王棟棟,王占禮,2※,張慶瑋,張琪琳,田娜玲
草地植被覆蓋度坡度及雨強(qiáng)對坡面徑流含沙量影響試驗(yàn)研究
王棟棟1,王占禮1,2※,張慶瑋1,張琪琳1,田娜玲1
(1. 西北農(nóng)林科技大學(xué)水土保持研究所 黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室,楊凌 712100;2. 中國科學(xué)院水利部水土保持研究所,楊凌712100)
為研究植被修復(fù)狀態(tài)下徑流含沙量變化。該試驗(yàn)運(yùn)用人工模擬降雨試驗(yàn)方法,分析了徑流含沙量草被調(diào)控效益變化。結(jié)果:1)不同降雨強(qiáng)度或坡度下,平均徑流含沙量隨草被蓋度的增大而減小,草被蓋度從30%~70%,含沙量分別降低約10或5 kg/m3,可用線性方程顯著描述。草被消減雨強(qiáng)對徑流含沙量影響大于草被消減坡度的。平均徑流含沙量隨降雨強(qiáng)度或坡度的增大而增大,分別可用冪函數(shù)或指數(shù)函數(shù)方程顯著描述,決定系數(shù)在0.5或0.8以上。2)基于單位水流功率建立冪函數(shù)模型決定系數(shù)為0.940,模型有效系數(shù)為0.986,說明模型模擬精度都較高。3)基于坡度、雨強(qiáng)和蓋度建立指數(shù)函數(shù)模型決定系數(shù)為0.937,模型有效系數(shù)為0.894,說明模型模擬精度都較高。該研究可以預(yù)測草地坡面含沙量,為生態(tài)建設(shè)和流域管理提供指導(dǎo)。
土壤;侵蝕;徑流;徑流含沙量;草地植被;水力學(xué)參數(shù);土壤侵蝕模型;蓋度
王棟棟,王占禮,張慶瑋,張琪琳,田娜玲. 草地植被覆蓋度坡度及雨強(qiáng)對坡面徑流含沙量影響試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(15):119-125. doi:10.11975/j.issn.1002-6819.2017.15.015 http://www.tcsae.org
Wang Dongdong, Wang Zhanli, Zhang Qingwei, Zhang Qilin, Tian Naling. Experiment on influence of cover degree, slope and rainfall intensity on sediment concentration of slope runoff in rangeland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 119-125. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.015 http://www.tcsae.org
片蝕是坡面薄層水流對土壤的分散和輸移過程[1-2],是中國黃土地區(qū)垂直分布帶土壤侵蝕的初級階段[3]。徑流含沙量變化是產(chǎn)流、產(chǎn)沙及水沙關(guān)系消長與演變過程的重要指標(biāo)[4],也是衡量水土流失嚴(yán)重性的重要參數(shù)之一;另外徑流含沙量變化可引起河床形態(tài)變化危及河道運(yùn)行安全。自從退耕還草還林以來,草地得到很好的自行修復(fù),片蝕徑流含沙量也隨之產(chǎn)生變化。建立草地坡面片蝕徑流含沙量模型預(yù)測植被修復(fù)狀態(tài)下徑流含沙量對指導(dǎo)生態(tài)建設(shè)和加強(qiáng)流域管理有著極其重要作用。
