張萬紅,劉文兆
覆膜玉米冠層圖像分割方法
張萬紅,劉文兆*1
(西北農(nóng)林科技大學(xué)水土保持研究所,陜西楊凌712100)
在弱光條件下,采用色調(diào)(H)和飽和度(S)顏色分量的K均值聚類分析結(jié)合相應(yīng)色差運算方法,對覆膜玉米冠層圖像進行分割,并將分割所得影像的二值圖分別與超綠、超紅和超綠-超紅算法分割結(jié)果進行比較。結(jié)果表明,該方法更能精確反映玉米的冠層形狀。將該方法得到的玉米冠層覆蓋度計算結(jié)果與Samplepoint軟件分析結(jié)果進行比較發(fā)現(xiàn),前者均方根誤差取值較小,僅為0.004 2,分割誤差率低至3.37%,分割圖像準確率高。綜合分析表明,在弱光背景下,基于H和S顏色分量的K均值聚類分析結(jié)合色差運算的分割方法對覆膜玉米冠層的分割結(jié)果準確可靠。
色調(diào);飽和度;K均值聚類;圖像分割;玉米冠層
植被的冠層覆蓋度是指植被在地面的垂直投影面積占統(tǒng)計區(qū)總面積的百分比[1],它既能反映植物生長期內(nèi)的動態(tài)變化,又能間接說明植物的蒸騰作用和光合作用[2]。因此,在農(nóng)田條件下準確地估測植被的冠層覆蓋度對監(jiān)測作物生長狀態(tài)和預(yù)測作物產(chǎn)量具有重要意義[3-4]。
傳統(tǒng)估測作物冠層覆蓋度的方法有目測法、尺測法、逐點目視判斷并計數(shù)垂直成像照片法[2,5-6]。雖然這些方法很簡單,但目測法主觀隨意性很強,不同觀測者可能結(jié)果不同,甚至相差很大;尺測法受天氣影響大,估測結(jié)果帶方向性,且勞動強度大;逐點目視判斷并計數(shù)垂直成像照片法估測精確,但勞動強度也大,耗費時間長[7]。
目前,利用數(shù)字相機拍攝作物冠層照片,在計算機中將影像分成作物和非作物(土壤、作物殘留物等),并利用二值圖像計算作物覆蓋度的方法操作簡單,結(jié)果準確率高,是一種適宜的方法[5]。對于背景簡單的田間作物圖像,例如大田玉米圖像中背景僅包含土壤和少許作物殘留,通常采取單閾值的方法即可快速實現(xiàn)對目標的識別與分割,但對于多背景的影像,單閾值分割法的準確率低,往往會產(chǎn)生過度分割。為了實現(xiàn)對多背景目標影像的準確分割,通常將RGB顏色空間轉(zhuǎn)化為HIS[7-11]、HSV[12-13]和Lab[14-16]等顏色空間并結(jié)合最大類間方差法(Otsu)[14]、K均值聚類[15,17]和模糊C均值聚類(fuzzy C-mean clustering,FCM)[18]等算法對圖像進行分割。這些方法雖然能準確將目標影像分割,但目前仍沒有統(tǒng)一的算法來實現(xiàn)對不同環(huán)境條件下所有特定作物圖像的分割[19]。
地膜覆蓋可以改善農(nóng)田土壤的水熱狀況,提高養(yǎng)分有效性和水分利用效率,該種植方式已在玉米田得到廣泛推廣和應(yīng)用[20-21]。但目前將玉米植株從地膜、土壤等背景中分離并獲取玉米冠層覆蓋度的方法鮮有相關(guān)文獻報道?;诖?,本試驗擬采用圖像處理方法將玉米植株從地膜、土壤等背景中分離,并最終實現(xiàn)對玉米冠層覆蓋度的準確計算。此方法首先將覆膜玉米影像從RGB顏色空間轉(zhuǎn)換到HIS顏色空間,然后分別提取H和S顏色分量,通過對H和S顏色分量進行K均值聚類分析[22],選取合適的2類聚類圖進行相應(yīng)色差運算,以分割覆膜玉米冠層圖像。將圖像分割結(jié)果分別與超綠(excess green,ExG)[23]、超紅(excess red,ExR)[24]以及超綠減超紅(ExG-ExR)[25]算法的分割結(jié)果進行比較,在比較的基礎(chǔ)上選用合理的分割圖像進行玉米冠層覆蓋度計算。
1.1 大田玉米圖像采集
