static refractive index,static reflectivity,maximum refractive index and maximum reflectivity for Cs2Sn X6(X=Cl,Br,I).

    The absorption coefficient can be further calculated according to the refractive index and extinction coefficient.From Fig.7(c),one can see that the absorption edges are located at 3.96,2.52,and 1.07 eV for Cs2SnCl6,Cs2SnBr6,and Cs2SnI6, respectively.These absorption edge values are near the corresponding band gaps as predicted by the HSE06 method. The absorption spectrum of the intrinsic defect perovskites Cs2Sn X2is mainly concentrated in the ultraviolet region.With the increase of the number of halogen atoms,the absorption spectra have an obvious red shift,which means the Cs2SnI2is a promising material for photoelectric conversion.Moreover, there are five obvious characteristic peaks in the absorption spectrum.The positions of the peaks and the absorption edges are all presented in Table 5.Obviously,the position moves towards a low energy area with the increasing size of the halogen ions,and the strongest peak is located at15.9 eV for Cs2SnCl6, 9.73 eV for Cs2SnBr6,and 8.29 eV for Cs2SnI6,respectively. In the low energy range,the absorption coefficient is close to zero,indicating that its absorption of light waves in the low energy range is not obvious.

    The static reflectivity R(0)and the maximum reflectivity of the title compounds are listed in Table 4.Figure 7(d) depicts the curves of reflectivity as a functional of photon energy.It is clear that the zero frequency reflectivity increases in the following sequence:Cs2SnCl6<Cs2SnBr6<Cs2SnI6.The reflectivity for these three compounds in the infrared region is lower than 8.0%reflecting the case that the effect of surface reflection and internal grain boundary reflection on the low energy infrared wave band is small.The wavelength of the maximum reflectivity is obtained around 74.95 nm for Cs2SnCl6, 77.69 nm for Cs2SnBr6,and 138.9 nm for Cs2SnI6,respectively.

    Table 5.The positions(eV)of the characteristic peaks and the absorption edges in the absorption spectrum for Cs2Sn X6(X=Cl,Br,I).

    The optical conductivity,which is decided by refractive index and absorption coefficient,is usually used to investigate the optical response of material.From Fig.7(e),one can see that the optical conductivity follows the same trend as that of the absorption coefficient with increasing phonon energy.The optical conductivity of Cs2SnCl6is zero when the phonon energy is smaller than 3.96 eV and bigger than 17.59 eV.For Cs2SnBr6,the optical conductivity is zero when the phonon energy is smaller than 2.52 eV and bigger than 18.10 eV.Also for Cs2SnI6,the optical conductivity is zero when the phonon energy is smaller than 1.07 eV and bigger than 19.87 eV.The maximum optical conductivity appears when the energy is 9.51,8.71,and 7.24 eV for Cs2SnCl6,Cs2SnBr6,and Cs2SnI6, respectively.

    The energy loss function is an important parameter in describing the energy loss when electrons pass through a dielectric.The function is directly relative to the real and imaginary components of dielectric functions,and the peak of the loss function is associated with plasma oscillation.Figure 7(f)depicts the energy loss function as a function of photon energy. One can see that the energy loss in two regions is very large, and the maximum energy loss points are located at 16.85, 16.23,and 10.85 eV for Cs2SnCl6,Cs2SnBr6,and Cs2SnI6u, respectively.The electronic energy loss for these three compounds is close to zero when the energy is bigger than 20.0 eV.

