孫曉婷+劉年東+杜坤+周明+任剛紅
摘 要:城市供水量是非線性、非平穩(wěn)時間序列,組合預(yù)測模型能獲得更高精度預(yù)測結(jié)果。通過深入分析混沌局域法與神經(jīng)網(wǎng)絡(luò)預(yù)測模型特點,提出了一種新的組合預(yù)測模型。首先,應(yīng)用混沌局域法對城市日供水量進行初預(yù)測,然后,應(yīng)用神經(jīng)網(wǎng)絡(luò)對預(yù)測結(jié)果進行修正。由于所提出的組合模型利用了混沌局域法及神經(jīng)網(wǎng)絡(luò)進行優(yōu)勢互補,能同時提高預(yù)測精度與計算效率。為驗證所提出組合預(yù)測模型的可行性,采用某市7 a實測供水量數(shù)據(jù),對混沌局域法、BPNN、RBF及GRNN神經(jīng)網(wǎng)絡(luò)4種單一預(yù)測模型及相應(yīng)的3種組合模型預(yù)測精度進行定量分析,結(jié)果表明,組合預(yù)測模型精度都高于對應(yīng)單一預(yù)測模型,混沌局域法與GRNN神經(jīng)網(wǎng)絡(luò)組合模型預(yù)測精度最高,且運算時間遠低于單一神經(jīng)網(wǎng)絡(luò)模型運算時間。
關(guān)鍵詞:混沌局域法;神經(jīng)網(wǎng)絡(luò);組合模型;日供水量預(yù)測
中圖分類號:TP183
文獻標志碼:A 文章編號:1674-4764(2017)05-0135-05
Abstract:Urban water supply is a nonlinear and non-stationary time series, and the combination forecasting model can get more accurate results. Through in-depth analysis of chaotic local-region method and neural network prediction model, this paper puts forward a new combination forecasting model, which uses chaotic local-region method to make a preliminary forecast for urban daily water supply, and then the prediction result is updated by neural network. The proposed combined model makes use of complementary advantages of the chaotic local-region method and the neural network, improving synchronously the accuracy and computational efficiency of the prediction results. To verify the proposed model, the prediction accuracy of the four single prediction models of Chaotic local-region method,BPNN, RBF and GRNN neural network and three corresponding combined models are analyzed quantitatively using seven years water supply data. The results show that combination forecasting model is of higher accuracy than single prediction model, and chaotic local-region method plus GRNN neural network combination model has highest accuracy with much lower computation time than single neural network predication model.
Keywords:chaotic local-region method; neural network; combination model; daily water supply forecast
城市供水量預(yù)測能輔助供水調(diào)度,提高水廠管理水平與生產(chǎn)效率,一直是學(xué)者們關(guān)注的重點課題[1-2]。供水量預(yù)測模型可分為傳統(tǒng)預(yù)測模型和基于新技術(shù)預(yù)測模型[3],傳統(tǒng)模型需對數(shù)據(jù)序列性質(zhì)進行假設(shè),例如,平穩(wěn)性假設(shè)或周期性假設(shè),若假設(shè)不合理,得出的預(yù)測模型則會嚴重失真;基于新技術(shù)的預(yù)測模型通過非線性、自適應(yīng)學(xué)習(xí)方法構(gòu)建模型,能克服傳統(tǒng)預(yù)測模型缺點。如Tiwari等[4]提出了一種基于小波技術(shù)的神經(jīng)網(wǎng)絡(luò)供水量短期預(yù)測模型,結(jié)果表明,其預(yù)測精度比傳統(tǒng)ARIMA、ARIMAX和WNN方法高。Bai等[5]分析了供水量序列的混沌特性,利用自適應(yīng)混沌粒子群優(yōu)化RVM模型參數(shù),提出一種多尺度的RVM供水量預(yù)測組合模型。陳敏等[6]根據(jù)混沌理論計算重構(gòu)相空間嵌入維數(shù),用于確定BP神經(jīng)網(wǎng)絡(luò)隱藏層節(jié)點個數(shù),提高了預(yù)測精度。