試驗于2016年6月4日—6日(玉米苗期)在中國科學(xué)院長武黃土高原農(nóng)業(yè)生態(tài)試驗站覆膜玉米試驗田進行。首先用1 m2的樣方框?qū)⒂衩字仓昕蚨ǎ缓笫褂萌A為榮耀7手機,在下午和早晨太陽光較弱的時間段,采用自然曝光模式,垂直于每個框定樣方在地面上2 m處進行拍照,收集光照均勻、少有陰影的圖片備用。在進行圖像分割處理前,為方便圖像處理,在不影響圖像中目標與背景形狀及顏色的前提下,將圖像統(tǒng)一變換為1 358×1 314像素,以JPEG格式導(dǎo)入計算機,如圖1所示。
圖1 覆膜玉米影像Fig.1 Original image of plastic-film corn
1.2 玉米植株圖像分割
覆膜玉米冠層圖像分割流程如圖2所示。
1)獲取RGB顏色空間下的R、G、B顏色分量,分別計算影像的超綠、超紅以及超綠-超紅算法結(jié)果;超綠、超紅以及超綠-超紅算法結(jié)合Otsu閾值分割算法[26]對圖像進行分割。超綠及超紅算法如公式(1)~(2)[23-24]所示。
式中R、G、B分別代表紅、綠、藍顏色分量。
2)將RGB顏色空間轉(zhuǎn)換為HIS顏色空間[見公式(3)~(6)[10]],并提取H及S顏色分量;使用K均值聚類算法分別對H及S顏色分量進行聚類分析(聚類數(shù)為3),獲取2類顏色分量的二值圖像,對二值圖進行去噪和形態(tài)學(xué)開運算,斷開細小黏連,去除毛刺使圖像更為平滑;對去噪及形態(tài)學(xué)運算后的H和S顏色分量二值圖進行相應(yīng)的數(shù)學(xué)運算,獲取目標圖像。
圖2 玉米冠層圖像分割方法流程圖Fig.2 Flow chart for image segmentation method of plastic-film corn canopy
1.3 數(shù)據(jù)處理
采用Excel 2013進行數(shù)據(jù)處理及運算。
2.1 超綠、超紅以及超綠-超紅算法結(jié)合Otsu閾值分割法
圖3為ExG算法圖像分割結(jié)果。該分割方法能準確識別土壤、塑料膜、作物殘留等背景目標,識別后的背景目標在分割后的圖像中被標識為黑色,但ExG算法不能準確識別前景目標(玉米)。在圖3中,部分玉米葉脈、葉尖以及下垂葉的葉緣區(qū)域呈現(xiàn)為黑色,表明ExG算法對前景目標產(chǎn)生了過度分割。圖4為采用ExG算法獲取的圖像經(jīng)Otsu閾值分割法處理后的二值圖。從中可以看出,前景目標被標識為白色,背景目標被標識為黑色,前景目標圖像中的零星黑色斑塊表明ExG算法結(jié)合Otsu閾值分割法同樣也產(chǎn)生了對圖像的過度分割現(xiàn)象。圖5為采用ExR算法獲取的分割圖像。在該圖中,除了葉片中有小部分區(qū)域與背景色基本一致外,大部分葉片的顏色與背景顏色呈現(xiàn)出明顯的差異,這種顏色差異更有利于對目標和背景圖像進行分割。圖6為采用Otsu閾值分割法對ExR算法獲取的圖像進行自適應(yīng)閾值處理后的二值圖,圖中背景部分的土壤以及塑料膜在部分區(qū)域中呈現(xiàn)出與前景目標一致的白色,說明前景與背景的分割效果差。圖7與圖8分別為采用ExG-ExR算法以及ExG-ExR算法結(jié)合Otsu閾值分割法處理后的分割圖。這2種分割方法的分割結(jié)果分別與ExG以及ExG結(jié)合Otsu分割法的結(jié)果較為一致。
圖4 超綠算法結(jié)合自適應(yīng)閾值法分割的影像Fig.4 Image segmented by ExG and Otsu methods
圖5 超紅算法分割的影像Fig.5 Image segmented by ExR method
圖3 超綠算法分割的影像Fig.3 Image segmented by ExG method
圖6 超紅算法結(jié)合自適應(yīng)閾值法分割的影像Fig.6 Image segmented by ExR and Otsu methods
圖7 超綠減超紅算法分割的影像Fig.7 Image segmented by ExG-ExR method
