吳麗穎,王炳煌,張圓春,張倩,王滴,洪俊明
?
凝膠球負(fù)載零價鐵活化過硫酸鹽降解偶氮染料廢水
吳麗穎,王炳煌,張圓春,張倩,王滴,洪俊明
(華僑大學(xué)環(huán)境科學(xué)與工程系,福建廈門 361021)
鐵活化過硫酸鹽高級氧化技術(shù)中,由于反應(yīng)速度快引起的鐵流失是主要問題之一。本文制備了負(fù)載零價鐵的海藻酸鈉凝膠球催化劑(Fe-montmorillonite-sodium alginate balls,F(xiàn)e-MABs),電子顯微鏡圖表明海藻酸鈉凝膠球和鐵結(jié)合良好,并考察了過硫酸鈉(sodium peroxydisulfate,PDS)用量、催化劑用量等因素對偶氮染料活性黑5(Reactive Black 5,RBK5)染料廢水降解的影響,比較了Fe-MABs/PDS、Fe+C/PDS、Fe+C、PDS、Fe五種體系對RBK5的降解能力。結(jié)果表明,F(xiàn)e-MABs/PDS體系能有效地降解RBK5,在RBK5初始濃度40mg/L條件下,PDS投加量為2mmol/L、Fe-MABs投加量40g/L、初始pH為7.0、溫度為298K,在反應(yīng)時間為30min和60min時,對RBK5降解率分別達到95.42%和99.90%;與Fe+C/PDS、Fe+C、Fe體系相比,F(xiàn)e-MABs/PDS體系Fe的流失率減少可達90%以上。此外,通過采用甲醇和叔丁醇作為自由基淬滅劑發(fā)現(xiàn)Fe-MABs/PDS體系中產(chǎn)生的活性中間體硫酸根自由基SO4-·對降解過程起主要作用,并初步探索了Fe-MABs催化過硫酸鹽體系對RBK5的降解動力學(xué)。
海藻酸鈉凝膠球;非均相過硫酸鹽催化體系;活性黑5;硫酸根自由基
近年來,水體中難降解有機物包括染料、多環(huán)芳烴(PAHs)、藥品及個人護理用品(PPCPs)等的污染日益受到關(guān)注,高級氧化技術(shù)是近年發(fā)展起來難降解有機污染物氧化去除的新技術(shù)[1]。基于硫酸根自由基(SO4?·)的高級氧化技術(shù),是在光、熱、過渡金屬離子等條件下,過硫酸鹽(Persulfate,PS)活化分解為強氧化性的SO4?·(0=2.5~3.1V),從而降解水中有機污染物[2],具有適用范圍廣、反應(yīng)速率快、處理效率高、無二次污染或少污染等優(yōu)點[3-4]。其中Fe2+活化S2O82–的均相氧化技術(shù)應(yīng)用最為廣泛,但體系中過量的Fe2 +會消耗SO4-·[5-9],造成過硫酸鹽的浪費。零價鐵活化具有低毒、廉價、易操作且對環(huán)境不會產(chǎn)生二次污染等優(yōu)點,楊世迎 等[10]用零價鐵活化PS降解硝基苯,LIANG等[11]論證了用Fe0作為Fe2+的來源活化過硫酸鹽降解三氯乙烯(TCE)的可行性。采用非均相鐵催化活化過硫酸鹽氧化技術(shù)降解有機物,不僅解決了催化劑的流失及對環(huán)境的二次污染,而且催化劑可以重復(fù)使用,從而降低處理成本。USMAN等[12]用磁鐵礦活化過硫酸鹽降解污染土壤中的多環(huán)芳烴;OH等[13]以硫化鐵為催化劑,降解2,4-二硝基甲苯;黃曉東等[14]通過活性炭負(fù)載鐵催化劑,催化過硫酸鹽降解酸性大紅3R。
利用海藻酸鈉在特定條件下與Ca2+交聯(lián)形成的海藻酸鈉凝膠球(montmorillonite-sodium alginate balls,MABs)作為催化劑載體,具有機械強度大、不易破損、價格低廉等優(yōu)點[15]。KIM等[16]用結(jié)合有零價鐵的海藻酸鈉凝膠球降解TCE,當(dāng)TCE的去除率大于99.80%時,鐵的流失率小于3%,效果 良好。
