高 磊,李余良,李 武,俞 婷,李高科,李春艷,胡建廣*
(1 廣東省農(nóng)業(yè)科學(xué)院作物研究所,廣州 510640;2 廣東省農(nóng)作物遺傳改良重點(diǎn)實(shí)驗(yàn)室,廣州 510640;3 廣東省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)生物基因研究中心,廣州 510640)
不同施氮水平對(duì)南方甜玉米氮素吸收利用的影響
高 磊1,2,李余良1,2,李 武1,2,俞 婷3,李高科1,2,李春艷1,2,胡建廣1,2*
(1 廣東省農(nóng)業(yè)科學(xué)院作物研究所,廣州 510640;2 廣東省農(nóng)作物遺傳改良重點(diǎn)實(shí)驗(yàn)室,廣州 510640;3 廣東省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)生物基因研究中心,廣州 510640)
【目的】探明南方鮮食玉米區(qū)高產(chǎn)條件下施氮量對(duì)甜玉米產(chǎn)量、氮素利用及其轉(zhuǎn)運(yùn)規(guī)律的影響?!痉椒ā坑?015年和2016年,選用國審甜玉米品種粵甜16為供試材料,設(shè)置N (0、100、150、200、250、300、450 kg/hm2) 7個(gè)施氮量處理進(jìn)行連續(xù)2年的大田試驗(yàn)。在拔節(jié)期 (8片展開葉)、大喇叭口期 (12片展開葉)、雄穗開花期和乳熟收獲期測定甜玉米植株及各器官干重、氮養(yǎng)分含量,研究分次施肥條件下,不同施氮量對(duì)甜玉米乳熟收獲期植株體內(nèi)的氮養(yǎng)分吸收積累與分配比例、氮收獲指數(shù)和效率,以及對(duì)不同生育時(shí)期植株、葉片、莖鞘氮素積累的影響?!窘Y(jié)果】在2個(gè)生長季,施氮量均顯著影響甜玉米鮮穗產(chǎn)量、植株總氮素積累量、氮素收獲指數(shù)、氮肥農(nóng)學(xué)效率、氮肥利用率和氮肥偏生產(chǎn)力。隨著施氮量 (0~450 kg/hm2) 的增加,鮮穗產(chǎn)量、植株氮素總積累量呈現(xiàn)先增加后保持上下小幅波動(dòng)的趨勢(shì);氮肥農(nóng)學(xué)效率先增加后下降;氮肥利用率、氮肥偏生產(chǎn)力持續(xù)下降。在施氮量為N 250 kg/hm2時(shí),粵甜16的鮮穗產(chǎn)量、植株氮素總積累量達(dá)到或接近最高,兩年平均值分別為17544 kg/hm2和145.6 kg/hm2;而氮肥農(nóng)學(xué)效率達(dá)到最高值,兩年平均值為48.4 kg/kg;氮素利用率和偏生產(chǎn)力兩年平均值分別為28.5%、70.2 kg/kg,處于中間水平;鮮穗產(chǎn)量、植株氮素總積累量和氮肥農(nóng)學(xué)效率均達(dá)到最大。施N 250 kg/hm2提高了莖鞘、葉片的氮素轉(zhuǎn)運(yùn)量和花后氮素同化量,氮素莖鞘轉(zhuǎn)運(yùn)、葉片轉(zhuǎn)運(yùn)和氮素花后同化對(duì)鮮穗的貢獻(xiàn)率兩年平均值分別為48.8%、10.2%、41.0%。甜玉米整株氮素積累隨生育進(jìn)程持續(xù)增加,乳熟期最高,日均最高積累速率在8展葉至12展葉期;葉片和莖鞘的氮素積累進(jìn)程呈單峰曲線,在雄穗開花期達(dá)到峰值,日均最快積累速率分別在8展葉至12展葉、12展葉至雄穗開花期。施氮能提高各器官在各生育時(shí)期的氮素積累量和積累速率,但不改變氮素積累變化趨勢(shì)?!窘Y(jié)論】在本試驗(yàn)條件下,采用多次施肥,施N 250 kg/hm2可提高氮肥農(nóng)學(xué)效率,有效調(diào)控開花前氮素轉(zhuǎn)運(yùn)及花后吸收同化,促進(jìn)鮮穗氮素積累,實(shí)現(xiàn)甜玉米高產(chǎn)高效。
甜玉米;氮肥水平;產(chǎn)量;氮素利用
甜玉米是我國南方重要的優(yōu)勢(shì)和高效農(nóng)作物,種植面積、產(chǎn)量分別占全世界的22.97%、35.75%,保障甜玉米的高產(chǎn)高效是提高其經(jīng)濟(jì)效益的重要途徑[1]。玉米生育期內(nèi)吸肥能力強(qiáng),需肥量大,充足的養(yǎng)分供應(yīng)是普通玉米獲得高產(chǎn)的關(guān)鍵[2–3]。已有研究表明,玉米對(duì)氮肥敏感,且耐肥性強(qiáng),施氮增產(chǎn)效果顯著,合理施用氮肥對(duì)于提高玉米產(chǎn)量和氮肥利用率、減輕環(huán)境壓力具有重要意義[4–6]。前人就氮肥用量、施氮時(shí)期和不同氮肥類型等對(duì)中產(chǎn)和高產(chǎn)水平玉米 (7000~10500 kg/hm2) 產(chǎn)量、品質(zhì)、氮素吸收利用、碳氮代謝和氮肥利用效率的影響進(jìn)行了研究報(bào)道[7–12],而對(duì)華南甜玉米等鮮食玉米的研究多集中在栽培技術(shù)、氣候條件、土壤性狀、種植密度、生理特性等方面[13–19],其養(yǎng)分吸收積累特性及科學(xué)施肥技術(shù)等鮮見報(bào)道。