    4.Conclusion

    Employing the first-principles method within the PBE and HSE06 functional,we carried out a comprehensive study on the structural,mechanical,thermal,electronic,and optical properties of the defect per-ovskites Cs2SnCl6,Cs2SnBr6,and Cs2SnI6.The results indicate that the optimized lattice parameters are in good agreement with the available theoretical and experimental data.These three compounds are mechanically stable and they are all anisotropic and ductile in nature.Calculated Debye temperature and melting temperature decrease from Cs2SnCl6to Cs2SnBr6to Cs2SnI6.Density of states and band structures indicate direct band gaps for all the defect per-ovskites Cs2Sn X6,which accords with other theoretical investigations.Orbital-projected DOSs indicate that the contribution to the conduction band mainly originates from the halogen p orbitals hybridized with Sn 5s orbitals,whereas the contribution to the valence band is consisted of the halogen p orbitals. Some parameters,which are closely related to optical properties such as dielectric functions,refractive index,extinction coefficient,absorption coefficient,reflectivity coefficient,optical conductivity,and energy loss function,are studied theoretically for the first time.The results indicate that these three materials exhibit good optical absorption in the ultraviolet region,and the absorption spectra red shift with the increase of the number of halogen atoms.In conclusion,these three defect per-ovskites are good candidates for probing the lead-free and high-power conversion efficiency of solar cells materials owing to their stable mechanical properties and excellent optical absorption in the ultraviolet region.

    [1]Chung I,Lee B,He J,Chang R P H and Kanatzidis M G 2012 Nature 485 486

    [2]Baikie T,Fang Y,Kadro J M,Schreyer M,Wei F,Mhaisalkar S G, Graetzeld M and Whitec T J 2013 J.Mater.Chem.A 1 5628

    [3]Zhou H,Chen Q,Li G,Luo S,Song T B,Duan H S,Hong Z,You J, Liu Y and Yang Y 2014 Science 345 542

    [4]Brivio F,Walker A B and Walsh A 2013 APL Mater.1 042111

    [5]Eperon G E,Patern`o G M,Sutton R J,Zampetti A,Haghighirad A A, Cacialli F and Snaith H J 2015 J.Mater.Chem.A 3 19688

    [6]Weller M T,Weber O J,Henry P F,Di Pumpo A M and Hansen T C 2015 Chem.Commun.51 4180

    [7]Lee C,Hong J,Stroppa A,Whangbo M H and Shim J H 2015 RSC Adv. 5 78701

    [8]Feng J and Xiao B 2014 J.Phys.Chem.C 118 19655

    [9]Yuan Y,Xu R,Xu H T,Hong F,Xu F and Wang L J 2015 Chin.Phys. B 24 116302

    [10]Du H J,Wang W C and Zhu J Z 2016 Chin.Phys.B 25 108803

    [11]Kojima A,Teshima K,Shirai Y and Miyasaka T 2009 J.Am.Chem. Soc.131 6050

    [12]Boix P P,Agarwala S,Koh T M,Mathews N and Mhaisalkar S G 2015 J.Phys.Chem.Lett.6 898

    [13]Lora da Silva E,Skelton J M,Parker S C and Walsh A 2015 Phys.Rev. B 91 144107

    [14]Szafranski M and Katrusiak A 2016 J.Phys.Chem.Lett.7 3458

    [15]Yi H T,Wu X X,Zhu X Y and Podzorov V 2016 Adv.Mater.28 6509

    [16]Chen Z,Wang J J,Ren Y,Yu C and Shum K 2012 Appl.Phys.Lett.101 093901

    [17]Qiu X F,Cao B Q,Yuan S,Chen X F,Qiu Z W,Jiang Y N,Ye Q,Wang H Q,Zeng H B,Liu J and Kanatzidis M G 2017 Sol.Energy Mater.Sol. Cells 159 227

    [18]Kaltzoglou A,Antoniadou M,Kontos A G,Stoumpos C C,Perganti D, Siranidi E,Raptis V,Trohidou K N,Psycharis V,Kanatzidis M G and Falaras P 2016 J.Phys.Chem.C 120 11777

    [19]Maughan A E,Ganose A M,Bordelon M M,Miller E M,Scanlon D O and Neilson J R 2016 J.Am.Chem.Soc.138 8453

    [20]Xiao Z W,Lei H C,Zhang X,Zhou Y Y,Hosono H and Kamiya T 2015 Bull.Chem.Soc.Jpn.88 1250

    [21]Lee B,Stoumpos C C,Zhou N J,Hao F,Malliakas C,Yeh C Y,Marks T J,Kanatzidis M G and Chang R P H 2014 J.Am.Chem.Soc.136 15379