坡面含沙量主要受雨強(qiáng)、坡度、坡長、植被影響,很多學(xué)者運(yùn)用室內(nèi)模擬降雨試驗(yàn)方法對此進(jìn)行研究。李君蘭等[5]對坡面細(xì)溝侵蝕發(fā)生過程中的坡面流速的沿坡變化進(jìn)行了研究,試驗(yàn)結(jié)果表明坡面徑流含沙量與坡度、雨強(qiáng)和坡面流速相關(guān),與坡長無關(guān)。Liu等[4,6-8]研究了坡度雨強(qiáng)對含沙量變化過程影響,結(jié)果一致表明含沙量隨降雨歷時增加最終逐漸趨于穩(wěn)定。盛賀偉等[9]研究在不同質(zhì)地黃土、降雨強(qiáng)度和坡度條件下,水流含沙量均呈先減小后趨于平穩(wěn)的規(guī)律;穩(wěn)定含沙量隨降雨強(qiáng)度和坡度的增大而增大。李浩宏等[10]試驗(yàn)結(jié)果表明片蝕水流平均含沙量隨雨強(qiáng)和坡度的增大而增大,分別可用冪函數(shù)方程和對數(shù)方程描述。而關(guān)于有植被坡面的徑流含沙量研究多采用野外降雨試驗(yàn)方法,研究內(nèi)容集中在植被形態(tài)及種類對含沙量影響,近幾年研究轉(zhuǎn)向徑流含沙量變化對水力學(xué)參數(shù)影響。楊帆等[11]和甘卓婷等[12]研究表明草被的蓋度和種類以及草本植物結(jié)構(gòu)間接的影響徑流含沙量。甘卓婷等[12]還認(rèn)為有草被覆蓋的徑流小區(qū)比裸坡的坡面徑流含沙量小,并且坡面徑流含沙量隨草地植被生長階段的增加而減小。吳卿等[13]采用人工徑流沖刷模擬裝置,研究了30%~40%及60%~80%草被蓋度對侵蝕影響,研究結(jié)果表明在坡度和沖刷流量相同的條件下,植被蓋度變化對徑流含沙量有顯著影響。Ghadiri等[14-15]研究認(rèn)為植被過濾帶前面的回水段泥沙沉積更為重要。肖培青等[16]、潘成忠等[17]、趙春紅等[18],朱冰冰等[19]和吳淑芳等[20]通過野外人工模擬降雨試驗(yàn)研究徑流含沙量對水力學(xué)參數(shù)影響,研究結(jié)果一致表明徑流含沙量可顯著影響水力學(xué)參數(shù)。綜上可知,草地調(diào)控徑流含沙量研究匱乏,使植被修復(fù)狀態(tài)下徑流含沙量變化認(rèn)知缺失,以致無法科學(xué)進(jìn)行生態(tài)建設(shè)和流域管理。
該試驗(yàn)運(yùn)用人工模擬降雨試驗(yàn)方法,分析不同草地植被蓋度、雨強(qiáng)及坡度條件下坡面含沙量的變化,探求草地植被影響坡面徑流含沙量的變化規(guī)律;確定最適合描述徑流含沙量變化的水力學(xué)參數(shù);基于坡度、雨強(qiáng)及蓋度建立草被坡面徑流含沙量模型,以及基于最佳水力學(xué)參數(shù)建立草被坡面含沙量模型。該研究一方面預(yù)測草地坡面含沙量,另一方面為生態(tài)建設(shè)和流域管理提供指導(dǎo)。
試驗(yàn)在中科院水利部水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室人工模擬降雨大廳進(jìn)行。試驗(yàn)土壤取自位于黃土高原腹地的陜西安塞(屬于典型黃土丘陵溝壑區(qū)),土壤類型為黃綿土。
試驗(yàn)主要設(shè)備包括徑流小區(qū)及模擬降雨器。徑流小區(qū)為移動式變坡度鋼質(zhì)小區(qū),可調(diào)坡度范圍為0°~30°,小區(qū)尺度為140 cm×120 cm×25 cm,底部按10 cm的間距開孔。試驗(yàn)所用降雨設(shè)備為側(cè)噴式人工降雨設(shè)備,噴頭安裝高度14.5 m,雨滴上噴高度1.5 m,降雨均勻度大于80%[21],實(shí)際降雨高度為16 m,能夠滿足所有雨滴都能達(dá)到終點(diǎn)速度[22]。
所有試驗(yàn)土壤自然風(fēng)干并過5 mm篩,除去雜草和石塊。當(dāng)自然風(fēng)干土壤的質(zhì)量含水量低于設(shè)計含水量時,要往土壤中加適量的水以至達(dá)到設(shè)計含水量14%。小區(qū)裝土之前,在底部鋪設(shè)5 cm厚的天然細(xì)沙,用透水紗布覆蓋,以保持土層的透水狀況接近天然坡面。裝填土壤厚度為20 cm。為保證裝土的均勻性,按設(shè)計容重分層(每層5 cm)裝填,每次試驗(yàn)均裝填新土。填土?xí)r,采用邊填充邊壓實(shí),并在所有邊界0.5 cm的范圍都加以夯實(shí),以減小由于邊壁所造成的對入滲和產(chǎn)流產(chǎn)沙過程及坡面侵蝕微形態(tài)發(fā)育等方面的影響,并使下墊面土壤條件的變異性達(dá)到最小,保證試驗(yàn)土壤容重達(dá)到1.2 g/cm3。填土后,用刮板將表面刮平整。