廣東省是甜玉米的主要生產(chǎn)區(qū),種植面積占全國的一半以上,以超甜玉米為主[1]。2008年以來,廣東省甜玉米單位面積鮮穗產(chǎn)量越來越高,除了品種因素之外,普遍存在氮肥施用過量導(dǎo)致高產(chǎn)的現(xiàn)象[16,19]。據(jù)報(bào)道,該生態(tài)區(qū)甜玉米氮肥利用率僅15%左右[20–21]。用高氮肥投入換取高產(chǎn)出的生產(chǎn)方式既造成了資源浪費(fèi),又造成環(huán)境污染[7,22]。
針對(duì)目前甜玉米生產(chǎn)中存在施用氮肥過量、施肥時(shí)期不合理等問題,筆者連續(xù)兩年在廣東省農(nóng)業(yè)科學(xué)院白云基地研究施氮量對(duì)甜玉米氮素吸收積累、產(chǎn)量及氮肥效率的影響,以明確甜玉米植株氮素吸收積累特性,以期為高產(chǎn)甜玉米合理施用氮肥提供科學(xué)依據(jù)。
1.1 試驗(yàn)區(qū)基本概況
試驗(yàn)區(qū)屬中國南部珠江三角洲中北緣,海洋性亞熱帶季風(fēng)氣候,溫暖多雨、光熱充足,常年平均氣溫22.3℃,常年平均降水量1777 mm,播種日期分別為2015年9月8日、2016年9月14日,收獲期分別為2015年11月26日、2016年12月2日。全生育期平均氣溫分別為24.2℃、25.9℃,全生育期降雨量分別為197.1 mm和226.6 mm。試驗(yàn)地為酸性紅壤土,0—20 cm耕層土壤2015年和2016年的pH和養(yǎng)分狀況見表1。
表1 供試土壤基本理化性質(zhì)Table 1 The major chemical characteristics of the experimental soil
1.2 試驗(yàn)設(shè)計(jì)
試驗(yàn)在廣東省農(nóng)業(yè)科學(xué)院白云基地進(jìn)行。供試甜玉米為粵甜16,留苗密度每公頃51282株。設(shè)7個(gè)氮肥處理,分別施N0、100、150、200、250、300 和 450 kg/hm2,以 N0、N100、N150、N200、N250、N300和N450表示。氮肥為尿素 (N 46%),30%基施,40%拔節(jié)期追施,30%大喇叭口期追施。所有處理施用P2O5120 kg/hm2(過磷酸鈣,P2O516%),K2O 180 kg/hm2(氯化鉀,K2O 60%),均作為基肥一次性施入。完全隨機(jī)區(qū)組設(shè)計(jì),3次重復(fù)。小區(qū)面積為39 m2,每壟10 m × 1.3 m,共3壟,每壟2行,各小區(qū)之間設(shè)1.0 m寬間隔區(qū)。
1.3 取樣方法
于甜玉米8展葉 (拔節(jié)期)、12展葉 (大喇叭口期)、雄穗開花和乳熟收獲時(shí),分別在每小區(qū)采集有代表性的6株樣品。將樣品按葉、莖 + 鞘、苞葉、穗軸和子粒依次分開,105℃下殺青1 h,80℃烘至恒重后稱干重。將烘干樣品粉碎并充分混勻,用凱氏定氮法測定其全氮含量。
在乳熟期 (雄穗開花后28 d),每小區(qū)選取中間壟的2行,收獲鮮果穗 (包括苞葉、穗軸、子粒),對(duì)全部鮮果穗稱重,根據(jù)面積計(jì)算鮮穗產(chǎn)量。根據(jù)平均鮮穗重及大小穗比例從中選取20穗,室內(nèi)考種。
1.4 計(jì)算公式和數(shù)據(jù)分析
植株總氮素積累量 (kg/hm2) = 成熟期單株干重 ×小區(qū)植株密度 × 成熟期單株含氮量[23];
氮素收獲指數(shù) = 穗吸氮量/植株吸氮量 × 100%,穗包括苞葉、穗軸、子粒[20];
氮肥農(nóng)學(xué)效率 (kg/kg) = (施氮區(qū)鮮穗產(chǎn)量 – 不施氮區(qū)鮮穗產(chǎn)量)/施氮量[20];
氮肥利用率 = (施氮區(qū)氮素積累量 – 不施氮區(qū)氮素積累量)/施氮量 × 100%[23];
氮肥偏生產(chǎn)力 (kg/kg) = 施氮區(qū)鮮穗產(chǎn)量/施氮量[20];
營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量 (kg/hm2) = 開花期營養(yǎng)器官氮素積累量 – 乳熟期營養(yǎng)器官氮素積累量[20,27];
氮素轉(zhuǎn)運(yùn)對(duì)鮮穗的貢獻(xiàn)率 = 營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量/乳熟期鮮穗氮素積累量 × 100%[20];
氮素轉(zhuǎn)運(yùn)效率 = 營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量/開花期營養(yǎng)器官氮素積累量 × 100%[20];
1 kg氮生產(chǎn)鮮穗量 (kg/kg) = 乳熟期鮮穗產(chǎn)量/地上植株積累氮總量[20];
花后氮素同化量 (kg/hm2) = 乳熟期鮮穗氮素積累量 – 營養(yǎng)器官氮素轉(zhuǎn)運(yùn)量[20]。
采用Microsoft Excel標(biāo)準(zhǔn)化處理試驗(yàn)數(shù)據(jù)和作圖,利用SPSS 17軟件統(tǒng)計(jì)分析。