圖8 超綠減超紅算法結(jié)合自適應(yīng)閾值法分割的影像Fig.8 Image segmented by ExG-ExR and Otsu methods
2.2 基于H和S顏色分量的K均值聚類分割法
2.2.1 H和S顏色分量的K均值聚類分析
獲取H和S顏色分量(圖9~10)后,對H和S顏色分量分別進行K均值聚類分析,然后選取適宜用于圖像分割的聚類圖做后續(xù)分割處理?;贖顏色分量的K均值聚類分析如圖11所示,基于S顏色分量的K均值聚類分析如圖12所示。圖11準確顯示了前景目標的形狀,但在背景的塑料膜區(qū)域(圖1中間部分所示)中,由于塑料膜與土壤接觸的緊密程度以及膜厚度的不均一,導(dǎo)致凝結(jié)在塑料膜下的露珠區(qū)域呈現(xiàn)出斑塊狀與點狀交織在一起的白色,與土壤接觸緊密的區(qū)域部分呈現(xiàn)出接近干土的顏色,覆膜邊緣區(qū)域呈現(xiàn)出與裸露土壤接近的顏色。這種現(xiàn)象導(dǎo)致對圖像進行聚類分析后,前景目標的部分葉邊緣出現(xiàn)過多噪點,小的葉縫隙間出現(xiàn)了黏連,增加了圖像分割的難度。但是,基于S顏色分量的K均值聚類分析幾乎準確呈現(xiàn)了覆膜背景區(qū)域(圖12中間部分的黑色區(qū)域),覆膜區(qū)域呈現(xiàn)干凈的黑色,很少有噪點產(chǎn)生,更重要的是,對比圖11中覆膜區(qū)域的玉米葉,圖12準確呈現(xiàn)了覆膜區(qū)域復(fù)雜背景下的葉子形狀。
圖9 H顏色分量影像Fig.9 Image of hue
圖10 S顏色分量影像Fig.10 Image of saturation
2.2.2 運用“Bwareaopen”程序及相應(yīng)數(shù)學(xué)運算分割圖像
綜合以上分析,運用Matlab軟件中的“Bwareaopen”命令對圖11中的噪點進行清除。清除后的結(jié)果(圖13)顯示,圖中噪點清除很干凈,但前景目標的部分葉子間隙有黏連且部分葉緣處有過多白色附著物,白色附著物與葉緣緊密結(jié)合在一起。為了消除葉緣附著物并恢復(fù)葉間隙,對圖12與圖13進行減法運算,再將運算結(jié)果與圖13相減,通過減法運算及去噪處理,部分葉子間的黏連以及葉緣處的附著物消失,顯示出了清晰的玉米冠層輪廓(圖14)。
圖11 H顏色分量的聚類分析Fig.11 Clustering analysis for image of hue
圖12 S顏色分量的聚類分析Fig.12 Clustering analysis for image of saturation
圖13 經(jīng)Bwareaopen軟件程序處理后的圖像Fig.13 Image treated by Bwareaopen program
圖14 最終分割的圖像Fig.14 Segmented image
2.3 實驗結(jié)果及分析
為了驗證算法的準確性,運用上述分割算法對采集到的20幅覆膜玉米圖像(每幅圖像代表的實際土地面積為1 m2)進行分割,并根據(jù)計算公式(7)[27]和(8)分別計算玉米冠層圖像分割誤差率和均方根誤差(RMSE)。
式中:E為誤差率;C1為根據(jù)Samplepoint軟件(以人機交互的方式對土壤、植物、巖石等目標物進行判別)[28]測定的玉米冠層覆蓋度結(jié)果;C2為基于H和S顏色分量的K均值聚類分析和色差運算分割圖像后計算所得的玉米冠層覆蓋度;n為玉米冠層圖像數(shù)目。
計算結(jié)果顯示,RMSE取值較小,僅為0.004 2,誤差率低達3.37%:表明利用本文算法分割圖像后計算所得的玉米冠層覆蓋度與Samplepoint軟件測定結(jié)果非常接近,分割結(jié)果可靠。