草地小區(qū)由先建成裸土小區(qū)后再在其上種草建成,草長出后要對草地進(jìn)行管護(hù),以保證草能種活、長成,包括施肥、病蟲害防治、澆水等,待草長勢穩(wěn)定后即可進(jìn)行試驗(yàn)。試驗(yàn)選取草種為草地早熟禾(Poa pratensis L.),種草方式為條帶狀種植。植被蓋度(C)分別為30%、40%、50%、60%、70% 5個等級,草的長勢穩(wěn)定后可進(jìn)行試驗(yàn)。每次降雨試驗(yàn)前用數(shù)碼相機(jī)對草地小區(qū)垂直拍照,再將照片拿回室內(nèi)用ImageJ得到準(zhǔn)確的植被蓋度,如與設(shè)計覆蓋度不一致,則要對草冠進(jìn)行適當(dāng)修剪,以保證試驗(yàn)蓋度與設(shè)計蓋度一致。
試驗(yàn)坡度(S)選取7°、10°、15°、20°、25° 5個等級。試驗(yàn)雨強(qiáng)(I)選取0.7、1.0、1.5、2.0、2.5 mm/min五個等級。1個坡度5個雨強(qiáng)5個覆蓋度及1個雨強(qiáng)5個坡度5個覆蓋度組合的草地小區(qū)試驗(yàn)45場次,重復(fù)2次,共90場。具體試驗(yàn)設(shè)計見表1。
表1 試驗(yàn)設(shè)計Table 1 Experiment Design
降雨歷時為40 min。開始產(chǎn)流后前6 min每隔1、2、3 min觀測1次,以后每隔3 min觀測一次,觀測時間至降雨結(jié)束(最后1個觀測時距小于3 min),用小桶接取時段全部徑流泥沙。用高錳酸鉀測定徑流表層流速,用溫度計測量渾水溫度,然后計算出雷諾數(shù)并判定水流流態(tài),將不同流態(tài)的表面流速乘流速修正系數(shù)計算獲得水流斷面平均流速[23]。小區(qū)出口的流量用小桶接取時段全樣后,用天平稱取渾水樣質(zhì)量,然后澄清、撇掉清水、烘干稱質(zhì)量后計算出徑流含沙量(SC)。
根據(jù)有關(guān)學(xué)者論著計算切應(yīng)力[24]、水流功率[25-26]、單位水流功率[27-28]等水力學(xué)參數(shù)。
坡面徑流切應(yīng)力是破壞土壤結(jié)構(gòu)及分離土壤的主要動力,它將分離的土粒帶入水流并攜帶出坡面。其表達(dá)式
式中τ為水流切應(yīng)力,Pa;γ為水流的容重,N/m3;R為水力半徑,m;J為水力坡度,J=sinθ,θ為床面坡度,(°)。
坡面徑流對土壤侵蝕的過程是做功耗能的過程,因此該過程就具有一定的功率。水流功率被表述為單位面積水體的勢能在時間尺度上的變化率,它表征了處于一定高度的水體沿坡流動時具有的勢能。其表達(dá)式
式中ω為水流功率,W/m2;V為流速,m/s。
單位水流功率為單位質(zhì)量水體對床面做功而消耗的功率。其表達(dá)式如下
式中U為單位水流功率,m/s;s 為單位面積,m2。
采用Excel2003繪圖及SPSS 18.0數(shù)據(jù)統(tǒng)計分析軟件做相關(guān)性分析,將數(shù)據(jù)分成2組,一組27場數(shù)據(jù)基于坡度雨強(qiáng)蓋度或最佳水力學(xué)參數(shù)(單位水流功率)建模,另外一組18場數(shù)據(jù)用來驗(yàn)證模型。具體驗(yàn)證指標(biāo)見下式分析可知,不同蓋度條件下,草地植被徑流含沙量隨降雨強(qiáng)度或坡度的變化趨勢不同。同一坡度下雨強(qiáng)從0.7增加到2.0 mm/min,徑流含沙量增加約10 kg/m3,雨強(qiáng)從2.0增加到2.5 mm/min,徑流含沙量降低約3 kg/m3;同一雨強(qiáng)下坡度從7°增加到25°,徑流含沙量增加約40 kg/m3。
式中RE是相對誤差,%;EE平均相對誤差,%;RME絕對相對誤差,%;R2決定系數(shù);NE是Nash模型有效系數(shù)[29],Oi是實(shí)測值,Pi是預(yù)測值,O平均實(shí)測值,P平均預(yù)測值,n樣本數(shù).