2.1 乳熟期甜玉米鮮穗產(chǎn)量、氮素積累與分配
從表2可以看出,鮮穗產(chǎn)量、果穗 (包括子粒、穗軸、苞葉) 及植株氮素積累量、1 kg氮生產(chǎn)鮮穗量、氮素收獲指數(shù)、氮肥利用率、氮肥農(nóng)學(xué)效率和氮肥偏生產(chǎn)力均明顯受施氮量的影響;施氮量低于250 kg/hm2時(shí),鮮穗產(chǎn)量、果穗及植株氮素積累量、1 kg氮生產(chǎn)鮮穗量均隨施氮水平的增加而顯著增加,達(dá)到或超過N 250 kg/hm2時(shí)均不再增加,N250和N300、N450處理間差異不顯著。隨著施氮量增加,氮肥農(nóng)學(xué)效率先增后降,氮素利用率、氮肥偏生產(chǎn)力持續(xù)下降。因此,在本研究土壤環(huán)境條件下,N 250 kg/hm2已基本滿足甜玉米對(duì)氮的需求。
表2 不同施氮量下甜玉米鮮穗產(chǎn)量及氮素積累、氮收獲指數(shù)和利用效率Table 2 Fresh ear yield, N accumulation, N harvest index and N use efficiency of the sweet corn under different N application rates
從表3看出,乳熟期氮素在甜玉米各器官的分配比例,各處理均表現(xiàn)為子粒 > 葉片 > 莖鞘 > 苞葉 >穗軸,在子粒、葉片、莖鞘、苞葉、穗軸中的分配比例各處理平均分別為 30.9%、28.2%、23.1%、9.2%、8.6%,同時(shí)在鮮穗中的分配比例受施氮量的影響顯著,隨施氮水平的增加而顯著降低,達(dá)到或超過250 kg/hm2時(shí)不再降低,N250和N300、N450處理間差異不顯著。
2.2 不同施氮量下甜玉米氮素積累動(dòng)態(tài)與積累速率變化特征
由表4可以看出,甜玉米氮素積累進(jìn)程符合“S”型變化曲線,出苗至8展葉為緩慢增長期,8展葉至雄穗開花期為迅速增長期,雄穗開花至乳熟收獲期為緩慢增長期。其中8展葉至雄穗開花期是氮素積累量最大和日均積累速率最快的時(shí)期,以32.5%的生育時(shí)間 (28 d) 積累了全生育期 (80 d) 78%的氮素,因此,這期間充足的氮肥供給對(duì)甜玉米的生長發(fā)育至關(guān)重要。
玉米整個(gè)生育期各階段的氮素積累量都顯著地受施氮量的影響。總體上,各個(gè)生育時(shí)期氮素積累在施氮量達(dá)到250 kg/hm2以后就不再隨施氮量的增加而升高,即每公頃施氮250 kg基本能滿足玉米各個(gè)生育階段對(duì)氮的需求。施氮量對(duì)氮素的日均積累速率的影響有隨施氮量的增加而增加的趨勢(shì),不同處理間差異顯著。
2.3 甜玉米葉片和莖鞘的氮素積累動(dòng)態(tài)及其對(duì)氮肥的響應(yīng)
由表5可以看出,甜玉米葉片的氮素積累呈單峰變化曲線。2015和2016年各處理氮素積累高峰均出現(xiàn)在8展葉至12展葉,在12展葉至雄穗開花進(jìn)入緩慢增長期。雄穗開花到乳熟收獲期,葉片氮素積累量緩慢下降。
施氮量對(duì)玉米各個(gè)生長階段葉片氮素積累有顯著影響??傮w上,施氮量不足250 kg/hm2時(shí),葉片氮素的積累有隨氮肥用量的增加而增加的趨勢(shì),低氮處理的葉片氮素積累明顯受到限制;超過250
kg/hm2后,葉片氮素的積累不再隨施氮量的增加而顯著增加 (表5)。
表3 不同施氮量下甜玉米乳熟期氮素分配比例Table 3 N distribution in different organs of sweet corn at milky stage under different N application rates
表4 不同施氮量甜玉米不同生育時(shí)期氮素積累Table 4 N accumulation of sweet corn at different growth stages under different N application rates
表5 不同施氮量甜玉米不同生育時(shí)期葉片氮素積累Table 5 N accumulation in sweet corn blade at different growth stages under different N application rates
由表6可以看出,甜玉米莖鞘的氮素積累呈單峰變化曲線。2015和2016年各處理氮素積累在8展葉到12展葉快速增長,高峰均出現(xiàn)在12展葉至雄穗開花。雄穗開花到乳熟收獲,莖鞘氮素積累量緩慢下降。施氮量對(duì)玉米各個(gè)生長階段莖鞘氮素積累有顯著影響。總體上,施氮量不足250 kg/hm2時(shí),莖鞘氮素的積累有隨氮肥用量的增加而增加的趨勢(shì),低氮處理的莖鞘氮素積累明顯受到限制;超過250 kg/hm2后,莖鞘氮素的積累不再隨施氮量的增加而顯著增加 (表6)。
2.4 甜玉米葉片和莖鞘氮素再利用特征及其對(duì)施氮量的響應(yīng)
