宋 凌, 周 強, 李 娜, 余 潔, 李 陽, 張 翅
(1商丘醫(yī)學高等??茖W校, 河南 商丘 476100; 2鄭州市兒童醫(yī)院, 河南 鄭州 450052)
沉默Smo基因對人宮頸癌HeLa細胞活力及凋亡的影響*
宋 凌1△, 周 強2, 李 娜1, 余 潔1, 李 陽1, 張 翅1
(1商丘醫(yī)學高等??茖W校, 河南 商丘 476100;2鄭州市兒童醫(yī)院, 河南 鄭州 450052)
目的使用RNA干擾技術沉默Smoothened(Smo)基因,探討其對宮頸癌HeLa細胞活力和凋亡的影響。方法采用SmoshRNA轉染宮頸癌HeLa細胞;采用RT-PCR和Western blot技術檢測各組HeLa細胞Smo和轉錄因子Gli1的mRNA和蛋白表達;采用MTT比色法測定沉默Smo后細胞生長的情況;流式細胞術檢測SmoshRNA對細胞周期和凋亡的影響。結果與對照組比較,SmoshRNA轉染細胞72 h后,Smo和Gli1的mRNA和蛋白表達水平均明顯降低(P<0.05)。Smo基因沉默后,HeLa細胞的活力明顯降低,細胞明顯阻滯于G0/G1期,細胞凋亡率顯著升高。結論沉默Smo基因可有效抑制人宮頸癌HeLa細胞生長,并誘導其凋亡。
Smo基因; 宮頸癌; RNA干擾; 細胞凋亡
在世界范圍內(nèi),宮頸癌是婦女第二常見的惡性腫瘤,也是婦女發(fā)病和死亡的主要原因之一[1]。診斷為IIB期~IVA期宮頸癌患者的標準治療方法是基于順鉑的化療和放療, 然而,5年生存率只有66%[2]。目前對復發(fā)和轉移性疾病患者的治療方法仍有限,這些宮頸癌患者總生存期<12個月[3-5]。迄今為止,生物治療雖能夠有限地提高患者的生存率[6-7],但是仍然需要尋找潛在的新靶點和新的治療策略。
Hedgehog (Hh)是高度保守的信號通路。它在人的胚胎發(fā)育、器官形成、組織分化以及組織修復中起重要作用。Smoothened(Smo)蛋白是Hh信號通路上的膜蛋白,也是Hh信號通路的轉化分子,它可以將細胞外的Sonic hedgehog(Shh)信號轉化成細胞內(nèi)的Gli信號,觸發(fā)細胞內(nèi)信號,激活轉錄因子Gli1,并能激活Shh信號通路[8-9]。當Smo基因過表達時,可異常激活Hedgehog通路,產(chǎn)生大量促癌因子[10],使細胞發(fā)生轉化和惡變。許多研究發(fā)現(xiàn),由Smo介導的Hh信號轉導途徑異常激活,與許多惡性腫瘤的發(fā)生和發(fā)展密切相關,例如黑素瘤、胰腺癌、胃癌、 前列腺癌、乳腺癌、結腸直腸癌和宮頸癌等[11]。本研究旨在利用SmoshRNA轉染人宮頸癌HeLa細胞,進一步探討Smo基因對宮頸癌細胞增殖和凋亡的影響,為宮頸癌基因治療提供理論依據(jù)。
1材料
HeLa細胞購自美國模式培養(yǎng)物集存庫(American type culture collection, ATCC);胎牛血清和RPMI-1640培養(yǎng)基購自Gibco;脂質體LipofectamineTM2000及TRIzol試劑盒購自Invitrogen;抗Smo、β-actin及Gli1 抗體購自Santa Cruz。陰性對照質粒(pRS-scrambled)和Smo干擾質粒(pRS-shSmo)購自OriGene;Annexin V-FITC/PI細胞凋亡檢測試劑盒購自Invitrogen;MTT細胞毒性檢測試劑盒購自江蘇碧云天公司。
2方法
2.1細胞培養(yǎng) 將HeLa細胞于RPMI-1640培養(yǎng)液(含10%胎牛血清、1×105U/L青霉素和100 mg/L鏈霉素),37 ℃、5% CO2培養(yǎng)箱中貼壁培養(yǎng)。觀察細胞生長狀態(tài),每2~3 d進行細胞換液,培養(yǎng)3~4 d后用胰酶消化,傳代培養(yǎng)。
2.2轉染重組質粒 將質粒pRS-scrambled和pRS-shSmo分別轉染HeLa細胞,轉染方法參照Lipofectamine 2000操作說明書進行。在6孔板中每孔加入3×108個細胞,置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng),待次日細胞融合度達到50%左右時進行轉染。具體步驟如下:加入50 μL dH2O至含有表達質粒的試管中,渦旋試管混勻質粒,溶液濃度為100 mg/L。得到2組細胞:(1) 陰性對照(scrambled)組:轉染質粒pRS-scrambled的HeLa細胞;(2) 實驗(shSmo)組:轉染重組質粒pRS-shSmo的HeLa細胞;空白對照(blank control)組由等量培養(yǎng)基替代。
