• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      馬尾松三代測(cè)定林抽梢性狀的遺傳效應(yīng)及與針葉氮磷鉀養(yǎng)分的遺傳相關(guān)*

      2017-10-14 08:02:03金國(guó)慶余啟新劉青華豐忠平董虹妤周志春
      林業(yè)科學(xué) 2017年8期
      關(guān)鍵詞:配合力針葉馬尾松

      張 振 金國(guó)慶 余啟新 劉青華 豐忠平 董虹妤 周志春

      (1.中國(guó)林業(yè)科學(xué)研究院亞熱帶林業(yè)研究所 浙江省林木育種技術(shù)研究重點(diǎn)實(shí)驗(yàn)室 國(guó)家林業(yè)局馬尾松工程技術(shù)研究中心 杭州 311400; 2.浙江省淳安縣老山林場(chǎng) 淳安 311700)

      馬尾松三代測(cè)定林抽梢性狀的遺傳效應(yīng)及與針葉氮磷鉀養(yǎng)分的遺傳相關(guān)*

      張 振1金國(guó)慶1余啟新2劉青華1豐忠平2董虹妤1周志春1

      (1.中國(guó)林業(yè)科學(xué)研究院亞熱帶林業(yè)研究所 浙江省林木育種技術(shù)研究重點(diǎn)實(shí)驗(yàn)室 國(guó)家林業(yè)局馬尾松工程技術(shù)研究中心 杭州 311400; 2.浙江省淳安縣老山林場(chǎng) 淳安 311700)

      【目的】 測(cè)定分析馬尾松三代測(cè)定林的抽梢性狀及針葉氮磷鉀含量,揭示抽梢性狀的遺傳控制方式,探究針葉中氮磷鉀含量與生長(zhǎng)的相關(guān)關(guān)系,為解析馬尾松高生長(zhǎng)的遺傳規(guī)律提供理論依據(jù)?!痉椒ā?利用設(shè)置在浙江省淳安縣姥山林場(chǎng)的5年生6×6半雙列遺傳交配設(shè)計(jì)的馬尾松三代種質(zhì)遺傳測(cè)定林,對(duì)其抽梢性狀(初次抽梢生長(zhǎng)量、后續(xù)抽梢生長(zhǎng)量、年抽梢次數(shù)及年抽梢長(zhǎng)度)、樹(shù)高及針葉氮磷鉀含量進(jìn)行測(cè)定與分析,探究馬尾松抽梢性狀及針葉養(yǎng)分含量的遺傳變異規(guī)律及遺傳控制方式,揭示抽梢性狀間及與針葉氮磷鉀含量的遺傳相關(guān)。【結(jié)果】 馬尾松三代測(cè)定林的初次抽梢生長(zhǎng)量、后續(xù)抽梢生長(zhǎng)量、年抽梢次數(shù)、年生長(zhǎng)量和樹(shù)高的平均值分別為0.89 m、0.45 m、1.90次、1.34 m和5.16 m,且方差分析結(jié)果表明在不同雜交組合間的差異均達(dá)到極顯著。配合力分析表明,后續(xù)抽梢生長(zhǎng)量、抽梢次數(shù)、年生長(zhǎng)量等抽梢性狀和樹(shù)高以加性基因效應(yīng)控制為主,加性基因效應(yīng)百分?jǐn)?shù)在52.10%~73.28%,而初次抽梢生長(zhǎng)量則幾乎完全受顯性效應(yīng)控制(98.32%); 針葉養(yǎng)分含量中,鉀含量以加性基因效應(yīng)(69.70%)控制為主,氮磷含量則幾乎完全受顯性效應(yīng)控制。抽梢性狀、樹(shù)高與氮磷鉀含量受中等及以上程度的遺傳控制(hf2=46.54%~84.17%)。性狀間及與針葉養(yǎng)分含量的遺傳相關(guān)分析發(fā)現(xiàn),樹(shù)高與后續(xù)抽梢生長(zhǎng)量、抽梢長(zhǎng)度及抽梢次數(shù)均呈極顯著正相關(guān); 后續(xù)抽梢生長(zhǎng)量與抽梢長(zhǎng)度、抽梢次數(shù)呈極顯著正相關(guān); 初次抽梢生長(zhǎng)量與樹(shù)高、后續(xù)抽梢生長(zhǎng)量、抽梢次數(shù)呈極顯著負(fù)相關(guān),與抽梢長(zhǎng)度的相關(guān)性不顯著。針葉氮含量與樹(shù)高、后續(xù)抽梢生長(zhǎng)量、抽梢長(zhǎng)度及抽梢次數(shù)極顯著正相關(guān); 針葉磷含量與初次抽梢生長(zhǎng)量及抽梢長(zhǎng)度成極顯著正相關(guān); 針葉鉀含量與抽梢長(zhǎng)度呈顯著負(fù)相關(guān)。N/P比與樹(shù)高、后續(xù)抽梢生長(zhǎng)量及年抽梢次數(shù)呈顯著正相關(guān); N/K比與樹(shù)高、后續(xù)抽梢生長(zhǎng)量及抽梢長(zhǎng)度呈極顯著正相關(guān); P/K與抽梢長(zhǎng)度極顯著正相關(guān)?!窘Y(jié)論】 馬尾松三代測(cè)定林的抽梢性狀及針葉氮磷鉀含量變異豐富。后續(xù)抽梢生長(zhǎng)量、抽梢次數(shù)、年生長(zhǎng)量、樹(shù)高和鉀含量以加性基因效應(yīng)控制為主,初次抽梢生長(zhǎng)量與氮磷含量則幾乎完全受顯性效應(yīng)控制。抽梢性狀影響高生長(zhǎng),尤其是后續(xù)抽梢特性顯著地影響后續(xù)抽梢生長(zhǎng)量,增加年抽梢長(zhǎng)度,進(jìn)而增加當(dāng)年高生長(zhǎng)。

      馬尾松; 抽梢性狀; 針葉養(yǎng)分含量; GCA; SCA; 遺傳相關(guān)