對(duì)鮮穗氮素的貢獻(xiàn)率表現(xiàn)為莖鞘轉(zhuǎn)運(yùn) > 花后氮同化 > 葉轉(zhuǎn)運(yùn) (表7),所有處理平均值分別為50.5%、38.6%、10.9%。施氮量不足250 kg/hm2時(shí),花后氮同化對(duì)鮮穗氮的貢獻(xiàn)率呈現(xiàn)隨氮肥用量的增加而增加的趨勢(shì),低氮處理的花后氮同化對(duì)鮮穗的貢獻(xiàn)率明顯受到限制;超過250 kg/hm2后,花后氮同化對(duì)鮮穗的貢獻(xiàn)率不再隨施氮量的增加而顯著增加 (表7)。
3.1 施氮量對(duì)甜玉米產(chǎn)量及氮效率的影響
氮肥的使用有利于產(chǎn)量的提高,而近年來的研究結(jié)果表明,施用氮肥的增產(chǎn)效果明顯降低。巨曉棠等[24]認(rèn)為,從長遠(yuǎn)看,即使在肥力較高的土壤上氮肥的施用對(duì)于小麥和普通玉米的高產(chǎn)穩(wěn)產(chǎn)也是必不可少的,但過量施用氮肥也沒有任何意義。Osaki等[25]指出,過量施氮導(dǎo)致葉片早衰及光合能力下降,最終可能影響到正在發(fā)育子粒的碳、氮代謝,不利于產(chǎn)量形成和氮肥利用率的提高。呂鵬等[23]的研究表明,施氮顯著提高夏玉米產(chǎn)量,超過一定范圍增加施氮量產(chǎn)量有所下降,登海661和鄭單958在施N 720 kg/hm2下的產(chǎn)量均較最高產(chǎn)量顯著降低。本研究表明,施氮顯著提高粵甜16的鮮穗產(chǎn)量,超過一定范圍增加施氮量鮮穗產(chǎn)量不再增加。說明過量施氮不利于甜玉米增產(chǎn),與國內(nèi)外普通玉米的研究報(bào)道一致,但其機(jī)理有待于進(jìn)一步深入研究。
氮肥農(nóng)學(xué)利用率、氮肥利用率和氮肥偏生產(chǎn)力是用來表示氮肥利用率的常用定量指標(biāo),可從不同的側(cè)面描述作物對(duì)氮素或氮肥的利用效率[26]。據(jù)報(bào)
道,施氮對(duì)氮效率的影響因品種而異[27];氮肥利用率、氮肥農(nóng)學(xué)利用率、氮肥偏生產(chǎn)力隨施氮量增加而降低[7,12]。本研究結(jié)果表明,粵甜16的氮肥偏生產(chǎn)力、氮肥利用率隨施氮量增加而顯著降低;在250 kg/hm2施氮量下較其他處理顯著提高了氮肥農(nóng)學(xué)利用率。粵甜16在低于N 250 kg/hm2雖然可以提高氮肥偏生產(chǎn)力和氮肥利用率,但產(chǎn)量顯著降低;高于250 kg/hm2雖有少量增產(chǎn)效果,但氮肥農(nóng)學(xué)利用率、氮肥吸收利用率和氮肥偏生產(chǎn)力顯著降低,導(dǎo)致氮肥利用率低。隨施氮量增加粵甜16兩季的產(chǎn)量和氮肥利用率變化趨勢(shì)一致。
表6 不同施氮量甜玉米不同生育時(shí)期莖鞘氮素積累Table 6 N accumulation in stems and sheaths of sweet corn at different growing stages under different N rates
表7 不同施氮量甜玉米不同器官氮素花后再轉(zhuǎn)運(yùn)及其對(duì)鮮穗氮素的貢獻(xiàn)率Table 7 N remobilization after flowering from different organs to fresh ear and their contribution to N in ear
前人通常用線性加平臺(tái)模式、二次型加平臺(tái)模式、二次多項(xiàng)式模式、指數(shù)曲線模式、平方根模式擬合玉米產(chǎn)量和施肥量的關(guān)系[28]。根據(jù)本試驗(yàn)結(jié)果,選擇擬合度最高的二次多項(xiàng)式模式模擬產(chǎn)量與施氮量間的關(guān)系 (圖1),即:Y = a + bX + cX2,式中,Y(t/hm2) 為各處理的平均產(chǎn)量,X (kg/hm2) 為施氮量[28]。各處理產(chǎn)量最大時(shí)施氮量為Xmax = –b/2c。模擬計(jì)算可知,2015年、2016年粵甜16 最大產(chǎn)量分別為18476、17587 kg/hm2,施氮量分別為405.82、399.30 kg/hm2。綜合考慮氮肥成本、鮮穗產(chǎn)量利潤、氮素利用率等,粵甜16產(chǎn)量利潤、氮肥利用同時(shí)達(dá)到較大時(shí)施氮為250 kg/hm2。該施氮量可保證高產(chǎn)同時(shí)兼顧經(jīng)濟(jì)效益,在生產(chǎn)實(shí)際中具有應(yīng)用推廣價(jià)值。
圖1 鮮穗產(chǎn)量與施氮量間模型擬合Fig. 1 Fitting models describing relationships between N rates and fresh ear yields
3.2 施氮量對(duì)甜玉米氮素吸收轉(zhuǎn)運(yùn)的影響