    [22]Xiao Z W,Zhou Y Y,Hosono H and Kamiya T 2015 Phys.Chem. Chem.Phys.17 18900

    [23]Saparov B,Sun J P,Meng W W,Xiao Z W,Duan H S,Gunawan O, Shin D,Hill I G,Yan Y F and Mitzi D B 2016 Chem.Mater.28 2315

    [24]Feng J 2014 APL Mater.2 081801

    [25]Kresse G and Furthmuller J 1996 Comput.Mater.Sci.6 15

    [26]Perdew J P,Burke K and Ernzerhof M 1996 Phys.Rev.Lett.77 3865

    [27]Heyd J,Scuseria G E and Ernzerhof M 2006 J.Chem.Phys.124 219906

    [28]Torres D T,Freire J D and Katiyar R S 1997 Phys.Rev.B 56 7763

    [29]Brill T B,Gerhart R C and Welsh W A 1974 J.Magn.Reson.13 27

    [30]Ketelaar J A A,Rietdijk A A and van Staveren C H 2010 Recl.Trav. Chim.Pays-Bas 56 907

    [31]Stoumpos C C,Malliakas C D and Kanatzidis M G 2013 Inorg.Chem. 52 9019

    [32]Wang G T,Wang D Y and Shi X B 2015 AIP Advances 5 127224

    [33]Gu J B,Wang C J,Zhang W X,Sun Bin,Liu G Q,Liu D D and Yang X D 2016 Chin.Phys.B 25 126103

    [34]Pugh S F 1954 Philos.Mag.45 823

    [35]Duan Y H,Sun Y,Peng M J and Zhou S G 2014 J.Alloy.Compd.585 587

    [36]Anderson O L 1963 J.Phys.Chem.Solids 24 909

    [37]Mujica A and Needs R J 1996 J.Phys.:Conden.Matter 8 L237

    [38]Kumar V,Jha V and Shrivastava A K 2010 Cryst.Res.Technol.45 920

    [39]Lu W F,Li C J,Sarac B,S?opu D,Yi J H,Tan J,Stoica M and Eckert J 2017 J.Alloy.Compd.705 445

    [40]Fine M E,Brown M D and Marcus H L 1984 Scr.Metall.18 951

    [41]Parvin R,Parvin F,Ali M S and Islam A K M A 2016 Chin.Phys.B 25 083101

    [42]Fahad S,Murtaza G,Ouahrani T,Khenata R,Yousaf M,Omran S B and Mohammad S 2015 J.Alloy.Compd.646 211

    [43]Zhao S,Lan C,Ma J,Pandey S S,Hayase S and Ma T 2015 Solid State Commun.213-214 19

    29 March 2017;revised manuscript

    22 May 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/096301

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.51572219 and 11447030),the Natural Science Foundation of Shaanxi Province of China(Grant No.2015JM1018),and Graduate’s Innovation Fund of Northwest University of China(Grant No.YJG15007).