圖1為不同降雨強(qiáng)度條件下含沙量對蓋度的響應(yīng)。不同降雨強(qiáng)度或坡度下,平均徑流含沙量隨草被蓋度的增大而減小,草被蓋度從30%增加到70%,含沙量分別降低約10或5 kg/m3。由表2可知,不同降雨強(qiáng)度或坡度條件下,平均徑流含沙量隨草被蓋度變化可用線性方程描述,方程可簡化SC=?aC+b形式,決定系數(shù)在0.8以上,顯著性水平為0.01。對比方程系數(shù)a發(fā)現(xiàn),不同降雨強(qiáng)度下的方程系數(shù)整體大于不同坡度下方程系數(shù)。可見,草被消減雨強(qiáng)對徑流含沙量影響明顯大于草被消減坡度對徑流含沙量影響。
圖2為不同蓋度條件下含沙量對降雨強(qiáng)度或坡度的響應(yīng)。不同蓋度條件下,平均徑流含沙量隨降雨強(qiáng)度或坡度的增大而增大。由表3可知,不同蓋度下,徑流含沙量隨降雨強(qiáng)度變化可用冪函數(shù)方程描述方程可簡化SC=?aIb形式,決定系數(shù)在0.5以上,顯著性水平為0.01;隨坡度變化可用指數(shù)函數(shù)方程描述,方程可簡化SC=?aebs形式,決定系數(shù)在0.8以上,顯著性水平為0.01。進(jìn)一步
圖1 不同雨強(qiáng)或坡度下含沙量隨蓋度變化Fig.1 Variations of sediment concentration with cover under different rainfall intensities or slopes
圖2 不同蓋度下含沙量隨雨強(qiáng)或坡度的變化Fig.2 Variations of sediment concentration with rainfall intensity or slope under different cover
表2 不同降雨強(qiáng)度或坡度下草被蓋度與平均徑流含沙量的經(jīng)驗(yàn)方程Table 2 Empirical equations between cover and sediment concentration under different rainfall intensities or slopes
表3 不同蓋度下降雨強(qiáng)度或坡度與平均徑流含沙量的經(jīng)驗(yàn)方程Table 3 Empirical equations between rainfall intensity or slope and sediment concentration under different covers
由表4可知,不同草地蓋度下,徑流含沙量與切應(yīng)力和水流功率呈冪函數(shù)方程,決定系數(shù)在0.2~0.5,顯著性水平為0.01。而不同草地蓋度下,徑流含沙量與單位水流功率呈對數(shù)方程,決定系數(shù)在0.7~0.9,顯著性水平為0.01。對比決定系數(shù)可知,單位水流功率與徑流含沙量決定系數(shù)最大,單位水流功率比切應(yīng)力和水流功率更適合用來描述含沙量水動力過程。
表4 徑流含沙量與水力學(xué)參數(shù)的經(jīng)驗(yàn)方程Table 4 Empirical equations between sediment concentration and hydrodynamic parameters
2.3.1 基于坡度、雨強(qiáng) 和草被蓋度模擬
在該試驗(yàn)條件下,雨強(qiáng)、坡度和草地蓋度是影響坡面徑流含沙量特征的3個主要因素,將27場次試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計,分析坡面徑流含沙量變化對雨強(qiáng)、坡度和草地蓋度的響應(yīng)關(guān)系,得到式(9)。
式中SC為含沙量,kg/m3;I為雨強(qiáng),mm/min;S為坡度,(°);C為蓋度,%。
式(9)表明,草被坡面徑流含沙量對雨強(qiáng)、坡度和草地蓋度的響應(yīng)關(guān)系可用三元指數(shù)函數(shù)方程描述,顯著性水平Sig<0.01。相對誤差RE范圍在?25.755~18.277之間,相對誤差絕對值的平均值RME為10.650,平均相對誤差EE為0.802,決定系數(shù)R2為0.937,模型有效系數(shù)NE達(dá)到0.894。說明基于坡度、雨強(qiáng)和蓋度模型對實(shí)測值的模擬精度很高。
2.3.2 基于單位水流功率模擬
在本試驗(yàn)條件下,單位水流功率最適合用來描述含沙量水動力過程。基于此,將27場次試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計,分析坡面徑流含沙量變化對單位水流功率的響應(yīng)關(guān)系,見式(10)。
式中SC為含沙量,kg/m3;U為單位水流功率,m/s。