從信息利用角度來看,單一預(yù)測模型只能利用數(shù)據(jù)部分有效信息,僅能從一個側(cè)面刻畫數(shù)據(jù)序列規(guī)律,具有一定局限性;組合預(yù)測模型通過優(yōu)勢互補,能更大程度挖掘數(shù)據(jù)信息,可望獲得更高精度預(yù)測結(jié)果。神經(jīng)網(wǎng)絡(luò)與混沌理論模型作為目前最廣泛使用的兩種新技術(shù)預(yù)測模型,都展現(xiàn)出較高的預(yù)測精度,但針對二者的組合預(yù)測模型研究較少。通過深入分析,筆者發(fā)現(xiàn),基于混沌理論的預(yù)測模型[7],例如:全域法、局域法等,其特點是能在海量數(shù)據(jù)樣本中迅速挖掘時間序列總體趨勢,但對局部細節(jié)預(yù)測能力較差。相較而言,神經(jīng)網(wǎng)絡(luò)模型[8-9]非線性擬合能力更強,能更準確追蹤局部細節(jié),但當(dāng)樣本數(shù)據(jù)量較大時,神經(jīng)網(wǎng)絡(luò)預(yù)測模型存在訓(xùn)練時間長、收斂慢且預(yù)測結(jié)果不確定的缺點。鑒于此,提出了一種新的組合預(yù)測方法,首先,利用混沌預(yù)測模型對數(shù)據(jù)序列總體趨勢進行初預(yù)測,然后,應(yīng)用小樣本訓(xùn)練神經(jīng)網(wǎng)絡(luò)對預(yù)測結(jié)果進行局部修正,實現(xiàn)二者的優(yōu)勢互補,進而能同時提高預(yù)測結(jié)果精度與計算效率??紤]混沌局域模型能較好處理實際中存在噪聲的預(yù)測問題,采用加權(quán)一階局域法進行初預(yù)測,重點研究了其與不同類型神經(jīng)網(wǎng)絡(luò)的組合預(yù)測效果,并采用某市的實測供水量數(shù)據(jù)對單一模型及組合模型的預(yù)測精度、運算時間進行定量分析。endprint
1 基于混沌理論的加權(quán)一階局域預(yù)測法
2 神經(jīng)網(wǎng)絡(luò)及其與加權(quán)一階局域法的
組合預(yù)測模型
人工神經(jīng)網(wǎng)絡(luò)是一種能對信息進行分布式并行處理的數(shù)學(xué)模型,其最大特點是具有自學(xué)習(xí)和自適應(yīng)能力[13]。根據(jù)已有文獻,BP、RBF及GRNN神經(jīng)網(wǎng)絡(luò)發(fā)展相對成熟,被廣泛用于解決各類預(yù)測問題。BP神經(jīng)網(wǎng)絡(luò)[14-15],即反向傳播神經(jīng)網(wǎng)絡(luò),采用輸出與輸入之差逆向反饋校正的方法使實際輸出不斷逼近期望輸出。它也是是目前理論最為完備的神經(jīng)網(wǎng)絡(luò),但它要事先確定網(wǎng)絡(luò)的結(jié)構(gòu),參數(shù)調(diào)整復(fù)雜,人為干擾因素較強,訓(xùn)練好的網(wǎng)絡(luò),在給它新的時序時,就需要重新訓(xùn)練。RBF網(wǎng)絡(luò)[16],即徑向基神經(jīng)網(wǎng)絡(luò),利用用RBF作為隱單元的“基”構(gòu)成隱藏空間,將低維的模型輸入數(shù)據(jù)變換到高維空間內(nèi),使得在低維空間的線性不可分問題在高維空間線性可分。廣義回歸神經(jīng)網(wǎng)絡(luò)[17-18](GRNN)也是一種徑向基神經(jīng)網(wǎng)絡(luò),僅需要調(diào)節(jié)一個參數(shù),因此,人為干擾因素較小。在小數(shù)據(jù)量的情況下,預(yù)測效果也很好且運算時間更短。
3 案例分析
選取某市水廠2000年1月至2006年12月的日供水量驗證預(yù)測模型精度。為消除年供水量時間序列的季節(jié)性和趨勢性、減少噪聲影響[19],選取2000~2006年1月的217個日供水量作為時間序列樣本,其中210個日供水量數(shù)據(jù)作為參考樣本,7個日供水量數(shù)據(jù)作為驗證樣本,對于其它月份的預(yù)測可按此方法進行處理。采用互信息法計算得τ=7,根據(jù)文獻[20]推薦的多嵌入維法計算得m=10,再依據(jù)BIC信息準則選取鄰近相點K=7。首先采用加權(quán)一階局域預(yù)測法、BP、RBF及GRNN神經(jīng)網(wǎng)絡(luò)預(yù)測模型對日供水量進行單獨預(yù)測,然而將3種神經(jīng)網(wǎng)絡(luò)分別與加權(quán)一階局域法進行組合預(yù)測,總體預(yù)測趨勢見圖2,局部細節(jié)見圖3。