    ?Corresponding author.E-mail:jiangzy@nwu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    黃海
    你不會(huì)是……強(qiáng)迫癥吧
    大眾健康(2022年4期)2022-04-27 21:48:15
    刻舟求劍
    幼兒畫刊(2022年4期)2022-04-21 02:50:54
    東方濕地 黃海明珠
    黃海綠洲的燈
    黃海簡介
    黃海 用海報(bào)為電影打開一扇窗
    海峽姐妹(2019年8期)2019-09-03 01:00:54
    黃海生教授
    三角恒等變換去哪兒了
    南黃海綠潮藻的分子鑒定及營養(yǎng)價(jià)值初探
    Solurion ro Beacon Conflicr Based on IEEE 802.15.4
    午夜激情福利司机影院| 日韩人妻高清精品专区| 成人综合一区亚洲| 免费看av在线观看网站| 在线免费观看不下载黄p国产| 国产乱人偷精品视频| 天堂影院成人在线观看| 欧美成人免费av一区二区三区| 午夜福利成人在线免费观看| 精品久久久久久久末码| 国产精品国产三级国产av玫瑰| 日韩三级伦理在线观看| 成人漫画全彩无遮挡| 青春草亚洲视频在线观看| 成人漫画全彩无遮挡| 午夜亚洲福利在线播放| 最新中文字幕久久久久| av免费观看日本| 久久久久精品久久久久真实原创| 婷婷色综合大香蕉| av免费观看日本| 久久精品夜夜夜夜夜久久蜜豆| 3wmmmm亚洲av在线观看| 日韩中字成人| 免费观看a级毛片全部| www.色视频.com| 国产午夜福利久久久久久| 国产熟女欧美一区二区| .国产精品久久| 两个人的视频大全免费| 在线播放无遮挡| 久久亚洲国产成人精品v| 天堂av国产一区二区熟女人妻| 在线播放国产精品三级| 亚洲国产精品成人久久小说| 日本一二三区视频观看| 嫩草影院入口| 少妇裸体淫交视频免费看高清| 免费不卡的大黄色大毛片视频在线观看 | 久久欧美精品欧美久久欧美| 色综合色国产| 欧美成人午夜免费资源| 免费看日本二区| 久久久a久久爽久久v久久| 看黄色毛片网站| 国产白丝娇喘喷水9色精品| 免费观看在线日韩| 看非洲黑人一级黄片| 天堂√8在线中文| 嫩草影院精品99| 男女国产视频网站| 精品久久国产蜜桃| 又粗又硬又长又爽又黄的视频| 国产成年人精品一区二区| 婷婷六月久久综合丁香| 国产av不卡久久| 九九热线精品视视频播放| 69人妻影院| 禁无遮挡网站| 少妇熟女欧美另类| 内地一区二区视频在线| 黄色欧美视频在线观看| 亚洲人成网站在线观看播放| 波野结衣二区三区在线| 欧美又色又爽又黄视频| 草草在线视频免费看| 国产一区二区在线av高清观看| 18禁在线播放成人免费| 久久久久久国产a免费观看| 亚洲av成人av| 五月玫瑰六月丁香| 搡女人真爽免费视频火全软件| 亚洲av.av天堂| 丰满乱子伦码专区| av卡一久久| www.色视频.com| 亚洲av福利一区| 色哟哟·www| av在线播放精品| 亚洲综合精品二区| 91精品国产九色| 日日摸夜夜添夜夜添av毛片| 最近中文字幕2019免费版| 亚洲精品aⅴ在线观看| 91av网一区二区| 长腿黑丝高跟| 一区二区三区四区激情视频| 精品人妻熟女av久视频| 精品久久久久久成人av| 国产伦精品一区二区三区四那| 国语自产精品视频在线第100页| 神马国产精品三级电影在线观看| 国产私拍福利视频在线观看| 大香蕉97超碰在线| kizo精华| 亚洲av成人精品一二三区| 丰满少妇做爰视频| 精品久久久噜噜| 午夜福利网站1000一区二区三区| 一级二级三级毛片免费看| 欧美3d第一页| 大香蕉久久网| 国产成人精品婷婷| 建设人人有责人人尽责人人享有的 | 久久久久久久久中文| 不卡视频在线观看欧美| 久久精品夜色国产| 国产成人aa在线观看| 热99re8久久精品国产| 国产精品永久免费网站| 日韩欧美在线乱码| 国产精品1区2区在线观看.