式(10)表明,草被坡面徑流含沙量對單位水流功率的響應(yīng)關(guān)系可用冪函數(shù)方程描述,顯著性水平Sig<0.01。相對誤差RE范圍在?32.781%~15.540%之間,相對誤差絕對值平均值RME為10.280%,平均相對誤差EE為?0.903%,決定系數(shù)R2為0.940,模型有效系數(shù)NE達(dá)到0.986。說明基于單位水流功率模型對實(shí)測值的模擬精度也很高。
同一坡度不同雨強(qiáng)下,在中小雨強(qiáng)0.7增加到2.0 mm/min時,徑流產(chǎn)生的動能只能分離表層土壤,土壤可蝕性系數(shù)很低,只要徑流動能增加,侵蝕量就會急速增加,從而造成中小雨強(qiáng)0.7增加到2.0 mm/min,徑流含沙量呈急速增加趨勢。在大雨強(qiáng)2.0增加到2.5 mm/min時,徑流需要分離深層土壤,而草被緊固較深層土壤可蝕性系數(shù)明顯提高,分離出來土壤減少。再加上土壤入滲能力和蓄水能力有限,徑流量隨之增加。從而造成在大雨強(qiáng)情況下,徑流含沙量呈降低趨勢。同一雨強(qiáng)下坡度從7°增加到25°,試驗(yàn)坡面匯水量降低,重力作用和流速增加,侵蝕動能反而增加,而坡面土壤穩(wěn)定性降低,可蝕性系數(shù)降低。從而造成坡度增加,徑流含沙量呈急速增加趨勢。
不同草地蓋度下,徑流含沙量與單位水流功率可呈顯著的冪函數(shù)方程,決定系數(shù)0.7~0.9,最適合用來描述含沙量水動力過程。盛賀偉等[9]、李浩宏等[10]和Shih等[30]研究也一致認(rèn)為單位水流功率最適合用來描述含沙量水動力過程,但這3位的試驗(yàn)條件為裸坡,盛賀偉等[9]在研究不同土質(zhì)含沙量變化時考慮了土壤顆粒體積分形維數(shù)在含沙量中影響,徑流含沙量與單位水流功率、土壤顆粒體積分形維數(shù)呈可呈顯著的冪函數(shù)方程,可見徑流含沙量與單位水流功率關(guān)系最為密切,但兩者關(guān)系受土壤類型影響。草地坡面單位水流功率之所以與單位水流功率關(guān)系最為密切,原因是單位水流功率計算并沒有考慮受植被影響很大的水深,其他水力學(xué)參數(shù)像切應(yīng)力和水流功率的計算考慮了水深,造成其實(shí)際計算中誤差變大,與含沙量的相關(guān)性顯著降低。
通過對驗(yàn)證指標(biāo)分析可知,2個含沙量模型對實(shí)測值的模擬精度都很高。雖然基于單位水流功率模型精度(NE=0.986)要比基于坡度雨強(qiáng)蓋度模型精度高(NE=0.894),但考慮到模型的實(shí)用性,基于坡度雨強(qiáng)蓋度模擬含沙量模型價值更高。驗(yàn)證指標(biāo)也表明用單位水流功率模擬含沙量模型要低估實(shí)際值,而用坡度、雨強(qiáng)和蓋度模擬含沙量模型要高估實(shí)際值,可能含沙量模型并沒有有效估計草被減少含沙量作用。因?yàn)橹脖徊季帧⒏螒B(tài)植被對含沙量影響一直是研究難點(diǎn)并且很難進(jìn)行定量分析。這些問題造成模擬含沙量中誤差產(chǎn)生,因此后期應(yīng)繼續(xù)加強(qiáng)植被布局、根形態(tài)植被對含沙量影響的定量分析。
1)不同降雨強(qiáng)度或坡度下,平均徑流含沙量隨草被蓋度的增大而減小,草被蓋度從30%增加到70%,含沙量分別降低約10或5 kg/m3,可用線性方程描述,決定系數(shù)在0.8以上,顯著性水平為0.01。對比分析發(fā)現(xiàn)草被消減雨強(qiáng)對徑流含沙量影響明顯大于草被消減坡度對徑流含沙量影響。不同蓋度條件下,平均徑流含沙量隨降雨強(qiáng)度或坡度的增大而增大,可用冪函數(shù)方程描述;隨坡度變化可用指數(shù)函數(shù)方程描述,決定系數(shù)在0.5或0.8以上,顯著性水平為0.01。同一坡度下雨強(qiáng)從0.7增加到2.0 mm/min,徑流含沙量增加約10 kg/m3,雨強(qiáng)從2.0增加到2.5 mm/min,徑流含沙量降低約3 kg/m3;同一雨強(qiáng)下坡度從7°增加到25°,徑流含沙量約增加40 kg/m3。
2)不同草地蓋度下,徑流含沙量與單位水流功率可呈顯著冪函數(shù)方程,決定系數(shù)0.7~0.9,最適合用來描述含沙量水動力過程?;趩挝凰鞴β式⒛P蜎Q定系數(shù)R2為0.940,模型有效系數(shù)NE為0.986,說明模型模擬精度較高。
3)草被坡面徑流含沙量對雨強(qiáng)、坡度和草地蓋度的響應(yīng)關(guān)系可用三元指數(shù)函數(shù)方程描述,顯著性水平Sig<0.01?;谄露取⒂陱?qiáng)和蓋度建立含沙量模型的決定系數(shù)R2為0.937,模型有效系數(shù)NE達(dá)到0.894,說明模型模擬精度較高
[1] 楊明義,田均良. 坡面侵蝕過程定量研究進(jìn)展[J]. 地球科學(xué)進(jìn)展,2000,15(6):650-653.