本文制備了Fe-MABs催化劑,用于活化過硫酸鹽,研究其降解偶氮染料RBK5(Reactive Black 5,RBK5)廢水的最優(yōu)條件,探討自由基降解偶氮染料的降解機理,對于實現(xiàn)難降解有機物的高效降解有指導(dǎo)意義。
1.1 海藻酸鈉負(fù)載鐵催化劑的制備
在100mL去離子水中,加入2g膨潤土、0.2g碳粉和2g海藻酸鈉,混合攪拌12h后加入還原鐵粉(西隴科學(xué)股份有限公司,分析純),攪拌均勻之后,通過滴液漏斗勻速滴入體積為100mL、質(zhì)量分?jǐn)?shù)為4%的CaCl2溶液中,制得負(fù)載鐵的海藻酸鈉凝膠球(Fe-MABs),保存于CaCl2溶液中待用。
1.2 實驗方法
在298K下,將100mL配制好的RBK5溶液注入燒杯。用稀H2SO4或NaOH調(diào)節(jié)pH為7,再將燒杯置于磁力攪拌器上,加入一定量的過硫酸鈉(sodium peroxydisulfate,PDS),再迅速加入一定量的Fe-MABs,控制攪拌速度為120r/min。定期取樣,測其吸光度的變化。
1.3 分析方法
RBK5的最大的吸收波長為600nm,在600nm處測定濾液吸光度。依據(jù)Langmuir-beer定律,根據(jù)式(1)計算RBK5反應(yīng)時間之后的去除率。
式中,0為初始吸光度值;A為反應(yīng)時間后RBK5吸光度值;為RBK5的去除率。
Fe的測定采用國標(biāo)法中的鄰菲羅啉分光光度法,苯胺采用-(1-萘基)乙二胺偶氮分光光度法進行測定。
2.1 催化劑的表征
采用電子顯微鏡觀察Fe-MABs催化劑結(jié)構(gòu),如圖1所示??梢钥闯?,F(xiàn)e-MABs存在“egg-box”結(jié)構(gòu)[17],這是在凝膠化過程中鈣和海藻酸網(wǎng)狀結(jié)構(gòu)間的離子交換產(chǎn)生的,零價鐵在凝膠化過程中被包埋在MABs中。此外,用酸性消解法[17]測得Fe-MABs含鐵量為0.04g/g。
2.2 影響因素分析
2.2.1 PDS的投加量的影響
選取RBK5的初始濃度為40mg/L,在Fe-MABs投加量為40g/L、pH為7的條件下,考察初始PDS濃度對RBK5降解和體系pH的影響,圖2(a)是初始PDS的濃度對RBK5降解的影響,圖2(b)初始PDS濃度對體系pH的影響。如圖2(a)所示,隨著PDS濃度的增加,RBK5的去除率先增加后受抑制。當(dāng)PDS的濃度從1.0mmol/L上升到2.0mmol/L,30min時,RBK5的去除率從36.26%上升到95.42%。但是PDS的濃度從2.0mmol/L上升到2.5mmol/L時,RBK5的去除率幾乎沒有上升。因為Na2S2O8濃度過高時,瞬間產(chǎn)生的大量自由基會彼此反應(yīng)湮滅,從而造成Na2S2O8的利用率下降,機理為反應(yīng)方程式(2)[18-19]。
SO4–·+ SO4–·—→ S2O82–(2)
如圖2(b)所示,隨著PDS初始濃度的增加,體系pH隨之下降,反應(yīng)過程如方程式(3)[20]所示,而在酸性條件下,Na2S2O8的氧氧鍵非對稱斷裂形成SO4-·,其反應(yīng)活化能為108.8kJ/mol[21],小于S2O82–非催化反應(yīng)的活化能(140kJ/mol),因而酸性條件更有利于Na2S2O8生成SO4-·,見式(3)。
SO4–·+H2O —→SO42–+ ·OH + H+(3)