      Abstract: 【Objective】 Through measuring and analyzing the shoot growth behavior and the content of N, P and K in needles of the young third generation of Masson pine(Pinusmassoniana), this study revealed the mode of genetic control of shoot growth, explored the relationship between the contents of N, P, K and the growth, and provided a theoretical basis for understanding genetic laws of the height growth of Masson pine. 【Method】 We measured and analyzed the shoot growth behavior (initial shoot growth, subsequent shoot growth, annual shoot number and annual shoot length), tree height, and N, P and K contents in needles, to explore the genetic variation regularity and genetic control mode of shoot growth behavior and the needles nutrient content, and to reveal the genetic correlation between the shoot growth traits, and between the shoot growth traits and the needles N, P and K contents, with a half diallel cross among 6×6 Masson pine clones in Laoshan forest farm of Zhejiang Province. 【Result】 The value of initial shoot growth, subsequent shoot growth, annual shoot number, annual shoot length and average tree height were 0.89 m, 0.45 m, 1.90 times, 1.34 m and 5.16 m of trial plantations of the young third generation of Masson pine, respectively. The variance analysis showed that there were very significant differences between different hybrid combinations. The result of combining ability analysis showed that shoot growth behavior, such as, subsequent shoot growth, annual shoot number and annual shoot length, were given priority to additive gene effect control, with the percentage of additive gene effect from 52.10% to 73.28%, while the initial shoot growth was almost entirely controlled by dominant effect (98.32%). In the nutrient content of needles, K content was controlled mostly by additive gene effect (69.70%), while the contents of N and P were almost entirely controlled by dominant effect. Shoot growth traits, tree height, N, P and K contents were controlled by medium or above degree of genetic (hf2= 46.54%-84.17%). Through studying genetic correlation between the traits, it was found that there was very significant positive correlation between tree height and subsequent shoot growth, annual shoot length and shoot number. There was very significant positive correlation between subsequent shoot growth and annual shoot length and shoot number. There was very significant negative correlation between initial shoot growth and tree height, subsequent shoot growth and annual shoot number. There was no significant correlation between initial shoot growth and annual shoot length. There was very significant positive correlation between the N content in needles and tree height, subsequent shoot growth, annual shoot length and shoot number. There was very significant positive correlation between P content in needles and initial shoot growth and annual shoot length. There was very significant negative correlation between K content in needles and annual shoot length. There was significant positive correlation between N/P ratio and tree height, subsequent shoot growth and annual shoot number. There was very significant positive correlation between N/K ratio and tree height, subsequent shoot growth and annual shoot length; P/K ratio and annual shoot length. 【Conclusion】The variation of shoot growth behavior and N, P and K contents in needles were rich in trial plantations of three generation of Masson pine. Subsequent shoot growth, annual shoot number and shoot length, tree height and K content were mostly controlled by additive gene effect. Initial shoot growth, N and P contents were almost entirely controlled by dominant effect. The height growth of trees was affected by shoot growth behavior, especially the subsequent growth was significantly affected by subsequent shoot growth features. The annual shoot length was increased, and therefore the tree height was increased in the year.

      Keywords:Pinusmassoniana; shoot growth behavior; foliar nutrient content; GCA; SCA; genetic correlation

      年抽梢性狀可反映樹(shù)木生長(zhǎng)期內(nèi)的生長(zhǎng)規(guī)律,是影響樹(shù)木高生長(zhǎng)的重要因子(周志春等, 2001; 黃永權(quán)等, 2006)。Bridgwater等(1985)在家系研究中認(rèn)為,抽梢性狀可考察幼林期生長(zhǎng)速度,是樹(shù)高早期預(yù)測(cè)的選擇因子; 黃永權(quán)等(2006)對(duì)3年生火炬松(Pinustaeda)不同家系的研究表明,火炬松1年抽梢1~7次,且抽梢次數(shù)與樹(shù)高呈正相關(guān),是影響樹(shù)高生長(zhǎng)的重要因子。周志春等(2001)指出1年抽梢生長(zhǎng)包括抽梢長(zhǎng)度、抽梢次數(shù)、固定生長(zhǎng)量(即初次抽梢生長(zhǎng)量)和自由生長(zhǎng)量(當(dāng)年抽梢長(zhǎng)度減去第1次抽梢量,即后續(xù)抽梢生長(zhǎng)量)。Lanner(1976)認(rèn)為松樹(shù)(Pinus)1年中有2次或多次周期性生長(zhǎng),是對(duì)不同氣候環(huán)境自然選擇的一種適應(yīng)特性; 周志春等(2001)指出馬尾松(Pinusmassoniana)不同種源抽梢特性差異顯著,表明抽梢性狀因基因型不同可表現(xiàn)出不同的發(fā)育方式。因此,研究年抽梢性狀的遺傳控制方式,有助于解析樹(shù)木高生長(zhǎng)的遺傳規(guī)律,對(duì)于開(kāi)展林木生長(zhǎng)發(fā)育的研究,具有重要的意義。

      馬尾松為我國(guó)南方主要的造林樹(shù)種,分布17個(gè)省(市、區(qū)),據(jù)全國(guó)第八次森林資源清查報(bào)告,馬尾松人工林居全國(guó)人工喬木林面積的6.51%,蓄積比例占6.91%。我國(guó)南方林區(qū)的土壤大都表現(xiàn)出缺磷少鉀中等氮的特點(diǎn),地力衰退,土壤貧瘠。而氮、磷、鉀作為植物生長(zhǎng)必需的大量元素,與樹(shù)體營(yíng)養(yǎng)生長(zhǎng)關(guān)系密切,是林木生長(zhǎng)發(fā)育與品質(zhì)改善的主要限制因子(楊青等, 2012; 龐麗等, 2016; Zhangetal., 2010)。研究表明,年抽梢長(zhǎng)度易受環(huán)境條件變化影響,尤其后續(xù)抽梢生長(zhǎng)量對(duì)營(yíng)養(yǎng)環(huán)境變化反應(yīng)明顯(周志春等, 2001)。Cannell等(1978)比較生長(zhǎng)在較好與較差立地條件下的北美云杉(Piceasitchensis)優(yōu)樹(shù)子代家系,發(fā)現(xiàn)生長(zhǎng)在較好立地條件下的后續(xù)抽梢生長(zhǎng)量對(duì)樹(shù)高排序影響大; Lascoux等(1994)也發(fā)現(xiàn)歐洲赤松(Pinussylvestris)苗木在不同氮營(yíng)養(yǎng)環(huán)境下表征年抽梢長(zhǎng)度的莖單元數(shù)和莖單元平均長(zhǎng)度2項(xiàng)指標(biāo)存在生長(zhǎng)差異。針葉養(yǎng)分含量被普遍認(rèn)為是樹(shù)木能否適應(yīng)貧瘠環(huán)境的重要指標(biāo)之一,直接影響著樹(shù)木生長(zhǎng)速率、葉壽命長(zhǎng)短等過(guò)程,將成為樹(shù)木長(zhǎng)期生產(chǎn)力形成的關(guān)鍵(周瑋等, 2011; 寧秋蕊等, 2016; Kobeetal., 2005; Huangetal., 2007)。本課題組前期研究營(yíng)養(yǎng)生長(zhǎng)環(huán)境對(duì)馬尾松抽梢行為的影響及其機(jī)制表明,不同種源的枝梢發(fā)育類型相對(duì)穩(wěn)定,而年抽梢長(zhǎng)度對(duì)營(yíng)養(yǎng)環(huán)境的敏感性因基因型而異(周志春等, 2001),產(chǎn)生差異的原因是否與針葉養(yǎng)分含量相關(guān)沒(méi)有深入研究,僅表明抽梢行為及抽梢長(zhǎng)度的差異是馬尾松高生長(zhǎng)對(duì)營(yíng)養(yǎng)環(huán)境改變的響應(yīng)。