Yang Mingyi, Tian Junliang. Research progress in erosion process on hillslope quantitatively[J]. Advance in Earth Sciences, 2000, 15(6): 650-653. (in Chinese with English abstract)
[2] 鄭粉莉,高學(xué)田. 坡面土壤侵蝕過程研究進(jìn)展[J]. 地理科學(xué),2003,23(2):230-235.
Zheng Fenli, Gao Xuetian. Research progresses in hillslope soil erosion processes[J]. Scientia Geographica Sinca, 2003, 23(2): 230-235. (in Chinese with English abstract)
[3] 劉元保,朱顯謨,周佩華,等. 黃土高原土壤侵蝕垂直分帶性研究[J]. 中國科學(xué)院西北水土保持研究所集刊,1988(1):5-8.
Liu Yuanbao, Zhu Xianmo, Zhou Peihua, et a1. A study on the vertical zoning of soil erosion in the Loess Plateau[J]. Memoir of Northwestern Institute of Soil and Water Conservation Academia Sinica, 1988(1): 5-8. (in Chinese with English abstract)
[4] Liu June, Wang Zhanli, Yang Xiaomei, et al. The impact of natural polymer derivatives on sheet erosion on experimental loess hillslope[J]. Soil and Tillage Research, 2014, 139: 23-27.
[5] 李君蘭,蔡強(qiáng)國,孫莉英,等. 坡面水流速度與坡面含砂量的關(guān)系[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(3):73-78.
Li Junlan, Cai Qiangguo, Sun Liying, et a1. Relationship between the spatial distribution of flow velocity and sediment concentration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3): 73-78. (in Chinese with English abstract)
[6] 盧嘉,鄭粉莉,安娟,等. 降雨侵蝕過程中黑土團(tuán)聚體流失特征研究[J]. 生態(tài)學(xué)報,2016,36(8):2264-2273.
Lu Jia, Zheng Fenli, An Juan, et al. 2016.An experiment study of Mollisol arrregate loss characteristics during rainfall erosion processes[J]. Acta Ecologica Sinica, 2016, 36(8): 2264-2273. (in Chinese with English abstract)
[7] 劉俊娥,王占禮,高素娟. 黃土坡面片蝕過程試驗(yàn)研究[J].水土保持學(xué)報,2011,25(3):35-39. Liu June, Wang Zhanli, Gao Sujuan. Experimental study of sheet erosion processes on loess hillslope[J]. Journal of Soil and Water Conservation, 2011, 25(3): 35-39. (in Chinese with English abstract)
[8] 鄭子成,秦鳳,李廷軒. 不同坡度下紫色土地表微地形變化及其對土壤侵蝕的影響[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(8):168-175.
Zheng Zicheng, Qin Feng, Li Tingxuan. Changes in soil surface micro-relief of purple soil under different slope gradients and its effects on soil erosion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 168-175. (in Chinese with English abstract)
[9] 盛賀偉,孫莉英,蔡強(qiáng)國. 黃土坡面片蝕過程穩(wěn)定含沙量及其影響因素[J]. 地理科學(xué)進(jìn)展,2016,35(8):1008-1016.
Sheng Hewei, Sun Liying, Cai Qiangguo. Steady sediment concentration of sheet erosion on loess slope and influencing factors[J]. Progress in Geography, 2016, 35(8): 1008-1016. (in Chinese with English abstract)
[10] 李浩宏,王占禮,申楠,等. 黃土坡面片蝕水流含沙量變化過程試驗(yàn)研究[J]. 中國水土保持,2015(3):46-49.
Li Haohong, Wang Zhanli, Shen Nan, et al. An experiment study of variation of sediment concentration of sheet erosion on loess slope[J]. Soil and Water Conservation of China, 2015(3): 46-49. (in Chinese with English abstract)
[11] 楊帆,程金花,張洪江,等. 坡面草本植物對土壤分離及侵蝕動力的影響研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(5):129-137.
Yang Fan, Cheng Jinhua, Zhang Hongjiang, et al. Effect of herb plants on soil detachment and erosion dynamics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 129-137. (in Chinese with English abstract)
[12] 甘卓亭,葉佳,周旗,等. 模擬降雨下草地植被調(diào)控坡面土壤侵蝕過程[J]. 生態(tài)學(xué)報,2010(9):2387-2396.