針對PDS投加量,考察了Fe-MABs催化PDS降解RBK5的降解動力學(xué),圖3為不同PDS濃度對反應(yīng)動力學(xué)的影響。催化劑的用量為40g/L時,PDS的濃度從1.0mmol/L上升到2.5mmol/L,RBK5降解率不斷增大。將反應(yīng)降解試驗結(jié)果用指數(shù)函數(shù),即公式(4)進行擬合,吻合較好,反應(yīng)符合準(zhǔn)一級動力學(xué)關(guān)系,降解動力學(xué)速率常數(shù)見表1。
=0exp(–) (4)
式中,0為RBK5初始濃度;為反應(yīng)時間后的RBK5濃度;為RBK5降解的動力學(xué)速率常數(shù)。
表1 不同PDS濃度下RBK5降解的動力學(xué)速率常數(shù)
2.2.2 催化劑投加量對去除率的影響
在RBK5濃度為在40mg/L、Na2S2O8濃度為2mmol/L、初始pH為7.0的條件下,體系中催化劑的投加量對RBK5去除率的影響如圖4(a)所示??梢钥闯觯?dāng)催化劑的用量從5g/L上升40g/L時,RBK5的去除率在30min時從36.72%上升到95.42%;但是當(dāng)催化劑的用量繼續(xù)增加時,RBK5的去除率反而下降。這是因為催化劑的過量加入使得Fe釋放過多消耗SO4-·[22],導(dǎo)致了SO4-·濃度的降低,從而抑制了RBK5的降解。此外,從圖4(b)可以看出,體系穩(wěn)定之后,pH基本穩(wěn)定在4左右。
針對催化劑投加量,考察RBK5的降解動力學(xué)。圖5為不同催化劑投加量對反應(yīng)動力學(xué)的影響。當(dāng)PDS的用量為2mmol/L、催化劑的濃度從5g/L上升到40g/L時,RBK5降解率不斷增大,繼續(xù)增加催化劑的用量,RBK5的降解率減小。將反應(yīng)降解試驗結(jié)果用指數(shù)函數(shù),即公式(4)進行擬合,反應(yīng)符合準(zhǔn)一級動力學(xué)關(guān)系,降解速率常數(shù)見表2。
2.3 不同體系催化活性、Fe流失率和pH變化的 比較
在RBK5初始濃度為40mg/L、PDS濃度為2mmol/L、Fe用量為1.58g/L、C用量為0.158g/L的條件下,考察不同體系對RBK5的降解效果。不同體系下催化活性、Fe的流失率和pH變化情況的實驗結(jié)果分別如圖6(a)、圖6(b)和圖6(c)所示。
表2 不同催化劑投加量下RBK5降解的動力學(xué)速率常數(shù)
由圖6(a)可知,單獨使用PDS對RBK5的降解率較低,反應(yīng)30min為20.55%,這是由于常溫下過硫酸鹽比較穩(wěn)定[23],反應(yīng)速率較慢,所以單獨加入過硫酸鹽對有機物的氧化效果不顯著;而Fe+C體系,由于鐵碳微電解,還原性鐵粉成為陽極,活性碳為陰極,發(fā)生電極反應(yīng),組成宏觀電池[24],因此對RBK5具有較強的降解能力,反應(yīng)進行到30min,去除率達41.00%;單獨Fe的體系,存在鐵還原降解、微電解、混凝等作用機制[25],對RBK5有較好的去除率,反應(yīng)30min,去除率達56.65%。而Fe-MABs/PDS和Fe+C/PDS的體系,在Fe的催化作用下,PDS有極強的氧化降解能力,反應(yīng)進行到30min,對RBK5的去除率都達到95.00%以上。
此外,從圖6(b)可以看出,反應(yīng)進行到30min,F(xiàn)e+C/PDS的體系鐵溶出達134.09mg/L,而Fe-MABs/PDS體系的鐵溶出僅為4.24mg/L,是Fe+C/PDS體系鐵溶出的3.16%,這是由于在Fe-MABs/PDS體系中,海藻酸鈉的凝膠化作用使Fe/C包埋負(fù)載在MABs中,具有優(yōu)良的緩釋作 用[26],能夠使鐵碳微電解反應(yīng)速率達到最佳,從而提高RBK5的降解率,并降低過量鐵流失。因此,使用Fe-MABs作為催化劑催化PDS降解RBK5有明顯的優(yōu)越性。