準確分割玉米冠層圖像對研究玉米生理生態(tài)具有重要意義。為了準確分割覆膜條件下的玉米冠層圖像,本文提出了基于H和S顏色分量的K均值聚類的算法,通過聚類分析分別獲取基于H和S顏色分量的聚類分析圖,根據(jù)2類圖所反映的前景目標及背景的差異,通過色差運算的方法實現(xiàn)了對玉米冠層圖像的分割。為了證明這種方法對覆膜條件下玉米冠層圖像分割的有效性,分別選取ExG、ExR和ExG-ExR算法結(jié)合Otsu閾值分割法對覆膜玉米圖像進行分割,將分割結(jié)果與基于H和S顏色分量聚類分析的色差運算分割結(jié)果進行比較。結(jié)果顯示,基于H和S顏色分量K均值聚類分析的色差運算分割方法的分割結(jié)果優(yōu)于以上算法的分割結(jié)果。對基于H和S顏色分量聚類分析的色差運算分割結(jié)果進行統(tǒng)計分析表明,基于H和S顏色分量K均值聚類分析的色差運算分割方法對覆膜玉米的分割誤差率低達3.37%,分割圖像準確率高。綜上所述,基于H和S顏色分量的K均值聚類分析結(jié)合相應(yīng)色差運算的方法適宜對弱光條件下覆膜玉米影像進行分割,且分割結(jié)果可靠。該方法對其他矮稈覆膜作物的冠層覆蓋度計算也具有一定的參考價值。
本研究是在弱光線條件下(如陰天、早晨或傍晚)進行的,圖像的光照比較均勻,基于S顏色分量的聚類分析補償了H顏色分量的聚類分析對白色覆膜區(qū)域不能準確識別的不足,同時,基于H顏色分量的聚類分析則彌補了S顏色分量聚類分析不能對綠色植株部分準確識別的不足,兩者通過色差運算實現(xiàn)了對覆膜玉米的準確分割。但在強光線條件下,一些覆膜區(qū)域會產(chǎn)生陰影或反光,植株葉片受強光照射部分會產(chǎn)生反射光,土壤部分也存在明暗交替的光斑等現(xiàn)象,這些干擾項均會增加圖像分割的難度和不確定性。因此,本文提出的基于H和S顏色分量的K均值聚類分析結(jié)合色差運算的分割方法僅限于陰天、早晨或傍晚等弱光條件下進行影像分割處理。
[1] GUEVARA-ESCOBAR A,TELLEZ J,GONZALEZ-SOSA E.Use of digital photography for analysis of canopy closure.Agroforestry Systems,2005,65(3):175-185.
[2] ADAMS J E,ARKIN G F.A light interception method for measuring row crop ground cover.Soil Science Society of America Journal,1977,41(4):789-792.
[3] 張學(xué)藝,郭建茂,韓穎娟,等.基于植被指數(shù)的寧夏灌區(qū)春小麥葉面積指數(shù)模型.中國農(nóng)業(yè)氣象,2011,32(2):279-282.ZHANG X Y,GUO J M,HAN Y J,et al.LAI model of spring wheat in Ningxia irrigated area based on MODIS-VI.Chinese Journal of Agrometeorology,2011,32(2):279-282.(in Chinese with English abstract)
[4] 瞿瑛,劉素紅,謝云.植被覆蓋度計算機模擬模型與參數(shù)敏感性分析.作物學(xué)報,2008,34(11):1964-1969.QU Y,LIU S H,XIE Y.Computer simulation model of fractional vegetation cover and its parameters sensitivity.Acta Agronomica Sinica,2008,34(11):1964-1969.(in Chinese with English abstract)
[5] ARMBRUST D V.Rapid measurement of crop canopy cover.Agronomy Journal,1990,82(6):1170-1171.
[6] EWING R P,HORTON R.Quantitative color image analysis of agronomic images.Agronomy Journal,1999,91(1):148-153.
