李西振, 陳行堤
(華僑大學(xué) 數(shù)學(xué)科學(xué)學(xué)院, 福建 泉州 362021)
Bloch型雙調(diào)和映照
李西振, 陳行堤
(華僑大學(xué) 數(shù)學(xué)科學(xué)學(xué)院, 福建 泉州 362021)
研究 Bloch 型雙調(diào)和函數(shù)的判別準(zhǔn)則和系數(shù)估計.通過建立雙調(diào)和函數(shù)的線性和復(fù)合性質(zhì),得到雙調(diào)和函數(shù)的 Bloch 型判別法則.利用雙調(diào)和的表示理論及調(diào)和函數(shù)的 Pre-Schwarz 導(dǎo)數(shù)估計,給出 Bloch 型雙調(diào)和函數(shù)的單葉性判定定理及系數(shù)估計.
Bloch函數(shù); 雙調(diào)和映照; 系數(shù)估計; 擬正則映照
Abstract: This paper studies the criterion and coefficient estimate of Bloch-type biharmonic mappings. After establishing the linear and composite properties of biharmonic mappings, we give a criterion for biharmonic mappings to be Bloch-type. Combining the representation theorem of the biharmonic mappings with the estimation of Pre-Schwarz derivative of harmonic mappings, we obtain a univalent criterion and some coefficient estimates of biharmonic mappings for Bloch-type biharmonic mappings.
Keywords: Bloch function; biharmonic mapping; coefficient estimate; quasiregular mapping
設(shè)f為單位圓盤D到自身上的保向映照,若它滿足f∈ACL2(D),且不等式|f(z)|2≤KJf(z)在D上幾乎處處成立,則稱f為D上的K-擬正則映照,其中,|f|=|fz|+||.
如果一個C2函數(shù)f滿足
則稱為Bloch型函數(shù),記這類函數(shù)全體為B.如果f為D上的解析函數(shù)時,記這類函數(shù)全體為BA.如果f為D上的調(diào)和函數(shù)時,記這類函數(shù)全體為BH.如果f為D上的雙調(diào)和函數(shù)時,記這類函數(shù)全體為BBH,則BA?BH?BBH?B.文獻(xiàn)[7-13]對類Bloch型函數(shù)BA,BH開展了研究,其中,文獻(xiàn)[10]證明了定理A,B.
本文主要研究具有表達(dá)式f=|z|2h的雙調(diào)和映照類.同時,給出該類雙調(diào)和Bloch型函數(shù)的系數(shù)估計.
2)f°φα∈BBH.
證明 1) 由假設(shè)知,存在兩個解析函數(shù)h1,h2滿足
從而有
同理可得
因此,有
故由f∈BBH可知,F(xiàn)∈BBH.
2) 令F=f°φα=|φα(z)|2h°φα,則有
同理可得
從而有
因此,有β(f)=β(F),這隱含著f°φα∈BBH,證畢.
證明 令α∈D,定義
則Φ(z)在D上單葉調(diào)和,且滿足Φ(0)=0,Φz(0)=1.因此,它的展開式的系數(shù)a2(α)的模有界,且滿足
這隱含著
由于
假設(shè)函數(shù)ω∶D→D解析,定義
定理2假設(shè)f=|z|2h∈BBH,h=h1+h2,且f是K-擬正則的.對0<ε<1,令
證明 由假設(shè)f∈BBH,可得
又由于f為K-擬正則映照,有
上式隱含著
由于
所以可得
由定理C知函數(shù)F在D上單葉.證畢.
定理3若f=|z|2h∈BBH是K-擬正則的,且|h| 上式中:M為一正常數(shù). 令z=reit,t∈(0,2π),r∈(0,1),則有 所以 又由于β(f)的定義可知,對?z∈D,有 結(jié)合式(3),可得?z∈D.由 進(jìn)而有 從而有 將z=reit,t∈(0,2π),r∈(0,1)代入,可得 由式(4),(5)可得 [1] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bulletin of the American Mathematical Society,1936,42(10):689-698. [2] DUREN P.Harmonic univalent functions[M].Cambridge:Cambridge University Press,2004:1-17. [3] CLUNIE J,SHEIL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Ser A,1984,9(1):3-25. [4] ABDULHADI Z,MUHANNA Y,KHURI S.On univalent solutions of the biharmonic equation[J].J Inequal Appl,2005,5(2005):469-478. [5] KALAJ D.On quasiregular mappings between smooth Jordan domains[J].Journal of Mathematical Analysis and Applications,2010,362 (1):58-63. [6] AHLFORS L V,EARLE C J.Lectures on quasiconformal mappings[M].New York:American Mathematical Society,1966:21-34. [7] ANDERSON J M,CLUNIE J,POMMERENKE C.On Bloch functions and normal functions[J].J Reine Angew Math,1974,270:12-37. [8] DANIKAS N.Some Banach spaces of analytic functions, function spaces and complex analysis, joensuu[J].Univ Joensuu Dep Math Rep Ser,1997,2:9-35. [9] POMMERENKE C.On Bloch functions[J].J London Math Soc,1970,2(2):689-695. [10] EFRAIMIDIS I,GAONA J,HERNNDEZ R,etal.On harmonic Bloch-type mappings arXiv preprint arXiv[DB/OL].[2016-07-15][2016-09-05].https:∥arxiv.org/pdf/1607.04626v1.pdf. [11] POMMERENKE C.Boundary behaviour of conformal maps[M].Berlin:Springer-Verlag,1992:185-187. [12] SEIDEL J,WALSH L.On the derivatives of functions analytic in the unit circle and their radii of univalence and ofp-valence[J].Trans Amer Math Soc,1942,52(1):128-216. [13] ZHU K. Operator theory in function spaces, marcel dekker[M]. New York: American Mathematical Soc,2007:101-132. [15] BEARDON A,MINDA D.The hyperbolic metric and geometric function theory[J].Quasiconformal Mappings and Their Applications,2007,3:9-56. (責(zé)任編輯: 陳志賢英文審校: 黃心中) OnBiharmonicBloch-TypeMappings LI Xizhen, CHEN Xingdi (School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China) 10.11830/ISSN.1000-5013.201609021 2016-09-15 陳行堤(1976-),男,教授,博士,主要從事函數(shù)論的研究.E-mail:chxtt@hqu.edu.cn. 國家自然科學(xué)基金資助項目(11471128); 福建省自然科學(xué)基金計劃資助項目(2014J01013); 華僑大學(xué)青年教師科研提升資助計劃(ZQN-YX110); 華僑大學(xué)研究生科研創(chuàng)新能力培育計劃資助項目(1511313003) O 174.55 A 1000-5013(2017)05-0737-05