      已初步揭示了林木生長(zhǎng)及與養(yǎng)分吸收利用有關(guān)的數(shù)量性狀的遺傳控制大小,選育出高效養(yǎng)分利用的育種材料(Zhangetal., 2010)。然而這些研究多是針對(duì)不同育種材料或不同的養(yǎng)分環(huán)境開(kāi)展的改良及選育研究,而關(guān)于年抽梢性狀和針葉養(yǎng)分含量的遺傳控制方式鮮有報(bào)道,抽梢性狀與針葉養(yǎng)分含量之間的相關(guān)性尚未明確。周志春等(2004)和金國(guó)慶等(2008)研究表明馬尾松幼林期高生長(zhǎng)已有較高的遺傳變異,具有較大的選擇潛力。本研究利用設(shè)置在浙江省淳安縣姥山林場(chǎng)的5年生半雙列遺傳交配設(shè)計(jì)子代測(cè)定林,對(duì)馬尾松三代測(cè)定幼林年抽梢性狀與針葉養(yǎng)分含量進(jìn)行測(cè)定與分析,系統(tǒng)研究抽梢性狀及針葉中氮磷鉀含量的一般配合力(GCA)和特殊配合力(SCA),揭示其遺傳控制方式,探究針葉中氮磷鉀含量及與生長(zhǎng)的相關(guān)關(guān)系,旨為提升貧瘠立地條件上馬尾松高生長(zhǎng)提供理論基礎(chǔ)。

      1 材料與方法

      1.1試驗(yàn)材料

      2007年從浙江省淳安縣姥山林場(chǎng)馬尾松第2代育種群體中選擇6個(gè)無(wú)性系,其中,親本33號(hào)(1145×1126)、20號(hào)(1103×3412)、40號(hào)(5163×5907)、22號(hào)(6627×3412)和56號(hào)(3412×5907)為第1代親本雜交后代即雙親子代林中優(yōu)良單株(優(yōu)樹(shù))采穗嫁接的無(wú)性系號(hào)(其中,編號(hào)1145、1126和1103代表廣西產(chǎn)地優(yōu)樹(shù),編號(hào)3412代表安徽產(chǎn)地優(yōu)樹(shù),編號(hào)5163和5907代表浙江產(chǎn)地優(yōu)樹(shù),編號(hào)6627代表江西產(chǎn)地優(yōu)樹(shù)),親本44號(hào)(優(yōu)樹(shù)1123)為廣西產(chǎn)地優(yōu)樹(shù)1123子代中優(yōu)良單株嫁接的無(wú)性系號(hào)。利用這6個(gè)無(wú)性系做親本,按6×6半雙列遺傳交配設(shè)計(jì)(表1)配制15個(gè)雜交組合, 2008年底收獲種子, 2009年播種育苗, 2010年春在姥山林場(chǎng)營(yíng)建子代測(cè)定林,另以當(dāng)?shù)伛R尾松優(yōu)良天然林分子代作對(duì)照1(CK1),以姥山一代種子園混系采種子代作為對(duì)照2(CK2)。測(cè)定林地處于中亞熱帶北緣(119°03′E,29°37′N),海拔150~250 m,年平均氣溫17 ℃,≥10 ℃的年積溫為5 410 ℃,年降水量1 430 mm,全年日照時(shí)數(shù)1 951 h,土壤為山地黃土,立地條件中等。試驗(yàn)林采用完全隨機(jī)區(qū)組設(shè)計(jì)造林,10株小區(qū),重復(fù)5次。

      表1 馬尾松6×6半雙列交配設(shè)計(jì)Tab.1 Schematic diagram of the 6×6 half diallel cross design

      1.2測(cè)定方法

      1.2.1 樣本采集與生長(zhǎng)調(diào)查 2014年7月在每個(gè)試驗(yàn)小區(qū)內(nèi)選擇4株生長(zhǎng)(樹(shù)高)最優(yōu)單株,調(diào)查其年抽梢性狀與樹(shù)高; 年抽梢性狀可根據(jù)馬尾松輪生生長(zhǎng)發(fā)育特征確定,上一年的冬芽越冬至次年春季抽梢生長(zhǎng)形成,2個(gè)春季枝輪之間的長(zhǎng)度和枝輪數(shù)即為1年的高生長(zhǎng)和1年內(nèi)抽梢次數(shù)(初次抽梢生長(zhǎng)量為春輪基部至第1次輪枝處,依此類推,向上測(cè)定即得全年的抽梢次數(shù)與后續(xù)抽梢生長(zhǎng)量)。并采集其樹(shù)冠上端當(dāng)年新生針葉,裝入塑料袋封口,每株采集3份,放入低溫冰箱中。

      1.2.2 氮、磷、鉀含量測(cè)定 將采集的針葉經(jīng)105 ℃殺青30 min,80 ℃烘干至恒量,測(cè)定質(zhì)量,用 H2SO4-H2O2消煮,測(cè)定針葉的氮、磷、鉀含量,實(shí)驗(yàn)3次重復(fù)。分別用濃 H2SO4-H2O2消煮-鉬銻抗比色法、凱氏定氮法和火焰光度計(jì)法測(cè)定磷、氮和鉀的含量(寧秋蕊等, 2016; Andersonetal., 1993; Bremneretal., 1982)。