不同體系的pH變化如圖6(c)所示,F(xiàn)e-MABs/PDS和PDS體系的pH最終穩(wěn)定在4左右,F(xiàn)e和Fe+C體系pH最終穩(wěn)定在6左右。而Fe+C/PDS體系的pH先下降到3.15再上升到5.12,因為該體系降解RBK5主要分為兩個階段:第一階段,高級氧化起主要作用,PDS在過量的鐵的催化下,產(chǎn)生大量的H+[27],即溶液的pH降低;后一階段,主要以鐵碳微電解[24,28]為主,鐵碳組成原電池,微電解過程中會不斷消耗H+[24],故使體系的pH 升高。
2.4 自由基淬滅劑對反應(yīng)的影響
在溫度為298K、RBK5初始濃度為40mg/L、催化劑投量為40g/L、PDS投加量為2mmol/L、pH為7的條件下,在Fe-MABs/PDS體系中加入一定量的甲醇,作為SO4?·和·OH的淬滅劑[29-30],終止SO4?·和·OH氧化降解RBK5;在Fe-MABs/PDS體系中加入一定量的叔丁醇(TBA),作為·OH的淬滅劑[31],終止·OH氧化降解RBK5,研究自由基對反應(yīng)的影響,實驗結(jié)果如圖7所示。
由圖7可知,體系中加入TBA,RBK5去除率下降不明顯,進而說明RBK5的降解受·OH影響不大;體系中加入甲醇,對RBK5的降解有明顯抑制效果,反應(yīng)30min,去除率從95.42%下降到53.79%,表明甲醇的加入使RBK5的降解受到抑制,進而說明體系中SO4?·起主要氧化降解作用。
2.5 降解過程苯胺的變化
Fe-MABs/PDS體系,在RBK5濃度為40mg/L、PDS濃度為2mmol/L、催化劑投加量為40g/L、溫度為298K的條件下,RBK5降解過程的全波長掃描如圖8所示。可以看出,在可見光區(qū)600nm處有一個特征吸收峰,在紫外光區(qū)310nm處也有一個特征吸收峰,兩處的特征吸收峰分別代表的是的RBK5的偶氮結(jié)構(gòu)和萘環(huán)結(jié)構(gòu)[32]。隨降解時間延長,600nm處RBK5的特征吸收峰強度不斷降低,其降解過程非常迅速,反應(yīng)30min,吸收峰基本消失。310nm處的萘環(huán)結(jié)構(gòu)隨著時間的增加,吸收峰強度略有增加,200nm處的吸收峰強度顯著增加,說明RBK5降解轉(zhuǎn)化成芳香族化合物[32]。
圖9為RBK5去除率和苯胺濃度隨時間的變化,體系中的苯胺濃度隨RBK5去除率的增加先升高后下降。這是因為染料降解會產(chǎn)生苯胺[33-34],隨著反應(yīng)的進行,自由基開始降解苯胺[35],使其濃度降低。反應(yīng)30min之后,RBK5去除率達95.42%,苯胺濃度基本穩(wěn)定在0.3mg/L,因此Fe-MABs/PDS體系對苯胺也有較好的去除效果。
(1)Fe-MABs/PDS體系對RBK5染料廢水的降解效果顯著,F(xiàn)e流失率較小,和其他體系相比具有明顯優(yōu)勢。
(2)Fe-MABs催化劑活化PDS降解偶氮染料RBK5體系中,SO4?·起主要氧化降解作用。
(3)RBK5的降解過程中產(chǎn)生了中間產(chǎn)物苯胺,反應(yīng)40min后,體系的苯胺濃度穩(wěn)定在0.3mg/L。
[1] 陳曉旸,薛智勇,吳丹,等. 基于硫酸自由基的高級氧化技術(shù)及其在水處理中的應(yīng)用[J]. 水處理技術(shù),2009,35(5):16-20.