2.3MTT法檢測細胞活力 取對數(shù)期生長的細胞,每孔種(3~6)×103個細胞,于37 ℃、5% CO2細胞培養(yǎng)箱中培養(yǎng)24 h。設置空白對照孔。分別轉染24 h、48 h和72 h。隨后加入20 μL MTT溶液(5 g/L),繼續(xù)于37 ℃、5% CO2細胞培養(yǎng)箱中培養(yǎng)4 h后,每孔加入150 μL DMSO,振蕩10 min 溶解結晶,酶標儀檢測492 nm波長吸光度(A)值。每組設 5 個復孔,實驗重復 3 次。計算細胞生長抑制率:細胞生長抑制率(%)=(1-A實驗組/A對照組)×100%。
2.4RT-PCR檢測細胞中Smo和Gil1的mRNA表達 收集經(jīng)重組質粒轉染24 h、48 h和72 h的細胞,用Trizol提取細胞總RNA,按照試劑盒說明書合成cDNA,用cDNA為模板進行PCR。Smo上游引物序列為5’-CGCTACCCTGCTGTTATTCTCT-3’,下游序列引物為5’-CAGGTGGAAGTAGGAGGTCTTG-3’,產(chǎn)物大小為306 bp;Gli1上游引物序列為5’-TTGGAGAAGCCGAGCCGAGTATC-3’, 下游序列引物為5’-GAGTACAGAGGTTGGGAGGTAAGG-3’,產(chǎn)物大小為201 bp[12];GAPDH上游引物序列為5’-GAAGGTGAAGGTCGGAGTC-3’, 下游序列引物為5’-GAAGATGGTGATGGGATTTC-3’, 產(chǎn)物大小為226 bp。擴增條件為:95 ℃預變性30 s; 95 ℃變性30 s, 63 ℃退火45 s, 72 ℃延伸45 s,共30個循環(huán); 72 ℃終止延伸5 min。 將 PCR 產(chǎn)物進行 1%瓊脂糖凝膠電泳。采用凝膠成像系統(tǒng)觀察結果。運用ImageJ軟件測定各條帶灰度值。
2.5細胞中Smo和Gli1蛋白的Western blot法檢測 重組質粒轉染24 h、48 h和72 h后,裂解細胞提取總蛋白,BCA法定量,進行SDS-PAGE并轉移至PVDF膜。封閉液封閉1 h,加入稀釋過的 I 抗,4 ℃孵育過夜,TBST洗膜 3 次,加入稀釋過的 II 抗,室溫下孵育 1 h,TBST洗膜 3 次,加入ECL 進行發(fā)光反應,壓片、顯影、定影,觀察蛋白印跡。運用ImageJ軟件測定各條帶灰度值。
2.6細胞凋亡檢測 收集shSmo轉染 72 h 組、scrambled組和未轉染對照組細胞。PBS洗滌3遍,用100 μL預冷的Binding Baffer重懸細胞,加入5 μL FITC 標記的Annexin V 和 5 μL PI 混勻避光孵育15 min,再加入400 μL 緩沖液混勻,上流式細胞儀檢測。
2.7細胞周期檢測 收集shSmo轉染 72 h 組、scrambled組、未轉染對照組細胞。PBS洗滌3遍,加入1 mL 70%的冰乙醇,4 ℃孵育過夜,離心去除乙醇,PBS洗滌2遍,加入1 mL PI (50 mg/L)溶液,4 ℃避光30 min,上流式細胞儀檢測。
3統(tǒng)計學處理
采用GraphPad Prism 5.0進行統(tǒng)計學分析。實驗數(shù)據(jù)用均數(shù)±標準差(mean±SD)表示,多組平均數(shù)之間比較采用單因素方差分析檢驗,以P<0.05為差異有統(tǒng)計學意義。
1SmoshRNA抑制HeLa細胞的活力
MTT法觀察HeLa細胞轉染24、48和72 h后的細胞活力,發(fā)現(xiàn)轉染過的細胞生長緩慢。結果顯示實驗組的細胞抑制率明顯高于陰性對照組和空白對照組(P<0.01);陰性對照組和空白對照組細胞抑制率無明顯差異,SmoshRNA可有效地抑制HeLa細胞的活力,轉染72 h的抑制效果最顯著,各組細胞生長抑制率見圖1。
Figure 1. The effect ofSmogene silencing on the cell activity of human cervical cancer HeLa cells detected by MTT assay. Mean±SD.n=3.**P<0.01vsshSmo group.