如圖2、圖3所示,7種方法都能較好預(yù)測日供水量總體趨勢,而對局部細節(jié)預(yù)測有一定差異。對預(yù)測結(jié)果按精度排序,將平均絕對誤差(MAPE)最小的置于首位,如表1所示?;煦缇钟蚍ㄅcGRNN組合模型預(yù)測精度最高,單一的RBF神經(jīng)網(wǎng)絡(luò)預(yù)測精度最低。此外,組合預(yù)測模型的精度都高于相應(yīng)的單一模型,由于采用小樣本訓(xùn)練神經(jīng)網(wǎng)絡(luò),其運算時間僅為3 s,達到了同時提高預(yù)測結(jié)果精度及計算效率的目的。
4 結(jié)論
供水量預(yù)測對提高水廠管理水平具有重要意義,本文提出了一種新的組合預(yù)測方法以提高供水量預(yù)測精度,其利用混沌加權(quán)一階局域法對供水量進行初預(yù)測,然后利用神經(jīng)網(wǎng)絡(luò)對預(yù)測結(jié)果進行修正。采用某市7年實測的供水量數(shù)據(jù)對不同模型預(yù)測結(jié)果進行評判,得到了如下結(jié)論:
1)對單一模型,神經(jīng)網(wǎng)絡(luò)預(yù)測精度普遍高于混沌加權(quán)一階局域法,其中GRNN神經(jīng)網(wǎng)絡(luò)預(yù)測精度最高,BP神經(jīng)網(wǎng)絡(luò)預(yù)測精度次之,但神經(jīng)網(wǎng)絡(luò)預(yù)測模型存在訓(xùn)練時間長、預(yù)測結(jié)果不確定的缺點。
2)組合預(yù)測模型精度都高于對應(yīng)單一預(yù)測模型,其中加權(quán)一階局域法與GRNN神經(jīng)網(wǎng)絡(luò)的組合模型預(yù)測精度最高,加權(quán)一階局域法與RBF神經(jīng)網(wǎng)絡(luò)的組合模型預(yù)測精度最低,但仍高于所有單一預(yù)測模型。由于采用了小樣本訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,其運算時間短且精度更高。
參考文獻:
[1] YASAR A, BILGILI M, SIMSEK E. Water demand forecasting based on stepwise multiple nonlinear regression analysis [J]. Arabian Journal for Science and Engineering, 2012, 37(8): 2333-2341.
[2] 孫月峰,閆雅飛,張表志.基于T-S模型的模糊神經(jīng)網(wǎng)絡(luò)城市需水量預(yù)測方法研究[J].安全與環(huán)境學(xué)報, 2013, 13(2): 136-139.
SUN Y F, YAN Y F, ZHANG B Z. Fuzzy neural network method based on the T-S model for the urban water demand forecasting and its application [J]. Journal of Safety and Environment, 2013,13(2): 136-139.(in Chinese)
[3] PAI Y, PU W, CHUAN L, et al. Dynamic forecast of daily urban water consumption using variable-structure support vector regression model[J]. Journal of Water Resource Planning and Management, 2014, 140: 1943-5452.
[4] TIWARI M K, ADAMOWSKI J. Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models [J]. Water Resources Research, 2013, 49(10): 6486-6507.
[5] BAI Y, WANG P, LI C,et al. A multi-scale relevance vector regression approach for daily urban water demand forecasting [J]. Journal of Hydrology, 2014, 517: 236-245.
[6] 陳敏,鄧英偉.基于混沌理論的城市用水量預(yù)測研究[J].計算技術(shù)與自動化,2009,28(1):88-90.endprint
CHEN M, DEN Y W. Forecast research of urban water consumption based on chaos theory [J].Computing Technology and Automation, 2009,28(1):88-90.(in Chinese)
[7] 韓敏.混沌時間序列預(yù)測理論與方法[M].北京:中國水利水電出版社,2007:28-39.