CHEN X Y,XUE Z Y,WU D,et al. Based on the sulfate radical advanced oxidation technology and its application in water treatment[J]. Technology of Water Treatment,2009,35(5):16-20.
[2] YANG S Y,YANG X,SHAO X T,et al. Activated carbon catalyzed persulfate oxidation of azo dye acid orange 7 at ambient temperature[J]. Journal of Hazardous Materials,2011,186(1):659-666.
[3] 江傳春,肖蓉蓉,楊平. 高級氧化技術(shù)在水處理中的研究進展[J]. 水處理技術(shù),2011,37(7):12-16.
JIANG C C,XIAO R R,YANG P. Research process of advanced oxidation processes in wastewater treatment[J]. Technology of Water Treatment,2011,37(7):12-16.
[4] 盧徐節(jié),劉瓊玉,劉延湘,等. 高級氧化技術(shù)在印染廢水處理中的應(yīng)用[J]. 印染助劑,2011,28(5):7-11.
LU X J,LIU Q Y,LIU Y X,et al. Application of advanced oxidation technologies in printing and dyeing wastewater treatment[J]. Textile Auxiliaries,2011,28(5):7-11.
[5] LIU C S,SHIH K,SUN C X,et al. Oxidative degradation of propachlor by ferrous and copper ion activated persulfate[J]. Science of the Total Environment,2012,416(2):507-512.
[6] XU X R,LI X Z. Degradation of azo dye Orange G in aqueoussolutions by persulfate with ferrous ion[J]. Separation & Purification Technology,2010,72(1):105-111.
[7] 王繼鵬,胡林潮,楊彥,等. Fe2+活化過硫酸鈉降解1,2-二氯苯[J]. 環(huán)境工程學(xué)報,2014,8(9):3767-3772.
WANG J P,HU L C,YANG Y,et al. Sodium persulfate activation by Fe2 +for degradation of 1,2-dichlorobenzene[J]. Chinese Journal of Environmental Engineering,2014,8(9):3767-3772.
[8] 張金鳳,楊曦,鄭偉,等. 水體系中 Fe(Ⅱ)/S2O82--S2O32-降解敵草隆的研究[J]. 中國環(huán)境科學(xué),2008,28(7): 620-623.
ZHANG J F,YANG X,ZHENG W,et al. Studies on Fe(Ⅱ)/
S2O82–-S2O32–degrading diuron in aqueous system[J]. China Environmental Science,2008,28(7):620-623.
[9] 蔡濤,張璐吉,胡六江,等. 零價鐵活化過二硫酸鹽氧化降解阿特拉津[J]. 應(yīng)用化學(xué),2013,30(1):114-119.
CAI T,ZHANG L J,HU L J,et al. Degradation of atrazine by peroxydisulfate activatedwith zero-valent iron[J]. Applied Chemistry,2013,30(1):114-119.
[10] 楊世迎,馬楠,王靜,等. 零價鐵-過二硫酸鹽連續(xù)運行體系去除水中硝基苯[J]. 環(huán)境科學(xué)學(xué)報,2014,34(4):920-924.
YANG S Y,MA N,WANG J. Degradation of nitrobenzene in aqueous solution by zero-valent iron/persulfate continuous operation system[J]. Acta Scientiae Circumstantiae,2014,34(4):920-924.
[11] LIANG C J,LAI M C. Trichloroethylene degradation by zero valent iron activated persulfate oxidation[J]. Environmental Engineering Science,2008,25(7):1071- 1077.
[12] USMAN M,F(xiàn)AURE P,RUBY C,et al. Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils[J]. Chemosphere,2012,87(3):234-240.
[13] OH S Y,KANG S G,KIM D W,et al. Degradation of 2,4-dinitrotoluene by persulfate activated with iron sulfides [J]. Chemical Engineering Journal,2011,172(2/3):641-646.
[14] 黃曉東,涂佳. 活性炭負(fù)載鐵催化過硫酸鹽降解酸性大紅3R[J]. 環(huán)境科學(xué)學(xué)報,2014,34(6):1449-1454.
HUANG X D,TU J. Degradation of Acid Red 3R by persulfate with Fe-loaded activated carbon as catalyst[J]. Acta Scientiae Circumstantiae,2014,34(6):1449-1454.