      2 結(jié)果與分析

      2.1馬尾松抽梢性狀的遺傳變異

      對(duì)15個(gè)雜交組合抽梢性狀進(jìn)行方差分析,結(jié)果(表2)顯示,年抽梢性狀中的后續(xù)抽梢生長(zhǎng)量、初次抽梢生長(zhǎng)量、年抽梢次數(shù)、年生長(zhǎng)量和樹(shù)高的平均值分別為0.45 m、0.89 m、1.90 次、1.34 m和5.12 m,在不同雜交組合間的差異均達(dá)到極顯著。結(jié)果表明,通過(guò)親本間雜交新創(chuàng)制的雜交組合可為下一世代的育種創(chuàng)造出變異豐富的基本群體,具有較大的選擇潛力。

      5年生馬尾松抽梢性狀的多重比較結(jié)果(表3)顯示,在半雙列雜交組合中,40×22組合在年抽梢長(zhǎng)度、抽梢次數(shù)、后續(xù)抽梢生長(zhǎng)量和樹(shù)高表現(xiàn)最高,分別高于CK1的70.52%、45.28%、1 266.67%和44.70%,高于CK2的58.82%、42.59%、811.11%和34.62%; 20×56組合的初次抽梢生長(zhǎng)量最大,分別高于CK1 和CK2的28.09%和22.58%。由表3可知,抽梢性狀中后續(xù)抽梢生長(zhǎng)量雜種優(yōu)勢(shì)的變異幅度最大,為-49.55%~82.97%。比較抽梢性狀的表型值與雜種優(yōu)勢(shì)發(fā)現(xiàn),雜種優(yōu)勢(shì)較高的雜交組合子代的年抽梢性狀表型值也較高。

      表2 馬尾松抽梢性狀與針葉養(yǎng)分含量的方差分析①Tab.2 Variation analysis of shoot growth behavior and foliar nutrient content of Pinus massoniana

      ① 區(qū)組、雜交組合、區(qū)組×雜交組合、機(jī)誤的自由度分別為4,14,56,225。 *、**顯著性概率分別為0.05和0.01; 下同。 Dgrees of freedom(DF) of block, cross combination, cross combination × block and error are 4,14,56 and 225, respectively. * and ** mean significance at the 0.05 and 0.01 probability levels respectively; The same below.

      2.2配合力分析及相對(duì)重要性

      表3 馬尾松不同雜交組合抽梢性狀的表現(xiàn)及雜種優(yōu)勢(shì)①Tab.3 Performance and heterosis for shoot growth behavior of Pinus massoniana

      ① 表中字母表示在5%水平上多重比較結(jié)果,同列數(shù)據(jù)后不同字母表示差異顯著。The different letters indicate significant difference among clones atP<0.05.

      表4 馬尾松抽梢性狀與養(yǎng)分含量的配合力分析①Tab.4 Variance analysis of combining ability for shoot growth behavior and foliar nutrient content of Pinus massoniana

      比較6個(gè)親本無(wú)性系中抽梢性狀的GCA效應(yīng)值(表5),33號(hào)、44號(hào)與20號(hào)親本的初次抽梢生長(zhǎng)量的GCA為正效應(yīng)值,22號(hào)和44號(hào)親本的后續(xù)抽梢生長(zhǎng)量的GCA為正效應(yīng)值,33、20和22號(hào)親本的抽梢次數(shù)的GCA為正效應(yīng)值,其余親本固定/自由抽梢長(zhǎng)度及抽梢次數(shù)的GCA皆為負(fù)效應(yīng)值; 對(duì)于親本的SCA效應(yīng)值,在15個(gè)雜交組合中表現(xiàn)不一致,40×22組合后續(xù)抽梢生長(zhǎng)量和抽梢次數(shù)的SCA效應(yīng)值最高,33×40組合初次抽梢生長(zhǎng)量的SCA效應(yīng)值最高。

      2.2.2 針葉的氮磷鉀含量的配合力及相對(duì)重要性 氮磷鉀含量在不同雜交組合間差異顯著(表2),配合力分析(表4)結(jié)果顯示,針葉氮磷鉀含量的GCA效應(yīng)均達(dá)顯著或極顯著; 除鉀含量的SCA效應(yīng)達(dá)顯著外,氮磷含量無(wú)顯著的SCA效應(yīng)。進(jìn)一步分析配合力方差分量,估算針葉氮磷鉀含量的VA和VD得出,鉀含量以加性基因效應(yīng)控制為主,加性基因效應(yīng)百分?jǐn)?shù)為69.70%; 氮磷則幾乎完全受顯性效應(yīng)控制,顯性效應(yīng)百分?jǐn)?shù)分別為92.62%和98.82%。養(yǎng)分含量的家系遺傳力在46.10%~60.29%,均受中等及以上程度的遺傳控制。

      各親本無(wú)性系針葉養(yǎng)分的配合力效應(yīng)值見(jiàn)表5。33號(hào)、44號(hào)和56號(hào)親本氮磷含量的GCA為正效應(yīng)值,33、40和22號(hào)親本的鉀含量的GCA為正效應(yīng)值,其余親本養(yǎng)分含量的GCA皆為負(fù)效應(yīng)值。對(duì)于親本的SCA效應(yīng)值,在15個(gè)雜交組合中表現(xiàn)不一致,40×22組合磷含量的SCA效應(yīng)值最高,33×56組合氮含量的SCA效應(yīng)值最高,33×22組合鉀含量的SCA效應(yīng)值最高。