[7] 李存軍,王紀華,劉良云,等.基于數(shù)字照片特征的小麥覆蓋度自動提取研究.浙江大學(xué)學(xué)報(農(nóng)業(yè)與生命科學(xué)版),2004,30(6):650-656.LI C J,WANG J H,LIU L Y,et al.Automated digital image analyses for estimating percent ground cover of winter wheat based on objectfeatures.JournalofZhejiang University(Agriculture and Life Sciences),2004,30(6):650-656.(in Chinese with English abstract)
[8] 黃芬,于琪,姚霞,等.小麥冠層圖像H分量的K均值聚類分割.計算機工程與應(yīng)用,2014,50(3):129-134.HUANG F,YU Q,YAO X,et al.K-means clustering segmentation for H weight of wheat canopy image.Computer Engineering and Applications,2014,50(3):129-134.(in Chinese with English abstract)
[9] 李曉斌,王玉順,付麗紅.用K-means圖像法和主成分分析法監(jiān)測生菜生長勢(英文).農(nóng)業(yè)工程學(xué)報,2016,32(12):179-186.LI X B,WANG Y S,FU L H.Monitoring lettuce growth using K-meanscolorimagesegmentation andprincipalcomponent analysis method.Transactions ofthe Chinese Society of Agricultural Engineering,2016,32(12):179-186.(in English)
[10]張洪超,侯德文.一種基于HIS顏色空間的分割復(fù)雜背景圖像算法.山東師范大學(xué)學(xué)報(自然科學(xué)版),2015,30(3):49-52.ZHANG H C,HOU D W.An image segmentation algorithm with complex background based on his color space.Journal of Shandong Normal University(Natural Science),2015,30(3):49-52.(in Chinese with English abstract)
[11]通霏,武佩,韓丁,等.基于顏色特征的牧草圖像分割方法研究.農(nóng)機化研究,2014(5):43-47.TONG F,WU P,HAN D,et al.Study on the image segmentation of forage using color features.Journal of Agricultural Mechanization Research,2014(5):43-47.(in Chinese with English abstract)
[12] 陳毅,劉曉玉,蔣崢,等.基于RGB和HSV的膠囊異囊缺陷識別方法.計算機工程與設(shè)計,2014,35(11):3888-3892.CHEN Y,LIU X Y,JIANG Z,et al.Capsule Yinang defect recognition based on RGB and HSV color space.Computer Engineering and Design,2014,35(11):3888-3892.(in Chinese with English abstract)
[13]MORA M,AVILA F,CARRASCO-BENAVIDES M,et al.Automated computation of leaf area index from fruit trees using improved image processing algorithms applied to canopy cover digital photograpies.Computers and Electronics in Agriculture,2016,123:195-202.
[14]張武,黃帥,汪京京,等.復(fù)雜背景下小麥葉部病害圖像分割方法研究.計算機工程與科學(xué),2015,37(7):1349-1354.ZHANG W,HUANG S,WANG J J,et al.A segmentation method for wheat leaf images with disease in complex background.Computer Engineering&Science,2015,37(7):1349-1354.(in Chinese with English abstract)
[15]CHITADE A Z,KATIYAR D S K.Colour based image segmentation using K-means clustering.International Journal of Engineering Science and Technology,2010,2(10):5319-5325.
[16]BARBEDO J G A.A novel algorithm for semi-automatic segmentation of plant leaf disease symptoms using digital image processing.Tropical Plant Pathology,2016,41(4):210-224.
[17]LU H,CAO Z G,XIAO Y,et al.Region-based colour modelling forjointcrop and maize tasselsegmentation.Biosystems Engineering,2016,147:139-150.
[18]PREETI,AHUJA K.Colour image segmentation using K-means,fuzzy C-means and density based clustering.International Journal for Research in Applied Science and Engineering Technology(Ijraset),2014,2(VI):31-35.
[19]李小琦.基于Matlab的圖像閾值分割算法研究.軟件導(dǎo)刊,2014,13(12):76-78.LI X Q.Research on image threshold segmentation algorithm based on Matlab.Software Guide,2014,13(12):76-78.(in Chinese)
[20]LIU Y,HAN J,LIU D D,et al.Effect of plastic film mulching on the grain filling and hormonal changes of maize under different irrigation conditions.PLoS One,2015,10(4):1-17.
[21]張仙梅,黃高寶,李玲玲,等.覆膜方式對旱作玉米硝態(tài)氮時空動態(tài)及氮素利用效率的影響.干旱地區(qū)農(nóng)業(yè)研究,2011,29(5):26-32.ZHANG X M,HUANG G B,LI L L,et al.Effects of mulching patterns on spatio-temporal variation of soil nitrate and nitrogen utilization efficiency of maize on dry land.Agricultural Research in the Arid Areas,2011,29(5):26-32.(in Chinese with English abstract)
[22]SELIM S Z,ISMAIL M A.K-means-type algorithms:A generalized convergence theorem and characterization of local optimality.IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(1):81-87.
[23]WOEBBECKE D M,MEYER G E,VON BARGEN K,et al.Color indices for weed identification under various soil,residue,and lighting conditions.Transactions of the ASAE,1995,38(1):259-269.