| 日韩人妻高清精品专区| 色综合亚洲欧美另类图片| 丰满乱子伦码专区| 最近手机中文字幕大全| 如何舔出高潮| 久久精品熟女亚洲av麻豆精品 | 免费黄网站久久成人精品| 可以在线观看毛片的网站| 亚洲色图av天堂| 久久久午夜欧美精品| 国产亚洲91精品色在线| 嫩草影院入口| 成人美女网站在线观看视频| 色网站视频免费| 亚洲电影在线观看av| 国产一区二区在线观看日韩| 一区二区三区四区激情视频| 中文字幕久久专区| av在线观看视频网站免费| 女人十人毛片免费观看3o分钟| 精品99又大又爽又粗少妇毛片| 精品不卡国产一区二区三区| 欧美性猛交黑人性爽| 国产一级毛片在线| 国产老妇女一区| 少妇的逼好多水| 建设人人有责人人尽责人人享有的 | 大话2 男鬼变身卡| 色综合亚洲欧美另类图片| 97热精品久久久久久| 嘟嘟电影网在线观看| 少妇的逼水好多| 2022亚洲国产成人精品| 欧美成人一区二区免费高清观看| 亚洲丝袜综合中文字幕| 欧美bdsm另类| 久热久热在线精品观看| 久久精品91蜜桃| 色综合站精品国产| 别揉我奶头 嗯啊视频| 欧美日韩一区二区视频在线观看视频在线 | kizo精华| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久精品94久久精品| 内地一区二区视频在线| 日韩精品青青久久久久久| 嫩草影院新地址| 亚洲天堂国产精品一区在线| 国产亚洲5aaaaa淫片| 卡戴珊不雅视频在线播放| 黄色欧美视频在线观看| 26uuu在线亚洲综合色| 毛片女人毛片| 久久久久国产网址| 亚洲欧洲日产国产| 直男gayav资源| 国内少妇人妻偷人精品xxx网站| 免费观看人在逋| 天堂影院成人在线观看| 人人妻人人澡欧美一区二区| 午夜福利在线观看吧| 国产欧美日韩精品一区二区| 久久久久精品久久久久真实原创| 精品一区二区三区视频在线| 看十八女毛片水多多多| 最近视频中文字幕2019在线8| 国产精品久久电影中文字幕| 亚洲精品亚洲一区二区| 成人无遮挡网站| 国产探花在线观看一区二区| 国产精品av视频在线免费观看| 麻豆成人午夜福利视频| 网址你懂的国产日韩在线| 亚洲国产欧洲综合997久久,| 蜜桃久久精品国产亚洲av| 亚洲成色77777| 婷婷六月久久综合丁香| 欧美性猛交黑人性爽| 人妻少妇偷人精品九色| 亚洲av中文字字幕乱码综合| 久久久久久九九精品二区国产| 97超视频在线观看视频| 一区二区三区乱码不卡18| 亚洲图色成人| 99久久九九国产精品国产免费| 免费看a级黄色片| 视频中文字幕在线观看| 久久99热6这里只有精品| 国产欧美日韩精品一区二区| 97超碰精品成人国产| 亚洲美女搞黄在线观看| 国产成人午夜福利电影在线观看| 又爽又黄无遮挡网站| 久久久久久久久久久丰满| 秋霞伦理黄片| 亚洲在久久综合| 亚洲精品,欧美精品| 91久久精品国产一区二区三区| 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区四那| 一区二区三区高清视频在线| 丰满人妻一区二区三区视频av| 丰满少妇做爰视频| 尤物成人国产欧美一区二区三区| 国产精品1区2区在线观看.