      2.3遺傳相關(guān)分析

      2.3.1 抽梢性狀間的遺傳相關(guān) 分析抽梢性狀間的遺傳相關(guān)(表6)表明,年抽梢性狀均能顯著地影響高生長(zhǎng)。后續(xù)抽梢生長(zhǎng)量、抽梢長(zhǎng)度及抽梢次數(shù)均與樹(shù)高呈極顯著正相關(guān),后續(xù)抽梢生長(zhǎng)量與抽梢長(zhǎng)度、抽梢次數(shù)呈極顯著正相關(guān); 分析發(fā)現(xiàn)馬尾松三代測(cè)定林的二次抽梢特性顯著地影響后續(xù)抽梢生長(zhǎng)量,增加年抽梢長(zhǎng)度,進(jìn)而增加樹(shù)高生長(zhǎng)。初次抽梢生長(zhǎng)量與樹(shù)高、后續(xù)抽梢生長(zhǎng)量、抽梢次數(shù)呈極顯著負(fù)相關(guān),與抽梢長(zhǎng)度的相關(guān)性不顯著,這與周志春等(2001)得出的馬尾松年抽梢長(zhǎng)度僅與后續(xù)抽梢生長(zhǎng)量相關(guān),而固定生長(zhǎng)(初次抽梢生長(zhǎng)量)對(duì)年抽梢長(zhǎng)度貢獻(xiàn)不大的結(jié)論一致。

      表5 配合力效應(yīng)值Tab.5 Combining ability effect value

      2.3.2 抽梢性狀與針葉養(yǎng)分含量的遺傳相關(guān) 分析針葉養(yǎng)分含量與抽梢性狀的遺傳相關(guān)(表6)發(fā)現(xiàn),針葉氮含量與樹(shù)高、后續(xù)抽梢生長(zhǎng)量、抽梢長(zhǎng)度及抽梢次數(shù)極顯著正相關(guān); 針葉磷含量與初次抽梢生長(zhǎng)量及抽梢長(zhǎng)度成極顯著正相關(guān); 針葉鉀含量與抽梢長(zhǎng)度呈顯著負(fù)相關(guān)。針葉氮磷鉀含量配比也能影響到抽梢性狀,N/P與樹(shù)高、后續(xù)抽梢生長(zhǎng)量及年抽梢次數(shù)呈顯著正相關(guān); N/K與樹(shù)高、后續(xù)抽梢生長(zhǎng)量及抽梢長(zhǎng)度呈極顯著正相關(guān); P/K與抽梢長(zhǎng)度極顯著正相關(guān)。

      3 討論

      馬尾松雜交組合幼林期的高生長(zhǎng)變異幅度大,具有較大的選擇潛力(周志春等, 2004; 金國(guó)慶等, 2008)。本研究表明馬尾松5年生抽梢性狀與樹(shù)高相關(guān)性極顯著,說(shuō)明年抽梢性狀可作為評(píng)價(jià)樹(shù)高年增長(zhǎng)量的指標(biāo)。測(cè)定不同雜交組合子代的年抽梢性狀及其雜種優(yōu)勢(shì)在15個(gè)雜交組合間具較大差異,證實(shí)抽梢性狀因基因型不同而表現(xiàn)出不同的發(fā)育方式(周志春等, 2001),進(jìn)一步表明馬尾松三代測(cè)定林高生長(zhǎng)具較大的選擇潛力,與項(xiàng)目組譚小梅等(2011)和董虹妤等(2015)研究本試驗(yàn)材料的樹(shù)高性狀得到的結(jié)論一致。研究抽梢性狀的表型值與雜種優(yōu)勢(shì)發(fā)現(xiàn),年抽梢性狀表型值較高的雜交組合的雜種優(yōu)勢(shì)多數(shù)較高,但也有少數(shù)雜交組合子代的測(cè)定性狀不具雜種優(yōu)勢(shì),因此,有必要對(duì)馬尾松雜交子代抽梢性狀及其雜種優(yōu)勢(shì)進(jìn)行有效的分析和預(yù)測(cè),以提高雜種優(yōu)勢(shì)的利用效率。

      表6 馬尾松抽梢性狀間及與針葉養(yǎng)分含量的遺傳相關(guān)①Tab.6 Genetic correlation between shoot growth behavior and foliar nutrient content of Pinus massoniana

      ① *: 5%水平相關(guān)性顯著; **: 1%水平相關(guān)性極顯著。*,** indicate significant difference at 0.05 or 0.01 level, respectively.

      本研究在調(diào)查馬尾松幼林在快速生長(zhǎng)期抽梢性狀的同時(shí)對(duì)新生葉中氮、磷和鉀含量測(cè)定,解析抽梢性狀及針葉養(yǎng)分含量的遺傳控制方式及其相關(guān)規(guī)律。Sprague等(1942)在有關(guān)玉米(Zeamays)配合力育種的研究中指出,對(duì)于經(jīng)過(guò)一般配合力測(cè)定的材料,需要進(jìn)行特殊配合力的選擇與測(cè)定,而未經(jīng)一般配合力測(cè)定與選擇的材料,其一般配合力選擇比特殊配合力選擇更為重要。李力等(2000)和周志春等(2004)對(duì)杉木(Cunninghamialanceolata)和馬尾松的研究進(jìn)一步支持了該觀點(diǎn)。本研究采用的馬尾松三代測(cè)定幼林只經(jīng)過(guò)一代親本的GCA初篩,而二代親本未經(jīng)GCA篩選。研究發(fā)現(xiàn),除初次抽梢生長(zhǎng)量主要受顯性效應(yīng)控制外,其余抽梢性狀和樹(shù)高均以加性基因效應(yīng)為主,且具有較高的遺傳穩(wěn)定性。齊明(1996)指出性狀的GCA、SCA相對(duì)重要性與測(cè)定材料、性狀及年齡等因素有關(guān)。譚小梅等(2011)對(duì)本研究材料苗期測(cè)定結(jié)果表明,苗高及生長(zhǎng)參數(shù)的SCA效應(yīng)明顯大于GCA效應(yīng),董虹妤等(2015)對(duì)本研究材料3年生與5年生時(shí)測(cè)定結(jié)果表明,樹(shù)高生長(zhǎng)以加性基因效應(yīng)控制為主,支持了Balocchi等(1993)對(duì)火炬松配合力育種的研究結(jié)論,即未經(jīng)過(guò)GCA 選擇和測(cè)定的材料,早期樹(shù)高主要受顯性基因效應(yīng)控制,隨著年齡的增長(zhǎng),加性基因效應(yīng)增加并逐漸占據(jù)主導(dǎo)地位。研究發(fā)現(xiàn),針葉的養(yǎng)分含量中鉀含量以加性基因效應(yīng)控制為主,氮磷含量主要受顯性效應(yīng)控制,同林海建等(2010)和楊樹(shù)明等(2015)分別研究作物和水稻(Oryzasativa)揭示的氮、磷、鉀吸收利用的遺傳規(guī)律相近,遺傳研究說(shuō)明氮、磷、鉀吸收利用有關(guān)的大多數(shù)性狀屬數(shù)量性狀,受加性和顯性效應(yīng)為主的基因控制。國(guó)內(nèi)外育種家研究發(fā)現(xiàn)親本配合力與雜種優(yōu)勢(shì)密切相關(guān),一般配合力(GCA)和特殊配合力(SCA)可以作為評(píng)判子代雜種優(yōu)勢(shì)的重要標(biāo)準(zhǔn)(Ahangaretal., 2008; Gopaletal., 2008; Huangetal., 2015),這一結(jié)論已應(yīng)用到雜交育種的實(shí)踐中(金國(guó)慶等, 2008)。因此,在遺傳選擇時(shí),可以基于性狀的遺傳控制方式及其強(qiáng)弱規(guī)律,對(duì)抽梢性狀中后續(xù)抽梢生長(zhǎng)量、抽梢次數(shù)與年抽梢長(zhǎng)度這些變異大且加性基因效應(yīng)較強(qiáng)的性狀直接進(jìn)行親本選擇,即可獲得較為理想的遺傳選擇效果; 對(duì)于以顯性效應(yīng)控制為主的初次抽梢生長(zhǎng)量及針葉中氮磷含量,可通過(guò)對(duì)不同雜交組合配合力效應(yīng)值預(yù)測(cè)分析,注重對(duì)雜交組合選擇及雜種優(yōu)勢(shì)利用,進(jìn)而獲得較高的遺傳增益(Huangetal., 2015; Workuetal., 2008; Yanchuk, 1996)。