開花至成熟期是玉米氮素吸收運(yùn)轉(zhuǎn)分配的重要時(shí)期。有研究[23,29]表明,子粒中的氮一部分來自于抽雄前莖和葉中積累氮素再轉(zhuǎn)移,另一部分則來源于根系直接供應(yīng)。何萍等[30]指出,過量供氮使?fàn)I養(yǎng)體氮素代謝過旺,導(dǎo)致運(yùn)往子粒的氮素減少。因此高產(chǎn)模式下,適宜的施氮量應(yīng)充分考慮調(diào)節(jié)植株開花后氮素的吸收和轉(zhuǎn)運(yùn)。本研究表明,低氮處理下 (N 200 kg/hm2及以下) 花前莖鞘葉氮素轉(zhuǎn)運(yùn)量、花后氮素同化量顯著低于中、高氮處理 (N 250 kg/hm2以及以上),高氮處理下 (N 300 kg/hm2及以上) 花前莖鞘葉氮素轉(zhuǎn)運(yùn)量、花后氮素同化量較中氮處理 (N 250 kg/hm2) 不再升高;同時(shí)適宜施氮可以提高玉米植株花后的氮素同化對(duì)鮮穗的貢獻(xiàn)率,即施N 250 kg/hm2的氮素同化的貢獻(xiàn)率高于其他處理。粵甜16在施N 250 kg/hm2下,鮮穗氮素來自花后莖鞘轉(zhuǎn)運(yùn)、葉轉(zhuǎn)運(yùn)、花后氮同化的貢獻(xiàn)率分別為48.8%、10.2%、41.0%,兩個(gè)生長季的反應(yīng)趨勢(shì)一致。這說明該施氮量可有效調(diào)節(jié)開花前氮素轉(zhuǎn)運(yùn)以及開花后鮮穗的氮素同化,有利于玉米植株全生育期內(nèi)對(duì)氮素進(jìn)行吸收分配。
關(guān)于玉米各器官再轉(zhuǎn)運(yùn)氮素對(duì)子粒氮素的貢獻(xiàn)及其合計(jì),普通玉米的報(bào)道分別為13.4% (莖+鞘)、27.6% (葉片)、8.6% (苞葉)、3.7% (穗軸) 和 53.3%(總和)[29];16.6% (莖)、5.1% (葉鞘)、37.0% (葉片)、8.4% (苞葉)、2.4% (穗軸)、1.2% (穗柄)、6.1% (雄穗) 和76.6% (總和)[31]??梢姡胀ㄓ衩字g研究結(jié)果差異較大,需要進(jìn)一步深入研究。與普通玉米收獲干子粒不同,甜玉米以鮮穗收獲,各器官再轉(zhuǎn)運(yùn)氮素對(duì)鮮穗的貢獻(xiàn)及其合計(jì)尚無報(bào)道。從本研究的結(jié)果看,各器官再轉(zhuǎn)運(yùn)對(duì)鮮穗 (子粒 + 苞葉 + 穗軸 +穗柄) 的貢獻(xiàn)及合計(jì)分別為48.8% (莖 + 葉鞘 + 雄穗)、10.2% (葉片) 和59.0% (總和)。鑒于普通玉米之間的研究結(jié)果的巨大差異,甜玉米不同器官氮素積累、分配與再分配等特性需進(jìn)一步深入研究。
甜玉米品種粵甜16的鮮穗產(chǎn)量、氮素積累量在低于施氮量250 kg/hm2時(shí),隨著施氮量的增加而增加,并在250 kg/hm2時(shí)最高或接近最高,兩季平均值達(dá)到17543 kg/hm2、145.6 kg/hm2。不同氮肥水平的氮肥農(nóng)學(xué)效率在25.2~50.6 kg/kg之間,在N 250時(shí)的兩季均最高,平均為48.4 kg/kg。粵甜16在施氮250 kg/hm2下,提高了莖鞘、葉片的氮素轉(zhuǎn)運(yùn)量和花后氮素同化量,氮素莖鞘轉(zhuǎn)運(yùn)、葉片轉(zhuǎn)運(yùn)和氮素花后同化對(duì)鮮穗的貢獻(xiàn)率兩年平均值分別為48.8%、10.2%、41.0%。該施氮量可有效調(diào)節(jié)開花前氮素轉(zhuǎn)運(yùn)以及開花后鮮穗的氮素同化,有利于甜玉米植株全生育期內(nèi)對(duì)氮素進(jìn)行吸收分配,實(shí)現(xiàn)甜玉米高產(chǎn)高效。
[ 1 ]劉蔚楠, 萬忠, 甘陽英, 等. 2015年廣東甜玉米產(chǎn)業(yè)發(fā)展形勢(shì)與對(duì)策建議[J]. 廣東農(nóng)業(yè)科學(xué), 2016, (3): 12–16.Liu W N, Wan Z, Gan Y Y,et al. Development situation and countermeasures of Guangdong sweet corn industry in 2015[J].Guangdong Agricultural Sciences, 2016, (3): 12–16.
[ 2 ]景立權(quán), 趙福成, 王德成, 等. 不同施氮水平對(duì)超高產(chǎn)夏玉米氮磷鉀積累與分配的影響[J]. 作物學(xué)報(bào), 2013, 39(8): 1478–1490.Jing L Q, Zhao F C, Wang D C,et al. Effects of nitrogen application on accumulation and distribution of nitrogen, phosphorus, and potassium of summer maize under super-high yield conditions[J].Acta Agronomica Sinica, 2013, 39(8): 1478–1490.
[ 3 ]Schmidt J, Beegleb D, Zhu Q,et al. Improving in-season nitrogen recommendations for maize using an active sensor[J]. Field Crops Research, 2011, 120: 94–101.