Gan Zhouting, Ye Jia, Zhou Qi, et al. Effects of grass vegetations on the processes of soil erosion over slope lands in simulated rainfalls[J]. Acta Ecologica Sinica, 2010(9): 2387-2396. (in Chinese with English abstract)
[13] 吳卿,楊春霞,甄斌,等. 草被覆蓋度對黃土坡面徑流產(chǎn)沙影響的試驗(yàn)研究[J]. 中國水土保持,2010(9):56-58.
Wu Qing, Yang Chunxia, Zhen Bin, et al. An experiment study of effects of grass cover on soil erosion on loess slope[J]. Soil and Water Conservation of China, 2010(9): 56-58. (in Chinese with English abstract)
[14] Ghadiri H, Rose C W, Hogarth B. The influence of grass and porous barrier strips on runoff hydrology and sediment transport[J]. Transactions of the ASAE, 2001, 42(6): 1950-1958.
[15] Ligdi E E, Rpc M. Contour grass strips: A laboratory simulation of their role in soil erosion control[J]. Soil Technology, 1995, 8(2): 109-117.
[16] 肖培青,姚文藝,申震洲,等. 草被減流減沙效應(yīng)及其力學(xué)機(jī)制分析[J]. 中國水土保持科學(xué),2010(2):15-19.
Xiao Peiqing, Yao Wenyi, Shen Zhenzhou, et al. Reduction effects of grass on runoff and sediment and its mechanical mechanism[J]. Science of Soil and Water Conservation, 2010(2): 15-19. (in Chinese with English abstract)
[17] 潘成忠,馬嵐,上官周平. 含沙量對草地坡面徑流泥沙沉積和水力特性的影響[J]. 水科學(xué)進(jìn)展,2008,19(6):857-862.
Pan Chengzhong, Ma Lan, Shangguan Zhouping.Influence of sediment concentration on deposition of silt and runoff hydraulics on grassland[J]. Advances in Science, 2008, 19(6): 857-862. (in Chinese with English abstract)
[18] 趙春紅,高建恩,王飛,等. 含沙量對坡面流水動力學(xué)特性的影響研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2013,44(9):79-85.
Zhao Chunhong, Gao Jianen, Wang Fei, el a1. Effects of Sediment concentration on Hydrodynamic Characteristics of Overland Flow[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(9): 79-85. (in Chinese with English abstract)
[19] 朱冰冰,李占斌,李鵬,等. 草本植被覆蓋對坡面降雨徑流侵蝕影響的試驗(yàn)研究[J]. 土壤學(xué)報,2010,47(3):40l-407.
Zhu Bingbing, Li Zhanbin, Li Peng, et a1. Effect of grass coverage on sediment yield of rain on slope[J]. Acta Pedologica Sinica, 2010, 47(3): 401-407. (in Chinese with English abstract)
[20] 吳淑芳,吳普特,原立峰. 坡面徑流調(diào)控薄層水流水力學(xué)特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(3):14-18.
Wu Shufang, Wu Pute, Yuan Lifeng. Hydraulic characteristics of sheet flow with slope runoff regulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 14-18. (in Chinese with English abstract)
[21] 鄭粉莉,趙軍. 人工模擬降雨大廳及模擬降雨設(shè)備簡介[J].水土保持研究,2004,11(4):177-178.
Zheng Fenli, Zhao Jun. Brief introduction of artificial simulated rainfall hall and simulated rainfall equipment[J]. Research of Soil and Water Conservation, 2004, 11(4): 177-178. (in Chinese with English abstract)
[22] 陳文亮,王占禮. 人工模擬降雨特性的試驗(yàn)研究[J]. 水土保持通報,1991,3(2):55-62.
Chen Wenliang, Wang Zhanli. Trial research on the behaviours of artificial rainfall by simulation[J]. Bulletin of Soil and Water Conversation, 1991, 3(2): 55-62. (in Chinese with English abstract).
[23] Horton R E, Leach H R, Van V1iet R. Laminar sheet flow[J]. Transactions of the American Geophysical Union, 1934, 15(2): 393-404.
[24] Foster G R, Huggins L F, Meyer L D. A laboratory study of rill hydraulics, II. Shear stress relationships[J]. Transactions of the ASAE, 1984, 27(3): 797-804.
[25] Bagnold R A. An approach to the sediment transport problem from general physics[J]. US Geological Survey Professional Paper, 1966, 422-i: 231-291.
[26] Prosser I P, Rustomji P. Sediment transport capacity relations for overland flow[J]. Progress in Physical Geography, 2000, 24: 179-193.
[27] Yang C T. Unit stream power and sediment transport[J]. Journal of the Hydraulics Division, 1972, 98: 1805-1826.