      已有研究證實(shí),植株在氮磷鉀元素吸收和利用效率上易受基因型的影響(楊青等, 2012)。本研究測(cè)定新生葉中氮、磷和鉀含量在不同雜交組合間差異顯著,平均值分別為9.44,0.78,4.87 g·kg-1,變異系數(shù)分別為23.33%,25.07%,33.03%,表明氮磷鉀元素在不同雜交組合間存在豐富的變異,這與楊青等(2012)和龐麗等(2016)研究馬尾松種源和家系水平的養(yǎng)分元素的吸收利用結(jié)論相一致,說(shuō)明雜交組合間針葉中的氮磷鉀元素含量及吸收利用量的差異受不同家系基因型的影響。項(xiàng)目組前期研究營(yíng)養(yǎng)生長(zhǎng)環(huán)境對(duì)抽梢行為和機(jī)理的影響表明,抽梢行為及機(jī)理的改變是馬尾松高生長(zhǎng)對(duì)營(yíng)養(yǎng)環(huán)境改變的響應(yīng)(周志春等, 2001)。分析抽梢性狀與針葉養(yǎng)分含量的遺傳相關(guān)表明,抽梢性狀與針葉氮磷鉀含量及其配比存在顯著的相關(guān)關(guān)系。其中,N含量、N/P和N/K與后續(xù)抽梢生長(zhǎng)量呈顯著的正相關(guān); 初次抽梢生長(zhǎng)量源于前一年冬芽的形成而增加的莖單位,而P素環(huán)境影響了前一年冬芽形成,通過(guò)增加固定生長(zhǎng)提高抽梢長(zhǎng)度(周志春等, 2001)。龐麗等(2016)研究氮磷比例改變后馬尾松的生長(zhǎng)響應(yīng)表明,針葉養(yǎng)分含量及其配比與植物的生長(zhǎng)和代謝密切相關(guān)。因此,在馬尾松幼林期應(yīng)考慮氮磷鉀配比及互作效應(yīng)。王月生等(2008)研究三尖杉(Cephalotaxusfortunei)抽梢性狀也表明配比施肥更能顯著地促進(jìn)幼林生長(zhǎng),氮磷鉀互作效應(yīng)顯著。

      目前馬尾松已進(jìn)入第3代育種階段,多目標(biāo)、超高產(chǎn)和優(yōu)質(zhì)抗性的長(zhǎng)期遺傳改良和配套技術(shù)研究將會(huì)大大地提高木材品質(zhì)與產(chǎn)量。本研究的重點(diǎn)在于揭示馬尾松年抽梢性狀及針葉氮磷鉀含量的遺傳機(jī)制。試驗(yàn)材料處于三代測(cè)定幼林階段,生長(zhǎng)及養(yǎng)分含量的動(dòng)態(tài)變化大,有待進(jìn)一步挖掘不同立地條件下的抽梢生長(zhǎng)與養(yǎng)分吸收利用的遺傳控制機(jī)制,探索生長(zhǎng)與環(huán)境的多效應(yīng)關(guān)系,提高優(yōu)良品種的選擇效率,為快速培育高產(chǎn)、優(yōu)質(zhì)馬尾松新品種提供支撐。

      4 結(jié)論

      馬尾松三代測(cè)定林的針葉養(yǎng)分含量及抽梢性狀變異豐富,抽梢性狀的GCA、SCA效應(yīng)值高的親本,其雜交組合的性狀表現(xiàn)也較為優(yōu)良,雜種優(yōu)勢(shì)較為明顯。后續(xù)抽梢生長(zhǎng)量、抽梢次數(shù)、年生長(zhǎng)量、樹(shù)高和針葉鉀含量以加性基因效應(yīng)控制為主,初次抽梢生長(zhǎng)量與針葉氮磷含量則幾乎完全受顯性效應(yīng)控制。抽梢性狀影響高生長(zhǎng),尤其是二次抽梢特性顯著地影響后續(xù)抽梢生長(zhǎng)量,增加年抽梢長(zhǎng)度,進(jìn)而增加當(dāng)年高生長(zhǎng)。抽梢性狀與針葉氮磷鉀含量及其配比呈顯著的相關(guān)關(guān)系,其中,氮含量、N/P比和N/K比與二次抽梢性狀顯著正相關(guān),對(duì)高生長(zhǎng)影響顯著; 而磷素環(huán)境影響了前一年冬芽形成,通過(guò)增加初次抽梢生長(zhǎng)量提高年抽梢長(zhǎng)度。

      董虹妤, 劉青華, 金國(guó)慶, 等. 2015. 馬尾松3代種質(zhì)幼林生長(zhǎng)性狀遺傳效應(yīng)及其與環(huán)境互作.林業(yè)科學(xué)研究, 28(6):775-780.