[ 4 ]徐明杰, 張琳, 汪新穎, 等. 不同管理方式對(duì)夏玉米氮素吸收、分配及去向的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2015, 21(1): 36–45.Xu M J, Zhang L, Wang X Y,et al. Effects of different management patterns on uptake, distribution and fate of nitrogen in summer maize[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1):36–45.
[ 5 ]張宏, 周建斌, 劉瑞, 等. 不同栽培模式及施氮對(duì)半旱地冬小麥/夏玉米氮素累積、分配及氮肥利用率的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2011, 17(1): 1–8.Zhang H, Zhou J B, Liu R,et al. Effects of different cultivation patterns and nitrogen fertilizer on accumulation, distribution and use efficiency of nitrogen in winter wheat/summer maize rotation system on semi-dry land farming[J]. Plant Nutrition and Fertilizer Science,2011, 17(1): 1–8.
[ 6 ]David T G, Joseph K, Susan R,et al. Maize productivity dynamics in response to mineral nutrient additions and legacy organic soil inputs of contrasting quality[J]. Field Crops Research, 2016, 188: 113–120.
[ 7 ]王宜倫, 劉天學(xué), 趙鵬, 等. 施氮量對(duì)超高產(chǎn)夏玉米產(chǎn)量與氮素吸收及土壤硝態(tài)氮的影響[J]. 中國農(nóng)業(yè)科學(xué), 2013, 46(12): 2483–2491.Wang Y L, Liu T X, Zhao P,et al. Effect of nitrogen fertilizer application on yield, nitrogen absorption and soil nitric N in superhigh-yield summer maize[J]. Scientia Agricultura Sinica, 2013,46(12): 2483–2491.
[ 8 ]黃濤, 仇少君, 杜娟, 等. 碳氮管理措施對(duì)冬小麥/夏玉米輪作體系作物產(chǎn)量、秸稈腐解、土壤CO2排放的影響[J]. 中國農(nóng)業(yè)科學(xué),2013, 46(4): 756–768.Huang T, Qiu S J, Du J,et al. Effects of different carbon and nitrogen managements on yield, straw decomposition, soil CO2flux of the winter wheat/summer maize[J]. Scientia Agricultura Sinica, 2013,46(4): 756–768.
[ 9 ]呂鵬, 張吉旺, 劉偉, 等. 施氮時(shí)期對(duì)高產(chǎn)夏玉米氮代謝關(guān)鍵酶活性及抗氧化特性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(6): 1591–1598.Lü P, Zhang J W, Liu W,et al. Effects of nitrogen application period on the nitrogen metabolism key enzymes activities and antioxidant characteristics of high-yielding summer maize[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1591–1598.
[10]王宜倫, 苗玉紅, 韓燕來, 等. 緩/控釋氮肥對(duì)夏玉米氮代謝、氮素積累及產(chǎn)量的影響[J]. 土壤通報(bào), 2012, 43(1): 147–150.Wang Y L, Miao Y H, Han Y L,et al. Effect of slow/controlled release N fertilizer on N metabolism, N accumulation and yield of summer maize[J]. Chinese Journal of Soil Science, 2012, 43(1):147–150.
[11]王寅, 馮國忠, 張?zhí)焐? 等. 控釋氮肥與尿素混施對(duì)連作春玉米產(chǎn)量、氮素吸收和氮素平衡的影響[J]. 中國農(nóng)業(yè)科學(xué), 2016, 49(3):518–528.Wang Y, Feng G Z, Zhang T S,et al. Effects of mixed application of controlled-release N fertilizer and common urea on grain yield, N uptake and soil N balance in continuous spring maize production[J].Scientia Agricultura Sinica, 2016, 49(3): 518–528.
[12]Ma Q H, Wang X, Li H B,et al. Comparing localized application of different N fertilizer species on maize grain yield and agronomic N-use efficiency on a calcareous soil[J]. Field Crops Research, 2015,180: 72–79.
[13]高磊, 胡建廣, 文天祥, 等. 生長季節(jié)對(duì)甜玉米產(chǎn)量及產(chǎn)量構(gòu)成的影響[J]. 廣東農(nóng)業(yè)科學(xué), 2016, (1): 11–14.Gao L, Hu J G, Wen T X,et al. Effects of growing season on yield and yield components of sweet corn[J]. Guangdong Agricultural Sciences, 2016, (1): 11–14.
[14]唐藝玲, 管奧湄, 周賢玉, 等. 減量施氮與間作大豆對(duì)華南地區(qū)甜玉米連作農(nóng)田N2O排放的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2015, 23(12):1529–1535.Tang Y L, Guan A M, Zhou X Y,et al. Effect of reduced N application and soybean intercropping on soil N2O emission in sweet corn fields in South China[J]. Chinese Journal of Eco-Agriculture,2015, 23(12): 1529–1535.
[15]高磊, 胡建廣, 李春艷, 等. 南方鮮食玉米區(qū)不同播期甜玉米的子粒灌漿和產(chǎn)量特性[J]. 玉米科學(xué), 2016, 24(6): 55–60.Gao L, Hu J G, Li C Y,et al. Grain filling properties and yield of sweet corn differing in sowing date in fresh corn southern area[J].Journal of Maize Sciences, 2016, 24(6): 55–60.
[16]王俊花, 邵林生, 閆建賓, 等. 施肥及密度對(duì)甜玉米果穗商品性及土壤性狀的影響[J]. 貴州農(nóng)業(yè)科學(xué), 2016, 44(12): 38–42.Wang J H, Shao L S, Yan J B,et al. Influence of fertilization and density on sweet maize ear commodity and soil characters[J].Guizhou Agricultural Sciences, 2016, 44(12): 38–42.