[15] ANISHA G S,PREMA P. Cell immobilization technique for the enhanced production of alpha-galactosidase by Streptomyces griseoloalbus[J]. Bioresource Technology,2008,99(9):3325-3330.
[16] KIM,HONG H,JUNG J,et al. Degradation of trichloroethylene(TCE)by nanoscale zero-valent iron(nZVI)immobilized in alginate bead[J]. Journal of Hazardous Materials,2010,176(1/2/3):1038-1043.
[17] HAMMOUDA S B,ADHOUM N,MONSER L. Chemical oxidation of a malodorous compound,indole,using iron entrapped in calcium alginate beads[J]. Journal of Hazardous Materials,2016,301:350-361.
[18] YANG S,WANG P,YANG X,et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction ofheat,UV and anions with common oxidants:persulfate,peroxymonosulfate and hydrogen peroxide[J]. Journal of Hazardous Materials,2010,179(1):552-558.
[19] HAMDAOUI O,NAFFRECHOUX E. Adsorption kinetics of 4-chlorophenol onto granular activated carbon in the presence of high frequency ultrasound[J]. Ultrasonics Sonochemistry,2009,16(1):15-22.
[20] LIANG C,SU H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research,2009,48(11):472-5.
[21] 趙進英,張耀斌,全燮,等. 加熱和亞鐵離子活化過硫酸鈉氧化降解4-CP的研究[J]. 環(huán)境科學(xué),2010,31(5):1233-1238.
ZHAO J Y,ZHANG Y B,QUAN X,et al. Sodium peroxydisulfate activation by heat and Fe(Ⅱ) for the degradation of 4-CP[J]. Environmental Science,2010,31(5):1233-1238.
[22] LEE Y C,LO S L,CHIUEH P T,et al. Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation[J]. Water Research,2010,44(3):886-892.
[23] 楊世迎,楊鑫,王萍,等. 過硫酸鹽高級氧化技術(shù)的活化方法研究進展[J]. 現(xiàn)代化工,2009,29(4):13-19.
YANG S Y,YANG X,WANG P,et al. Advances in persulfate oxidation activation methods of persulfate oxidation[J]. Modern Chemical Industry,2009,29(4):13-19.
[24] FU F L,DIONYSIOU D D,LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment:a review [J]. Journal of Hazardous Materials,2014,267(3):194-205.
[25] 閆金霞,董韶峰,卜永強,等. 零價鐵法處理染料廢水脫色效果研究[J]. 染料與染色,2007,44(4):45-46.
YAN Jinxia,DONG Shaofeng,BU Yongqiang,et al. A study on the decoloration of dye stuff wastewater by the ironscurf method[J]. Dyestuffs and Coloration,2007,44(4):45-46.
[26] 吳秋惠,吳皓,王令充,等. 海藻酸鈉微球的制備及其在藥物載體中的應(yīng)用進展[J]. 中華中醫(yī)藥雜志,2011(8):791-794.
WU Qiuhui,WU Hao,WANG Lingchong,et al. Review on preparation and application of alginate microspheres as drug carrier[J]. China Journal of Traditional Chinese Medicine and Pharmacy,2011(8):791-794.
[27] DING Dahu,LIU Chao,JI Yuefei,et al. Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate:identification of radicals and degradation pathway[J]. Chemical Engineering Journal,2016,308(1):330-339.
[28] 李德生,王寶山. 曝氣鐵炭微電解工藝預(yù)處理高濃有機化工廢水[J]. 中國給水排水,2003,19(10):58-60.
LI Desheng,WANG Baoshan. Pretreatment of high concentrated organic chemical wastewater by iron carbon micro-electrolysis process with aeration[J]. China Water & Wastewater,2003,19(10):58-60.
[29] BUXTON G V,GREENSTOCK C L,HELMAN W P,et al.Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals(·OH/·O–)in aqueous solution[J]. Journal of Physical & Chemical Reference Data,1988,17(2):513-531.