HAN M. Prediction theory and method of chaotic time series [M].Beijing: China Water & Power Press, 2007:28-39.(in Chinese)
[8] 史峰,王小川,郁磊.MATLAB神經(jīng)網(wǎng)絡(luò)30個案例分析[M].北京:北京航空航天大學(xué)出版社,2011:73-80.
SHI F, WANG X C, YU L. 30 case analysis of MATLAB neural network [M].Beijing: Beihang University Press,2011:73-80.(in Chinese)
[9] 林海軍,滕召勝,遲海,等. 基于多RBF神經(jīng)網(wǎng)絡(luò)的汽車衡誤差補償[J].湖南大學(xué)學(xué)報(自然科學(xué)版),2010,37(5):40-44.
LIN H J, TENG Z S, CHI H, et al. Error compensation for truck scale based on multiple RBF neural networks[J].Journal of Hunan University (Natural Sciences), 2010,37(5):40-44.(in Chinese)
[10] TAKENS F. Determining strange attractors in turbulence [J]. Lecture Notes in Mathematics, 1981, 898: 361-381.
[11] 劉年東,杜坤,周明,等.局域法鄰近點選取對降雨量預(yù)測精度影響研究[J].給水排水, 2016(Sup1):285-288.
LIU N D, DU K, ZHOU M, et al. Study on the influence of select the local-region method nearest neighbours on rainfall forecasting accuracy[J]. Water & Wastewater and Drainage, 2016(Sup1):285-288.(in Chinese)
[12] CARLOS C, MUOZ-COLLAZOS H, URBANO-MUOZ R. Clustering of web search results based on the cuckoo search algorithm and Balanced Bayesian Information Criterion [J]. Information Sciences, 2014, 281:248-264.
[13] TAORMINA R, CHAU K, SETHI R. Artificial neural network simulation of hourly 4 groundwater levels in a coastal aquifer system of the 5 Venice lagoon [J]. Engineering Applications of Artificial Intelligence, 2012, 25 (8): 1670-1676.
[14] KARSOLIYA S. Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture [J]. International Journal of Engineering Trends and Technology, 2012, 3(6): 714-717.
[15] 戴張俊,余飛,陳善雄,等.淮北平原地基分層與承載力的BP網(wǎng)絡(luò)預(yù)測方法[J].土木建筑與環(huán)境工程, 2013,35(3) :18-24.
DAI Z J, YU F, CHEN S X, et al. Stratification and bearing capacity prediction method based on BP neural network for foundation in Huaibei Plain [J]. Journal of Civil, Architectural & Environmental Engineering, 2013,35(3) :18-24. (in Chinese)
[16] TSEKOURASA G E, TSIMIKASB J.On training RBF neural networks using input-output fuzzy clustering and particle swarm optimization [J]. Science Direct Fuzzy Sets and Systems,2013, 221:65-89.
[17] 戴虹,錢晉武,張震,等. GRNN在肌電預(yù)測踝關(guān)節(jié)運動中的應(yīng)用[J].儀器儀表學(xué)報, 2013,34(4):846-851.
DAI H, QIAN J W, ZHANG Z, et al. Application of GRNN in ankle movement prediction based on surface electromyography [J]. Chinese Journal of Scientific Instrument, 2013,34 (4):846-851.(in Chinese)
[18] FIRATA M,TURANB M E, YURDUSEV M A. Comparative analysis of neural network techniques for predicting water consumption time series [J]. Journal of Hydrology, 2010, 384 : 46-51.
[19] 趙瑩,盧文喜,羅建男,等.基于改進時間序列分析法的鎮(zhèn)賚地區(qū)地下水位動態(tài)分析[J].水利學(xué)報,2013,44(11):1372-1379.
ZHAO Y,LU W X,LUO J N, et al. Dynamic analysis of groundwater table in Zhenlai county of Jilin province based on the improved time series analysis method [J]. Shuili Xuebao, 2013,44(11):1372-1379.(in Chinese)
[20] 劉道文,忽海娜.基于多嵌入維加權(quán)一階局域法煤礦災(zāi)害混沌時間序列預(yù)測[J].煤炭技術(shù),2012,31(8):89-91.
LIU D W, HU H N. Chaotic time series prediction of coal mine disasters based on multi-dimensional weighted first-order embedded local-region method [J]. Coal Technology, 2012,31(8):89-91. (in Chinese)
(編輯 胡玲)endprint