| 久久久成人免费电影| 午夜福利在线观看吧| 欧美另类亚洲清纯唯美| 一个人看的www免费观看视频| 成人三级黄色视频| 久久6这里有精品| 九九爱精品视频在线观看| 国产精品久久久久久久电影| 久久精品影院6| 好男人在线观看高清免费视频| 美女被艹到高潮喷水动态| 亚洲欧美成人综合另类久久久 | 欧美日韩一区二区视频在线观看视频在线 | 亚洲精华国产精华液的使用体验| 亚洲av福利一区| 女的被弄到高潮叫床怎么办| 久久99蜜桃精品久久| 国模一区二区三区四区视频| 内射极品少妇av片p| 久久人人爽人人爽人人片va| 亚洲国产成人一精品久久久| 中文字幕av成人在线电影| 18禁在线无遮挡免费观看视频| 久久久久久久久中文| 我的女老师完整版在线观看| 亚洲久久久久久中文字幕| 天天躁夜夜躁狠狠久久av| 欧美成人一区二区免费高清观看| 国产毛片a区久久久久| 成人特级av手机在线观看| 久久精品国产鲁丝片午夜精品| 国产av在哪里看| 午夜精品在线福利| 成人亚洲欧美一区二区av| 一级毛片久久久久久久久女| 人人妻人人看人人澡| 亚洲av.av天堂| 久久草成人影院| 日韩人妻高清精品专区| 国产精品嫩草影院av在线观看| 天天一区二区日本电影三级| 嫩草影院精品99| 亚洲av成人精品一区久久| 3wmmmm亚洲av在线观看| 国产单亲对白刺激| 又粗又爽又猛毛片免费看| 最后的刺客免费高清国语| 熟妇人妻久久中文字幕3abv| 噜噜噜噜噜久久久久久91| 国产 一区 欧美 日韩| 亚洲成人中文字幕在线播放| 欧美3d第一页| 2021天堂中文幕一二区在线观| 毛片女人毛片| 日本免费在线观看一区| 亚洲国产最新在线播放| 久久久久久久久中文| 少妇丰满av| 黄片wwwwww| 亚洲欧美成人综合另类久久久 | 99在线视频只有这里精品首页| 欧美一级a爱片免费观看看| 国产女主播在线喷水免费视频网站 | 日本免费在线观看一区| 国产视频首页在线观看| 直男gayav资源| 成年女人看的毛片在线观看| 国产亚洲91精品色在线| 成人午夜高清在线视频| 极品教师在线视频| 黄色配什么色好看| 深夜a级毛片| 国产精品久久久久久av不卡| 午夜久久久久精精品| 国产免费福利视频在线观看| 丰满乱子伦码专区| 国产一级毛片在线| .国产精品久久| 五月玫瑰六月丁香| 日韩 亚洲 欧美在线| 色5月婷婷丁香| 国内揄拍国产精品人妻在线| 亚洲欧美清纯卡通| 成人欧美大片| 免费看a级黄色片| 亚洲aⅴ乱码一区二区在线播放| 国产综合懂色| 欧美精品一区二区大全| 久久久久网色| h日本视频在线播放| 国产精品三级大全| 欧美色视频一区免费| 精品久久久久久久久亚洲| 禁无遮挡网站| www.av在线官网国产| 久久精品影院6| 久久99热6这里只有精品| 久久精品91蜜桃| 日本免费a在线| av专区在线播放| 少妇被粗大猛烈的视频| av在线播放精品| 成人二区视频| 中文天堂在线官网| 国产视频首页在线观看| 99热这里只有精品一区| 成人亚洲欧美一区二区av| 亚洲欧洲日产国产| 老司机福利观看| 日本五十路高清| 日韩亚洲欧美综合| 成人av在线播放网站| 国产色爽女视频免费观看| 亚洲精品亚洲一区二区| 色播亚洲综合网| 国产精品野战在线观看| 成人国产麻豆网| 国产亚洲av嫩草精品影院| 欧美日本视频| 国产精品一区二区性色av| 18禁在线无遮挡免费观看视频| 天堂av国产一区二区熟女人妻| 少妇人妻一区二区三区视频| 欧美色视频一区免费| 国产伦一二天堂av在线观看| 国产伦精品一区二区三区视频9| 国产美女午夜福利| 少妇高潮的动态图| 丰满人妻一区二区三区视频av| 麻豆精品久久久久久蜜桃| 色综合色国产| 国产一区二区亚洲精品在线观看| 久久久久久久久久久丰满| ponron亚洲| 最新中文字幕久久久久| 国产精品爽爽va在线观看网站| 内地一区二区视频在线| 午夜福利在线观看免费完整高清在| 