圖1MTT法檢測沉默Smo基因對HeLa細胞活力的影響
2Smo和Gli1在HeLa細胞中的mRNA水平
在HeLa細胞中檢測沉默Smo基因后Smo 和Gli1的mRNA表達情況。RT-PCR實驗結果顯示轉染48 h和72 h后細胞Smo和Gli1的mRNA水平低于陰性對照組及空白對照組(P<0.05),見圖2。
3Smo和Gli1蛋白在HeLa細胞中的表達
Western blot實驗結果顯示,轉染48 h和72 h后細胞Smo和Gli1蛋白的表達水平較空白對照組和陰性對照組明顯降低(P<0.05),見圖3。Western blot實驗結果與RT-PCR結果一致。
Figure 2. The mRNA expression of Smo and Gli1 in human cervical cancer HeLa cells after transfection. Mean±SD.n=3.*P<0.05vsscrambled group.
圖2轉染HeLa細胞后Smo和Gli1的mRNA表達
Figure 3. The protein expression of Smo and Gli1 in human cervical cancer HeLa cells after transfection was analyzed by Western blot. Each lane contains 30 μg protein extract from the cancer cells. Mean±SD.n=3.*P<0.05vsscrambled group.
圖3轉染后HeLa細胞Smo和Gli1蛋白的表達
4沉默Smo基因對HeLa細胞周期的影響
流式細胞術結果顯示,轉染72 h后shSmo組的G0/G1期細胞比例顯著高于scrambled組(P<0.05),S期和G2/M期的細胞比例,均顯著低于scrambled組(P<0.05),見圖4。
Figure 4. The effect ofSmogene silencing on cell cycle of HeLa cells analyzed by flow cytometry. Mean±SD.n=3.*P<0.05vsscrambled group.
圖4流式細胞術檢測沉默Smo基因對HeLa細胞周期的影響
5沉默Smo基因對HeLa細胞凋亡的影響
流式細胞術分析結果顯示,HeLa細胞轉染SmoshRNA 72 h 后凋亡率為20.31%,顯著高于scrambled組(P<0.01)。證實轉染SmoshRNA 72 h可以促進HeLa細胞凋亡,見圖5。
Figure 5. The effect ofSmogene silencing on the apoptosis of HeLa cells analyzed by flow cytometry. Mean±SD.n=3.**P<0.01vsscrambled group.
圖5流式細胞術檢測沉默Smo基因對HeLa細胞凋亡的影響
腫瘤的發(fā)生發(fā)展是多因素作用、多基因參與和多階段調(diào)控的過程,同時也是細胞增殖分化與細胞凋亡平衡失調(diào)的過程。癌基因的激活或者抑癌基因的失活以及其它相關調(diào)節(jié)基因的突變均在蛋白水平上起作用。Hedgehog信號通路是人類胚胎發(fā)育過程中調(diào)控細胞增殖和組織分化的重要信號通路,近來研究發(fā)現(xiàn)Hedgehog信號通路在腫瘤的發(fā)生過程中同樣發(fā)揮著重要作用[13]。Smo蛋白是由1 024個氨基酸組成,起著G蛋白偶聯(lián)受體的作用[14]。Smo蛋白具有1個細胞內(nèi)羧基末端結構域、1個細胞外氨基末端結構域和7個疏水跨膜結構域[15-16]。當沒有Hh蛋白時,受體蛋白Ptch抑制Smo蛋白的活性,從而阻斷Hh信號通路;當有Hh蛋白時,Hh與Ptch蛋白結合,除去Smo蛋白的抑制,甚至激活的Smo蛋白可以將細胞外Hh信號轉化成細胞內(nèi)Gli信號,然后激活Hh相關蛋白的表達,包括Hhip、Ptch、Gli1、cyclin D、Myc、Bmi1、Bcl-2和VEGF等[17]。 Hh信號轉導途徑近年來在惡性腫瘤的基因治療研究中得到關注。相關研究結果表明,采用siRNA抑制胃癌MGC803細胞、乳腺癌MCF-7細胞、肝癌Huh-7細胞和胰腺癌PANC-1細胞的Smo和Gli1表達,可抑制腫瘤細胞增殖,誘導細胞凋亡[18-19],并提高細胞對化療藥物的敏感性,因此Smo可能是腫瘤基因治療的有效靶點[20-21]。
本研究中我們發(fā)現(xiàn)SmoshRNA作用于人宮頸癌HeLa細胞可降低其下游轉錄因子Gli1的蛋白和mRNA表達水平。SmoshRNA可有效抑制HeLa細胞的活力并誘導其凋亡。研究發(fā)現(xiàn),在Sonic hedgehog信號通路中,Smo蛋白作為激動因子激活Gli1蛋白,Gli1蛋白作為轉錄因子啟動下游相關基因,共同促進該通路的活化。通過對這2種蛋白相關性的研究發(fā)現(xiàn)Smo蛋白和Gli1蛋白表達呈正相關,推測癌癥發(fā)生過程中的Sonic hedgehog信號通路異常激活可能是通過Smo蛋白高表達上調(diào)下游轉錄因子Gli1蛋白的表達參與癌癥發(fā)生的[16]。目前關于在宮頸癌中Smo蛋白和Gli1蛋白表達之間是否存在調(diào)節(jié)機制尚未見文獻報道,因此我們在研究Smo的同時檢測了Gli1蛋白在宮頸癌HeLa細胞中的表達情況。實驗結果顯示,運用Smo特異性shRNA轉染宮頸癌HeLa細胞能有效降低Smo的表達,同時Gli1的表達也隨之降低,提示Smo可能通過Sonic hedgehog信號通路調(diào)控Gli1的表達。Smo在宮頸癌細胞的生長和凋亡中起重要作用,檢測Smo和Gli1蛋白表達可能為臨床診斷和治療宮頸癌提供參考依據(jù)。目前針對Hh信號通路在腫瘤發(fā)生發(fā)展中作用的研究還很局限,下一步我們將將針對Hh在腫瘤侵襲和轉移中的功能以及與其它信號通路如Notch、WNT和TGF-β等的聯(lián)系方面做進一步研究[22]。