[28] Yang C T. Minimum unit stream power and fluvial hydraulics[J]. Journal of the Hydraulics Division, 1976, 102(7): 769-784.
[29] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part I-a discussion of principles[J]. Journal of the Hydrology, 1970, 10(3): 282-290.
[30] Shih H, Yang C T. Estimating overland flow erosion ca-pacity using unit stream power[J]. International Journal of Sediment Research, 2009, 24(1): 46-62.
Experiment on influence of cover degree, slope and rainfall intensity on sediment concentration of slope runoff in rangeland
Wang Dongdong1, Wang Zhanli1,2※, Zhang Qingwei1, Zhang Qilin1, Tian Naling1
(1. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100,China;2.Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100,China)
The purpose of this study was to model sediment concentration of sheet erosion on rangeland, which has a major impact on strengthening river basin management and controlling the source of soil erosion. The impact of herbaceous vegetation on sediment concentration under different slopes or rain intensities was studied by artificial rainfall experiment. The relationship of sediment concentration and slope gradient, rainfall intensity, and hydraulic parameters, such as shear stress, stream power and unit stream power, was investigated to derive an accurate experimental model. Each experiment soil pan with metal frames was 140 cm long, 120 cm wide and 2.5 cm deep. The experiment soil sample was collected from Ansai County, Shaanxi Province in China. After the soil was packed, herbaceous vegetation (Poa pratensis L.) was transplanted in a banded uniform layout. Poa pratensis L. was a gramineous plant, and the current year’s Poa pratensis L. was selected. The duration of all simulated rainfall events was 40 min. The experiment was conducted at 5 herbaceous vegetation cover densities (30%, 40%, 50%, 60%, and 70%), 5 rainfall intensities (0.7, 1, 1.5, 2, and 2.5 mm/min) and 5 slopes (7°, 10°, 15°, 20°, and 25°), respectively. All combinations were tested with 2 replicates of each run, a total of 90 experimental units. All statistical analyses were carried out using Excel or spss 18.0. Results show that: 1) Herbaceous vegetation not only decreases sediment concentration, but also reduces the effect of rainfall intensity or slope on it, which would increase with cover increasing. Cover increases from 30% to 70%, herbaceous vegetation decreases sediment concentration by more than 5 kg/m3, and reduces the effect of rainfall intensity or slope on it by more than 10 kg/m3. Under different slopes or rainfall intensities, sediment concentration decreases as linear equations with cover, and the relationship between sediment concentration and cover is significant (P<0.01). Under different covers, sediment concentration totally increases as power equations or exponential equations with rainfall intensity or slope, the relationship between sediment concentration and rainfall intensity is very well (P<0.01), and the relationship between sediment concentration and slope is also good (P<0.01). 2) Unit stream power is the parameter most suitably describing sediment concentration with an exponential equation among the 3 hydraulic parameters considered in this paper. Sediment concentration increases as shear stress or stream power increases, and both can be described by a logarithmic equation, but the relationship between sediment concentration and shear stress or stream power is poor. 3) Rainfall intensity, slope and cover can be used to predict sediment concentration with an exponential function accurately, which was satisfactory for predicting sediment concentration with the R2value of 0.937 and the NE (Nash coefficient) of 0.894. Meanwhile, unit stream power also can be used to predict sediment concentration with a power function equation, which was satisfactory for predicting sediment concentration with the R2value of 0.940 and the NE of 0.986. Vegetation species, layout and root morphology affect the simulation effect of sediment concentration on rangeland. In the later period, the vegetation species, layout and root morphology should be studied to quantify the sediment concentration and optimize the sediment concentration model.
soils; erosion; runoff; sediment concentration; herbaceous vegetation; hydrodynamic parameters; soil erosion model; cover
10.11975/j.issn.1002-6819.2017.15.015
S157
A
1002-6819(2017)-15-0119-07
2017-03-02
2017-07-09
國家自然科學(xué)基金資助項(xiàng)目(41471230,41171227);國家重點(diǎn)研發(fā)計劃(No.2016YFC0402401);黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室專項(xiàng)經(jīng)費(fèi)項(xiàng)目(A314021403-C2)
王棟棟,男,山東省東營人,博士生,主要從事土壤侵蝕與林草生態(tài)方面研究。楊凌 西北農(nóng)林科技大學(xué)水土保持研究所,712100。
Email:1534849533@qq.com
※通信作者:王占禮,男,陜西榆林人,博士,研究員,博士生導(dǎo)師,主要從事土壤侵蝕過程及預(yù)報模型研究工作。楊凌 西北農(nóng)林科技大學(xué)水土保持研究所,712100。Email:zwang@nwsuaf. edu. cn