青春草亚洲视频在线观看| 亚洲国产成人一精品久久久| 成人毛片60女人毛片免费| av在线播放精品| 天堂网av新在线| 久久99精品国语久久久| 免费观看的影片在线观看| 亚洲国产精品国产精品| 精华霜和精华液先用哪个| 国产美女午夜福利| 日韩,欧美,国产一区二区三区 | 大香蕉久久网| 长腿黑丝高跟| 欧美极品一区二区三区四区| 久久热精品热| 日本一二三区视频观看| 亚洲在久久综合| 亚洲精品,欧美精品| 亚洲欧美中文字幕日韩二区| 岛国毛片在线播放| 一级毛片电影观看 | 国产老妇女一区| 九九热线精品视视频播放| 成人一区二区视频在线观看| 九九久久精品国产亚洲av麻豆| 秋霞在线观看毛片| 国产精品一区二区性色av| 最近中文字幕高清免费大全6| 成人二区视频| 国产三级中文精品| 午夜福利视频1000在线观看| 久久久欧美国产精品| 亚州av有码| 婷婷色av中文字幕| 免费观看在线日韩| 岛国在线免费视频观看| 18+在线观看网站| 国产一区二区在线av高清观看| 国产成人a区在线观看| 黄片wwwwww| 日本黄色片子视频| 亚洲电影在线观看av| 卡戴珊不雅视频在线播放| 波多野结衣巨乳人妻| 欧美日韩精品成人综合77777| 乱系列少妇在线播放| 夫妻性生交免费视频一级片| 欧美一区二区国产精品久久精品| 直男gayav资源| 汤姆久久久久久久影院中文字幕 | 有码 亚洲区| 亚洲人成网站在线播| 午夜福利高清视频| 欧美xxxx性猛交bbbb| 人人妻人人澡欧美一区二区| 中文字幕制服av| 最新中文字幕久久久久| 观看免费一级毛片| 九色成人免费人妻av| 午夜免费男女啪啪视频观看| 亚洲av一区综合| 91狼人影院| 97在线视频观看| 啦啦啦观看免费观看视频高清| 婷婷六月久久综合丁香| 建设人人有责人人尽责人人享有的 | 1024手机看黄色片| 亚洲av二区三区四区| 大香蕉97超碰在线| 人妻制服诱惑在线中文字幕| 久久韩国三级中文字幕| 国产av码专区亚洲av| 一本一本综合久久| 婷婷色麻豆天堂久久 | 亚洲国产精品专区欧美| av在线老鸭窝| 国产亚洲午夜精品一区二区久久 | 中文字幕久久专区| 我要看日韩黄色一级片| www.av在线官网国产| 一边摸一边抽搐一进一小说| 大话2 男鬼变身卡| 人妻系列 视频| 婷婷色综合大香蕉| 真实男女啪啪啪动态图| 国产一区二区在线av高清观看| 国产亚洲精品av在线| 一区二区三区四区激情视频| 全区人妻精品视频| 三级毛片av免费| 深夜a级毛片| 99久久人妻综合| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久久中文| 日本av手机在线免费观看| 女人久久www免费人成看片 | 亚洲精品乱码久久久久久按摩| 久久99热6这里只有精品| 色噜噜av男人的天堂激情| 高清在线视频一区二区三区 | 青春草国产在线视频| 边亲边吃奶的免费视频| 亚洲国产精品成人综合色| 久久久久免费精品人妻一区二区| 欧美性感艳星| 国产白丝娇喘喷水9色精品| 美女cb高潮喷水在线观看| 日本黄色视频三级网站网址| 一级黄片播放器| 少妇被粗大猛烈的视频| 亚洲av成人精品一区久久| 九九热线精品视视频播放| 精品国产三级普通话版| 精品久久久久久久久久久久久| 国产亚洲91精品色在线| 亚洲,欧美,日韩| videossex国产| 一区二区三区高清视频在线| 男人狂女人下面高潮的视频| 免费电影在线观看免费观看| 午夜视频国产福利| 日日摸夜夜添夜夜爱| 国产av码专区亚洲av| 国产美女午夜福利| 少妇被粗大猛烈的视频| 黄色欧美视频在线观看| 亚洲av一区综合| 大香蕉久久网| 国产免费视频播放在线视频 | 日本猛色少妇xxxxx猛交久久| 