[17]陸大雷, 孫世賢, 陸衛(wèi)平. 國家鮮食甜玉米區(qū)域試驗(yàn)品種產(chǎn)量和品質(zhì)性狀分析[J]. 中國農(nóng)學(xué)通報(bào), 2016, 32(13): 164–171.Lu D L, Sun S X, Lu W P. Yield and quality of fresh sweet maize in national regional test[J]. Chinese Agricultural Science Bulletin, 2016,32(13): 164–171.
[18]趙福成, 景立權(quán), 閆發(fā)寶, 等. 灌漿期高溫脅迫對(duì)甜玉米籽粒糖分積累和蔗糖代謝相關(guān)酶活性的影響[J]. 作物學(xué)報(bào), 2013, 39(9):1644–1651.Zhao F C, Jing L Q, Yan F B,et al. Effects of heat stress during grain filling on sugar accumulation and enzyme activity associated with sucrose metabolism in sweet corn[J]. Acta Agronomica Sinica, 2013,39(9): 1644–1651.
[19]趙福成, 景立權(quán), 閆發(fā)寶, 等. 施氮量對(duì)甜玉米產(chǎn)量、品質(zhì)和蔗糖代謝酶活性的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2013, 19(1): 45–53.Zhao F C, Jing L Q, Yan F B,et al. Effects of nitrogen fertilization on yield, quality and enzyme activity associated with sucrose metabolism of sweet corn[J]. Plant Nutrition and Fertilizer Science,2013, 19(1): 45–53.
[20]陸大雷, 劉小兵, 趙久然, 等. 甜玉米氮素吸收利用的基因型差異[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2008, 14(2): 258–263.Lu D L, Liu X B, Zhao J R,et al. Genotypic differences in nitrogen uptake and utilization of sweet maize[J]. Plant Nutrition and Fertilizer Science, 2008, 14(2): 258–263.
[21]張白鴿, 李強(qiáng), 陳瓊賢, 等. 廣東甜玉米施肥指標(biāo)體系研究[J]. 廣東農(nóng)業(yè)科學(xué), 2013, (20): 67–70.Zhang B G, Li Q, Chen Q X,et al. Research on index system for sweet maize fertilization in Guangdong[J]. Guangdong Agricultural Sciences, 2013, (20): 67–70.
[22]高洪軍, 彭暢, 張秀芝, 等. 長期不同施肥對(duì)東北黑土區(qū)玉米產(chǎn)量穩(wěn)定性的影響[J]. 中國農(nóng)業(yè)科學(xué), 2015, 48(23): 4790–4799.Gao H J, Peng C, Zhang X Z,et al. Effect of long-term different fertilization on maize yield stability in the northeast black soil region[J]. Scientia Agricultura Sinica, 2015, 48(23): 4790–4799.
[23]呂鵬, 張吉旺, 劉偉, 等. 施氮量對(duì)超高產(chǎn)夏玉米產(chǎn)量及氮素吸收利用的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2011, 17(4): 852–860.Lü P, Zhang J W, Liu W,et al. Effects of nitrogen application on yield and nitrogen use efficiency of summer maize under super-high yield conditions[J]. Plant Nutrition and Fertilizer Science, 2011,17(4): 852–860.
[24]巨曉棠, 劉學(xué)軍, 鄒國元, 等. 冬小麥/夏玉米輪作體系中氮素的損失途徑分析[J]. 中國農(nóng)業(yè)科學(xué), 2002, 35(12): 1493–1499.Jü X T, Liu X J, Zou G Y,et al. Evaluation of nitrogen loss way in winter wheat and summer maize rotation system[J]. Scientia Agricultura Sinica, 2002, 35(12): 1493–1499.
[25]Osaki M, Iyoda M, Tadano T. Ontogenetic changes in the contents of ribulose-1,5-bisphosphate carboxylase/oxygenase,phosphoenolpyruvate carboxylase, and chlorophyll in individual leaves of maize[J]. Soil Science and Plant Nutrition, 1995, 41(2):285–293.
[26]Novoa R, Loomis R S. Nitrogen and plant production[J]. Plant and Soil, 1981, 58: 177–204.
[27]徐祥玉, 張敏敏, 翟丙年, 等. 夏玉米氮效率基因型差異研究[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2006, 12(4): 495–499.Xu X Y, Zhang M M, Zhai B N,et al. Genotype variation in nitrogen use efficiency in summer maize[J]. Plant Nutrition and Fertilizer Science, 2006, 12(4): 495–499.
[28]Cerrato M E, Blackmer A M. Comparison of models for describing corn yield response to nitrogen fertilizer[J]. Agronomy Journal, 1990,82: 138–143.
[29]張經(jīng)廷, 劉云鵬, 李旭輝, 等. 夏玉米各器官氮素積累與分配動(dòng)態(tài)及其對(duì)氮肥的響應(yīng)[J]. 作物學(xué)報(bào), 2013, 39(3): 506–514.Zhang J T, Liu Y P, Li X H,et al. Dynamic responses of nitrogen accumulation and remobilization in summer maize organs to nitrogen fertilizer[J]. Acta Agronomica Sinica, 2013, 39(3): 506–514.
[30]何萍, 金繼運(yùn), 林葆. 不同氮磷鉀用量下春玉米生物產(chǎn)量及其組分動(dòng)態(tài)與養(yǎng)分吸收模式研究[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 1998, 4(2):123–130.He P, Jin J Y, Lin B. Dynamics of biomass and its components and models of nutrients absorption by spring maize under different nitrogen, phosphorous and potassium application rates[J]. Plant Nutrition and Fertilizer Science, 1998, 4(2): 123–130.