      (Dong H Y,Liu Q H,Jin G Q,etal. 2015. Genetic effects of growth traits for the third generationPinusmassonianagermplasm and the interaction with environment. Forest Research,28(6): 775-780. [in Chinese])

      黃永權(quán), 鐘偉華, 廖文莉, 等. 2006. 火炬松優(yōu)良家系抽梢生長(zhǎng)的調(diào)查研究. 福建林業(yè)科技, 33(4): 142-151.

      (Huang Y Q,Zhong W H,Liao W L,etal. 2006. Study on sprouting growth of superior families ofPinustaeda. Journal of Fujian Forestry Science and Technology,33(4): 142-151. [in Chinese])

      金國(guó)慶, 秦國(guó)峰, 劉偉宏, 等. 2008. 馬尾松生長(zhǎng)性狀交配效應(yīng)的遺傳分析及雜交組合選擇. 林業(yè)科學(xué), 44(6): 28-33.

      (Jin G Q,Qin G F,Liu W H,etal. 2008. Effects of mating manners on growth traits ofPinusmassonianaand selection of cross combinations. Scientia Silvae Sinicae, 44(6): 28-33. [in Chinese])

      李 力, 施季森, 陳孝丑, 等. 2000. 杉木兩水平雙列雜交親本配合力分析. 南京林業(yè)大學(xué)學(xué)報(bào), 24(5): 9-13.

      (Li L, Shi J S, Chen X C,etal. 2000. Combining ability analyses of parents in two-level diallel cross experiment of Chinese fir. Journal of Nanjing Forestry University, 24(5): 9-13. [in Chinese])

      林海建, 張志明, 張永中, 等. 2010. 作物氮、磷、鉀利用相關(guān)性狀的QTL定位研究進(jìn)展. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 16(3): 732-743.

      (Lin H J,Zhang Z M,Zhang Y Z,etal. 2010. Advancement of QTL analysis for traits associated to N, P and K utilization. Plant Nutrition and Fertilizer Science, 16(3): 732-743. [in Chinese])

      寧秋蕊, 李守中, 姜良超, 等. 2016. 亞熱帶紅壤侵蝕區(qū)馬尾松針葉養(yǎng)分含量及再吸收特征. 生態(tài)學(xué)報(bào), 36(12): 3510-3517.

      (Ning Q R,Li S Z,Jiang L C,etal. 2016. Foliar nutrient content and resorption efficiency ofPinusmassonianain the subtropical red soil erosion region. Acta Ecologica Sinica,36(12): 3510-3517. [in Chinese])

      龐 麗, 周志春, 張 一, 等. 2016. 大氣氮沉降提高低磷土壤條件下馬尾松菌根共生和磷效率的原因. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 22(1): 225-235.

      (Pang L,Zhou Z C,Zhang Y,etal. 2016. Effects of atmospheric N sedimentation on growth and P efficiency ofPinusmassonianamycorrhizal seedlings under low P stress. Journal of Plant Nutrition and Fertilizer, 22(1): 225-235. [in Chinese])

      齊 明. 1996. 杉木育種中GCA與SCA的相對(duì)重要性. 林業(yè)科學(xué)研究, 9(5): 498-503.

      (Qi M. 1996. Relative importance of GCA and SCA in genetic breeding of Chinese fir. Forest Research,9(5): 498-503. [in Chinese])

      譚小梅, 金國(guó)慶, 周志春, 等. 2011. 馬尾松3代種質(zhì)苗高生長(zhǎng)參數(shù)的配合力分析. 林業(yè)科學(xué)研究, 24(5): 663-667.

      (Tan X M,Jin G Q,Zhou Z C,etal. 2011. Combining ability analysis on seedling shoot elongation and growth parameters for the third generation germplasm ofPinusmassoniana. Forest Research,24(5): 663-667. [in Chinese])

      王月生, 金國(guó)慶, 洪桂木, 等. 2008. 氮磷鉀配比施肥對(duì)三尖杉幼林生長(zhǎng)的影響.浙江林業(yè)科技, 28(2): 11-16.

      (Wang Y S,Jin G Q,Hong G M,etal. 2008. Effect of fertilization with different ratio of N, P and K on increment of youngCephalotaxusfortuneiforest. Journal of Zhejiang Forestry Science﹠Technology, 28(2):11-16. [in Chinese])

      楊 青, 張 一, 周志春, 等. 2012. 磷高效馬尾松種源磷效率的家系變異及苗期-大田回溯相關(guān)分析. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 18(2): 338-348.

      (Yang Q,Zhang Y,Zhou Z C,etal. 2012. Family variation ofPinusmassonianain phosphorus efficiency and retrospective analysis between seedling growth and field trails. Plant Nutrition and Fertilizer Science, 18(2): 338-348. [in Chinese])

      楊樹(shù)明, 曾亞文, 王 荔, 等. 2015. 不同生長(zhǎng)環(huán)境下水稻氮、磷、鉀利用相關(guān)性狀的QTL定位分析. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 21(4): 823-835.

      (Yang S M,Zeng Y W,Wang L,etal. 2015. Identification of QTL traits on N, P and K utilization in rice under different growth environments. Plant Nutrition and Fertilizer Science,21(4): 823-835. [in Chinese])

      周志春, 戴德升, 吳吉富, 等. 2001. 不同磷營(yíng)養(yǎng)環(huán)境下馬尾松優(yōu)良種源的抽梢行為. 林業(yè)科學(xué)研究, 14(1): 54-59.

      (Zhou Z C,Dai D S,Wu J F,etal. 2001. Shoot growth behavior of superior Masson pine provenances under different phosphorus environment. Forest Research, 14(1): 54-59. [in Chinese])

      周志春, 金國(guó)慶, 秦國(guó)峰, 等. 2004. 馬尾松紙漿材重要經(jīng)濟(jì)性狀配合力及雜種優(yōu)勢(shì)分析. 林業(yè)科學(xué), 40(4): 52-57.