啦啦啦啦在线视频资源| 小说图片视频综合网站| 亚洲欧美日韩卡通动漫| 国产探花极品一区二区| 一级二级三级毛片免费看| 中文字幕av在线有码专区| 99在线人妻在线中文字幕| 亚洲在线观看片| 亚洲精品乱久久久久久| 直男gayav资源| 日本wwww免费看| 欧美成人午夜免费资源| 成人国产麻豆网| 免费黄网站久久成人精品| 久久精品久久久久久噜噜老黄 | 国产真实伦视频高清在线观看| 韩国高清视频一区二区三区| 国产极品天堂在线| 99热6这里只有精品| 91av网一区二区| 丝袜喷水一区| 国产亚洲最大av| 亚洲经典国产精华液单| 最近2019中文字幕mv第一页| 精品国产三级普通话版| 看片在线看免费视频| 69av精品久久久久久| 国产精品一区二区性色av| 国产单亲对白刺激| 亚洲自偷自拍三级| 一个人看视频在线观看www免费| 春色校园在线视频观看| 亚洲成人精品中文字幕电影| 国产精品麻豆人妻色哟哟久久 | 久久草成人影院| 国产欧美另类精品又又久久亚洲欧美| 国产成人一区二区在线| 97热精品久久久久久| 日韩精品青青久久久久久| 国产久久久一区二区三区| 久久精品综合一区二区三区| 亚洲av二区三区四区| 亚洲欧美一区二区三区国产| 亚洲av成人精品一二三区| 99久久精品一区二区三区| 日日干狠狠操夜夜爽| 日本黄大片高清| 欧美3d第一页| 国产精品一区二区三区四区久久| 特级一级黄色大片| 好男人在线观看高清免费视频| 哪个播放器可以免费观看大片| 天堂网av新在线| 免费观看性生交大片5| 麻豆久久精品国产亚洲av| 亚洲欧美精品综合久久99| АⅤ资源中文在线天堂| 成人高潮视频无遮挡免费网站| 99在线视频只有这里精品首页| www日本黄色视频网| 青春草视频在线免费观看| 亚洲av熟女| 日本免费一区二区三区高清不卡| 亚洲精品乱码久久久v下载方式| 欧美一区二区国产精品久久精品| 夫妻性生交免费视频一级片| 三级国产精品片| 99久久中文字幕三级久久日本| 国产精品不卡视频一区二区| 最后的刺客免费高清国语| 国产精品福利在线免费观看| 亚洲av成人精品一区久久| 嫩草影院新地址| 国产高潮美女av| 99热这里只有精品一区| 久久久久久大精品| 熟女电影av网| 亚洲精品456在线播放app| 精品午夜福利在线看| 一个人看视频在线观看www免费| 好男人在线观看高清免费视频| 看非洲黑人一级黄片| 亚洲av中文字字幕乱码综合| 丰满少妇做爰视频| 国产一区二区三区av在线| 中文字幕久久专区| 男女视频在线观看网站免费| 午夜福利在线在线| 久久久久久久亚洲中文字幕| 69人妻影院| 精品人妻偷拍中文字幕| 亚洲国产精品国产精品| 青青草视频在线视频观看| 精品一区二区三区人妻视频| 国产精品久久电影中文字幕| 男女国产视频网站| 国产精品久久久久久久电影| 特大巨黑吊av在线直播| 97在线视频观看| 国产熟女欧美一区二区| 如何舔出高潮| a级毛片免费高清观看在线播放| 精品国产露脸久久av麻豆 | 免费看av在线观看网站| 国产av不卡久久| 久久久久国产网址| 非洲黑人性xxxx精品又粗又长| 亚洲av男天堂| 午夜视频国产福利| 亚洲欧美清纯卡通| 国产 一区精品| a级一级毛片免费在线观看| 一边摸一边抽搐一进一小说| 美女大奶头视频| 麻豆一二三区av精品| 亚洲国产最新在线播放| 中文欧美无线码| 国产色爽女视频免费观看| 99国产精品一区二区蜜桃av| 汤姆久久久久久久影院中文字幕 | 在线播放无遮挡| 老司机影院成人| 久久这里只有精品中国| 久久久久免费精品人妻一区二区| 国产片特级美女逼逼视频| 村上凉子中文字幕在线| 国产色婷婷99| 国模一区二区三区四区视频| 亚洲欧美精品专区久久| 国产成人a区在线观看|