[30] EIBENBERGER H,STEENKEN S,O’Neill P,et al. Pulse radiolysis and electron spin resonance studies concerning the reaction of SO4–· with alcohols and ethers in aqueous solution[J]. The Journal of Physical Chemistry,1978,82(6):749-750.
[31] DIONYSIOU D,ANIPSITAKIS G P. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology,2004,38(13):3705-3712.
[32] 張成. 基于硫酸根自由基的過硫酸鈉高級氧化法氧化降解染料的研究[D]. 廣州:華南理工大學(xué),2012.
ZHANG Cheng. The progress of oxidation-degradation of dye in advanced oxidation processes based on sulfate radical[D]. Guangzhou:South China University of Technology,2012.
[33] 葉張榮,馬魯銘. 鐵屑內(nèi)電解法對活性艷紅X-3B脫色過程的機理研究[J]. 水處理技術(shù),2005,31(8):65-67.
YE Zhangrong,MA Luming. Mechanism of reactive brilliant Red X-3B decolorization by iron filings inner electrolysis process[J]. Technology of Water Treatment,2005,31(8):65-67.
[34] 李海燕,曾慶福. 鐵屑還原及微波鐵屑誘導(dǎo)氧化降解偶氮染料歷程的研究[J]. 環(huán)境工程學(xué)報,2008,2(3):294-298.
LI Haiyan,ZENG Qingfu. Study on degradation process of azo dye by iron internal electrolysis deoxidization and microwave induced oxidation[J].Chinese Journal of Environmental Engineering,2008,2(3):294-298.
[35] PADMAJA S,ALFASSI A B,NETA P,et al. Rate constants for reactions of SO4?radicals in acetonitrile[J]. International Journal of Chemical Kinetics,1993,25(3):193-198.
Degradation of Reactive Black 5(RBK5)by gelatin balls loading iron activating sodium persulfate
WU Liying,WANG Binghuang,ZHANG Yuanchun,ZHANG Qian,WANG Di,HONG Junming
(Department of Environmental Science and Engineering,Huaqiao University,Xiamen 361021,F(xiàn)ujian,China)
Persulfate can be effectively activited by iron. However,iron will leaching in the solution because of the rapid speed of the reaction. The montmorillonite-sodium alginate balls(MABs)with zero-valentiron loading(Fe-MABs)was prepared and characterized by the electron microscope. The results showed the well dispersion of iron on the sodium alginate gelatin ball. In addition,the effects of dosages of sodium peroxydisulfate(PDS)and catalyst to the degradation of Reactive Black 5(RBK5) were examined in batch experiments. The degradation ability to RBK5 follows this order:Fe+C/ PDS>Fe-MABs/PDS>Fe+C>PDS>Fe. The results demonstrated that RBK5 could be degraded by Fe-MABs/PDS system effectively. Under the condition with initial RBK5 concentration 40mg/L,PDS dosage 2.0mmol/L,F(xiàn)e-MABs dosage 40g/L,pH 7,temperature 298K,the degradation rate of RBK5 in aqueous solution could reach 95.42% and 99.90% within 30min and 60min,respectively. Comparing with Fe+C/PDS,F(xiàn)e leaching ratio will reduce 90% in Fe-MABs/PDS system within 60min. By using methanol and chloroform as free radical quenchers,the active intermediate SO4–· play a leading role to the degradation process,which generated from the PDS activation. Finally,the dynamics was also calculated in the Fe-MABs catalyzing system.
montmorillonite-sodium alginate balls;persulfate catalytic heterogeneous systems;Reactive Black 5(RBK5);sulfate radical
X703
A
1000–6613(2017)06–2318–07
10.16085/j.issn.1000-6613.2017.06.050
2016-12-19;
2017-01-12。
福建省高校重大產(chǎn)學(xué)研項目(2014Y4006)、廈門科技計劃(3502Z20153025,3502Z20151256)、泉州市科技計劃(2016Z074)及國家級大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練項目(201610385005)。
吳麗穎(1994—),女,本科生,研究方向為水污染控制工程。E-mail:286235553@qq.com。聯(lián)系人:洪俊明,教授,研究方向為水污染控制工程、清潔生產(chǎn)。E-mail:jmhong@hqu.edu.cn。