      (Zhou Z C,Jin G Q,Qin G F,etal. 2004. Analysis on combining ability and heterosis of main economic traits ofPinusmassonianafor pulp production. Scientia Silvae Sinicae, 40(4): 52-57. [in Chinese])

      周 瑋, 周運(yùn)超. 2011. 馬尾松幼苗生理特性對(duì)施肥的響應(yīng). 中南林業(yè)科技大學(xué)學(xué)報(bào), 31(4): 37-41.

      (Zhou W,Zhou Y C. 2011. Response of the physiologic characteristics ofPinusmassonianaseedlings to different fertilizer treatments. Journal of Central South University Forestry & Technology, 31(4): 37-41. [in Chinese])

      Ahangar L, Ranjbar G A, Nouroozi M. 2008. Estimation of combining ability for yield and yield components in rice (OryzasativeL.) cultivars using diallel cross. Pak J Biol Sci, 11(9):1178-1281.

      Anderson J M, Ingram J S I. 1993. Tropical soil biology and fertility: a handbook of methods. 2th ed. CAB International,Wallingford Press.

      Balocchi C E, Bridgwater F E, Zobel B J,etal. 1993. Age trends in genetic parameters for tree height in a nonselected population of loblolly pine. Forestry Science, 39(2): 231-251.

      Bremner J M, Mulvaney C S. 1982. Nitrogen-total∥Page A L, Miller R H, Keeney D R. Methods of soil analysis. Part 2: chemical and microbial properties. Agronomy Monograph 9. Agronomy Society of America, Madison, 595-624.

      Bridgwater F E, Willums C G, Canpbell R G. 1985. Patterns of leader elongation in loblolly pine families. Forest Sciences, 31 (4): 933-944.

      Cannell M G R, Johnstone R C B. 1978. Free or lammas growth and progeny performance inPiceasitchensis. Silvae Genetica, 27 (6): 248-254.

      Falconer D S, Mackay T F C. 1996.Introduction to quantitative genetics. 4thed. Pearson, USA.

      Gopal J, Kumar V, Luthra S K. 2008. Top-cross vs. poly-cross as alternative to test-cross for estimating the general combining ability in potato. Plant Breeding, 127(5): 441-445.

      Huang J J, Wang X H, Yan E R. 2007. Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China. Forest Ecology and Management, 239(1/3):150-158.

      Huang M, Chen L Y, Chen Z Q. 2015. Diallel analysis of combining ability and heterosis for yield and yield components in rice by using positive loci. Euphytica, 205(1): 1-14.

      Kobe R K, Lepczyk C A, Iyer M. 2005. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86(10): 2780-2792.

      Lanner R M. 1976. Patterns of shoot development inPinusand their relationship to growth potential∥Cannell M G R, Last F T. Tree physiology and yield improvement. Academic Press, USA, 223-243.

      Lascoux M, Kang H, Lundkvist K. 1994. Growth of 24 full-sib families ofPinussylvestrisL. at six relative nutrient addition rates. Scan J of For Res, 9(2): 115-123.

      Sprague G F, Tatum L A. 1942. General and specific combining ability in single crosses of corn. Journal of American Society of Agronomy, 34(4): 923-932.

      Worku M, Banziger M, Friesen D,etal. 2008. Relative importance of general combining ability and specific combining ability among tropical maize (ZeamaysL.) inbreds under contrasting nitrogen environments. Maydica, 53(3/4):279-288.

      Yanchuk A D. 1996. General and specific combining ability from disconnected partial diallels of coastal Douglas-fir. Silvae Genet, 45(1): 37-45.

      Zhang Y, Ma X H, Zhou Z C. 2010. Foraging ability and growth performance of four subtropical tree species in response to heterogeneous nutrient environments. J For Res, 15(2): 91-98.

      (責(zé)任編輯 徐 紅)

      GeneticEffectsofShootGrowthandItsGeneticCorrelationwithN,PandKContentsinNeedlesoftheThirdGenerationTrialPlantationofPinusmassoniana

      Zhang Zhen1Jin Guoqing1Yu Qixin2Liu Qinghua1Feng Zhongping2Dong Hongyu1Zhou Zhichun1

      (1.EngineeringResearchCenterofMassonPineofStateForestryAdministrationKeyLaboratoryofTreeBreedingofZhejiangProvinceResearchInstituteofSubtropicalForestry,ChineseAcademyofForestryHangzhou311400; 2.LaoshanForestFarmofChun’anCounty,ZhejiangProvinceChun’an311700)

      S722.7

      A

      1001-7488(2017)08-0026-09

      10.11707/j.1001-7488.20170804

      2016-09-12;

      2016-10-26。

      “十三五”浙江省林木育種專項(xiàng); 國(guó)家自然科學(xué)基金項(xiàng)目(31600533); “十二五”國(guó)家科技支撐課題“南方針葉樹(shù)高世代育種技術(shù)研究與示范”(2012BA01B02); 浙江省竹木農(nóng)業(yè)新品種選育重大科技專項(xiàng) “馬尾松高世代育種及其品種示范”(2012C12908-12)。

      * 周志春為通訊作者。

      猜你喜歡
      配合力針葉馬尾松
      旅大紅骨改良先鋒父本選系抗病性鑒定及穗部性狀配合力分析
      更 正
      馬尾松栽培技術(shù)及撫育管理
      綠色科技(2019年5期)2019-11-29 13:17:37
      風(fēng)雨海棠
      湘沙豬配套系雜交組合肥育、胴體及肉質(zhì)性狀配合力測(cè)定
      幾個(gè)骨干谷子雄性不育系和恢復(fù)系的配合力分析
      馬尾松果糖-1,6-二磷酸酶基因克隆及表達(dá)模式分析
      馬尾松初級(jí)種子園復(fù)壯技術(shù)
      24年生馬尾松種子園自由授粉子代測(cè)定及家系選擇
      今年1季度德國(guó)針葉材出口量增長(zhǎng)7%
      易门县| 花垣县| 金昌市| 永福县| 黑山县| 兴城市| 开平市| 神池县| 张家界市| 赣榆县| 武隆县| 余姚市| 酒泉市| 察隅县| 普兰店市| 伊川县| 香格里拉县| 磐石市| 河间市| 福清市| 柳江县| 昆明市| 湟源县| 区。| 图木舒克市| 陵川县| 岱山县| 安岳县| 台南县| 青海省| 高邑县| 桓仁| 新源县| 衡水市| 基隆市| 武定县| 龙州县| 绍兴市| 延庆县| 延安市| 大冶市|