[24]PéREZ A J,LóPEZ F,BENLLOCH J V,et al.Colour and shape analysis techniques for weed detection in cereal fields.Computers and Electronics in Agriculture,2000,25(3):197-212.
[25]MEYER G E,NETO J C.Verification of color vegetation indices for automated crop imaging applications.Computers and Electronics in Agriculture,2008,63(2):282-293.
[26]OTSU N.A threshold selection method from gray-level histograms.IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66.
[27]ABEDINPOUR M,SARANGI A,RAJPUT T B S,et al.Performance evaluation of AquaCrop model for maize crop in a semi-arid environment.Agricultural Water Management,2012,110(3):55-66.
[28]BOOTH D T,COX S E,BERRYMAN R D.Point sampling digital imagery with “Samplepoint”.Environmental Monitoring and Assessment,2006,123(1/2/3):97-108.
Image segmentation method of plastic-film corn canopy.Journal of Zhejiang University(Agric.&Life Sci.),2017,43(5):649-656
ZHANG Wanhong,LIU Wenzhao*
(Institute of Soil and Water Conservation,Northwest A&F University,Yangling 712100,Shaanxi,China)
hue;saturation;K-mean clustering analysis;image segmentation;corn canopy
S 513;TP 391
A
10.3785/j.issn.1008-9209.2017.01.071
Summary Percent ground cover of vegetation is an important parameter which
attention of both agronomists and ecologists.Not only does it reflect dynamic growth of plants in a long time,but also it is associated with abstraction of photosynthesis available radiation(APAR)of plants.So far as the maize crop cover is concerned,current researches mainly focused on calculating percent ground cover of maize on bare ground.It is a fact that plastic film mulching has been widely adopted for maize planting due to its effect on reducing water loss,regulating soil temperature,improving the infiltration of rainwater into the soil,enhancing soil water retention,accelerating crop growth,and significantly increasing crop yield.In addition,the recent advances in image analysis software offered potential for analyzing the digital camera images of habitat to objectively quantify ground cover of vegetation in a repeatable and timely manner too.Here we evaluated use of Matlab software for analyzing the digital photographs of plastic-film maize to quantify the percent ground cover.
In this study,the images of plastic-film maize were firstly taken by smart phone under weak light condition,which were JPEG(joint photographic expert group)format here and were in 1 358×1 314 resolution.Then the method combined the K-mean clustering analysis of hue(H)and saturation(S)color components with performing a corresponding mathematical operation was proposed to discriminate the maize and background.The proposed method was comprised of three main steps.First,color images yielding red(R),green(G),and blue(B)subimages were mathematically transformed to hue(H),saturation(S),and intensity(I)ones.And then,the images were respectively segmented using the methods of excess green(ExG),excess red(ExR),excess green minus excess red(ExG-ExR),and Otsu thresholding of excess green,excess red and excess green minus excess red.Second,the K-mean clustering analysis of H and S color components was carried out.Finally,the color difference operation between the K-mean clustering analysis of H and S color components was performed for segmentation of target object.
國家高技術(shù)研究發(fā)展計劃(863計劃)(2013AA102904)。
劉文兆(http://orcid.org/0000-0002-7798-8235),E-mail:wzliu@ms.iswc.ac.cn
(First author):張萬紅(http://orcid.org/0000-0002-0101-3220),E-mail:zhwhong@nwafu.edu.cn
2017-01-07;接受日期(Accepted):2017-05-09
Results of images processing indicated that the images,which were segmented respectively by excess green,excess red,excess green minus excess red,and Otsu thresholding of excess green,excess red and excess green minus excess red,showed incomplete construct of maize and plastic film,but relatively satisfactory results were achieved by clustering analysis of H and S color components.Specifically,the K-mean clustering analysis of H color component clearly delineated leaf edge of maize,and the K-mean clustering analysis of S color component produced complete plastic film construct.The maize plant was successfully separated from plastic film,soil and other backgrounds by application of the color difference operation between the K-mean clustering analysis of H and S color components.Root mean square error(RMSE)and error rate were calculated to verify the reliability of the method proposed in this paper for segmentation of maize plant.The results showed that the RMSE and error rate of segmentation were 0.004 2 and 3.37%,respectively.The low RMSE and error rate further confirmed the rationality of the method used in this paper.
In conclusion,the method presented in this paper for image segmentation of plastic-film corn canopy is reliable under the weak light condition.