[31]王忠孝, 王慶成, 牛玉貞, 等. 夏玉米高產(chǎn)規(guī)律的研究: Ⅱ. 氮, 磷, 鉀養(yǎng)分的積累與分配[J]. 山東農(nóng)業(yè)科學(xué), 1989, (4): 10–14.Wang Z X, Wang Q C, Niu Y Z,et al. Studies on high-yield regularity of summer maize Ⅱ. Accumulation and distribution of nitrogen, phosphorus and potassium[J]. Shandong Agricultural Sciences, 1989, (4): 10–14.
Effects of nitrogen application on yields and nitrogen use efficiencies of sweet corn in south China
GAO Lei1,2, LI Yu-liang1,2, LI Wu1,2, YU Ting3, LI Gao-ke1,2, LI Chun-yan1,2, HU Jian-guang1,2*
(1 Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;2 Guangdong Provincial Key Laboratory of Crop Genetics and Improvement, Guangzhou 510640, China;3 Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences,Guangzhou 510640, China)
【Objectives】Effects of nitrogen application rates on sweet corn fresh ear yields, nitrogen translocation and use efficiencies under high yield conditions were studied in south China.【Methods】Field experiments with a sweet corn cultivar (Zea maysL. saccharata sturt)‘Yuetian 16’ (YT16) were conducted in 2015 and 2016. Seven N application rates (N 0, 100, 150, 200, 250, 300, and 450 kg/hm2) were designed in the experiments in fields for successive two years. Aboveground plants were sampled to measure the dry matterweight, N content, N uptake rate, N harvest index, and nutrient use efficiency at the stages of the 8th and 12th full leaf expansion, tassel flowering stage and milk stage in order to study the characteristic of N uptake and utilization, N harvest index and agronomy efficiency of the sweet corn at milky stage, and N accumulation of plant, blade, stems and sheaths at different growth stages.【Results】The results showed that significant differences of fresh ear yield, total nitrogen accumulation amounts in plants, nitrogen agronomic efficiency,nitrogen recovery efficiency and nitrogen partial factor productivity at maturity stage were found among 7 fertilizer N application rates in two years. The fresh ear yields and amounts of total nitrogen accumulation in plants were increased at the first stage, and then slightly fluctuated with the increase of nitrogen application rates,and the nitrogen agronomic efficiencies were increased at the first stage, and then decreased, while the nitrogen recovery efficiencies and nitrogen partial factor productivity were continually decreased. Under the N 250 kg/hm2of nitrogen fertilizer rate, the fresh ear yield and amount of total nitrogen accumulation in plants of YT16 could reach to or near the maximum, which were 17544 kg/hm2and 145.6 kg/hm2in the average of two years,respectively, and the nitrogen agronomic efficiency of YT16 also reached to the maximum, 48.4 kg/kg, whereas the nitrogen recovery efficiency and nitrogen partial factor productivity were at medium level, which were 28.5%and 70.2 kg/kg in the average of two years, respectively. The fresh ear yield, total nitrogen accumulation and nitrogen agronomic efficiency reached to the highest under the N 250 kg/hm2of nitrogen fertilizer rate. Under the N 250 kg/hm2, the translocation efficiency and nitrogen contribution proportion after the anthesis stage of YT16 in two years could be regulated effectively. As a result, the nitrogen translocation in stems and sheaths, leaf nitrogen translocation and the assimilated amount of nitrogen after the anthesis to fresh ear nitrogen accumulation were 48.8%, 10.2% and 41.0% in the average of two years, respectively. The nitrogen uptake in the whole plant continuously increased, and the maximum value appeared at the milky stage. The maximum N accumulation rate of the plant appeared at the period from 8 to 12 full expansion leaves. The N accumulation in leaves, stem and sheath changed as a single peak curve in the whole growth stage, and the maximum value appeared at tassel flowering stage. The maximum daily N accumulation in leaves, stem and sheath appeared at the period from 8 to 12 full expansion leaves, and from 12 full expansion leaves to tassel flowering, respectively. N supply significantly improved N uptake and accumulation in leaves, stem and sheath at various stages, but did not change the trend of N accumulation.【Conclusions】Under this experimental field condition with many times of fertilization, as far as fresh ear yield and nitrogen agronomic efficiency were concerned, the most optimal nitrogen fertilizer rate was N 250 kg/hm2.
sweet corn; nitrogen application rate; yield; nitrogen utilization
2017–03–02 接受日期:2017–05–22 網(wǎng)絡(luò)出版日期:2017–08–04
國家玉米產(chǎn)業(yè)技術(shù)體系廣州綜合試驗(yàn)站項(xiàng)目;廣東省農(nóng)業(yè)科學(xué)院院長基金項(xiàng)目(201609);廣東省科技計(jì)劃項(xiàng)目(2014B070706012,2015A020208006,2015B020202006,2016B020233004,2017B020203003);2015 年中央農(nóng)業(yè)技術(shù)推廣與服務(wù)補(bǔ)助資金項(xiàng)目;鮮食玉米現(xiàn)代種業(yè)育繁推一體化創(chuàng)新發(fā)展聯(lián)盟建設(shè)(粵農(nóng)計(jì)[2016]35 號(hào))資助。
高磊(1985—),男,山東濰坊人,博士,主要從事甜玉米栽培生理研究。E-mail:gaolei_doctor@163.com
* 通信作者 E-mail:jghu2003@263.net