[1] Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009[J]. CA Cancer J Clin, 2009, 59(4):225-249.
[2] Waggoner SE. Cervical cancer[J]. Lancet, 2003, 361(9376):2217-2225.
[3] Moore DH, Blessing JA, McQuellon RP, et al. Phase III study of cisplatin with or without paclitaxel in stage IVB, recurrent, or persistent squamous cell carcinoma of the cervix: a gynecologic oncology group study[J]. J Clin Oncol, 2004, 22(15):3113-3119.
[4] Kunos C, Deng W, Dawson D, et al. A phase I-II evaluation of veliparib (NSC #737664), topotecan, and filgrastim or pegfilgrastim in the treatment of persistent or recurrent carcinoma of the uterine cervix: an NRG Oncology/Gynecologic Oncology Group study[J]. Int J Gynecol Cancer, 2015, 25(3):484-492.
[5] Albers P, Siener R, Krege S, et al. Randomized phase III trial comparing retroperitoneal lymph node dissection with one course of bleomycin, etoposide, cisplatin (BEP) chemotherapy in patients with stage I nonseminomatous testicular germ cell tumors patients (NSGCT)-updated results of AUO trial 01/94[J]. J Clin Oncol, 2008, 26(18):2966-2972.
[6] Monk BJ, Sill MW, Burger RA, et al. Phase II trial of bevacizumab in the treatment of persistent or recurrent squamous cell carcinoma of the cervix: a gynecologic oncology group study[J]. J Clin Oncol, 2009, 27(7):1069-1074.
[7] Goncalves A, Fabbro M, Lhommé C, et al. A phase II trial to evaluate gefitinib as second- or third-line treatment in patients with recurring locoregionally advanced or metastatic cervical cancer[J]. Gynecol Oncol, 2008, 108(1):42-46.
[8] Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles[J]. Genes Dev, 2001, 15(23):3059-3087.
[9] Wu F, Zhang Y, Sun B, et al. Hedgehog signaling: from basic biology to cancer therapy[J]. Cell Chem Biol, 2017, 24(3):252-280.
[10] Xiao X, Tang JJ, Peng C, et al. Cholesterol modification of Smoothened is required for Hedgehog signaling[J]. Mol Cell, 2017, 66(1):154-162.
[11] Agyeman A, Mazumdar T, Houghton JA. Regulation of DNA damage following termination of Hedgehog (HH) survival signaling at the level of the GLI genes in human colon cancer[J]. Oncotarget, 2012, 3(8):854-868.
[12] Hui W, Kuisheng C, Hongxin Z, et al. Influence of smoothened siRNA on human esophageal cancer cell line EC9706 proliferation and apoptosis[J]. Pak J Pharm Sci, 2014, 27(5 Suppl):1661-1667.
[13] Rimkus TK, Carpenter RL, Qasem S, et al. Targeting the Sonic Hedgehog signaling pathway: review of smoothened and GLI inhibitors[J]. Cancers (Basel), 2016, 8(2): E22.
[14] 袁 磊, 陳旭東, 范文娟, 等. 沉默Notch1基因促進人乳腺癌MCF-7細胞JNK1和p53磷酸化[J]. 中國病理生理雜志,2013, 29(6):1014-1019.
[15] 袁 磊, 李伯和, 時冉冉, 等. 沉默JAG1基因對人乳腺癌MDA-MB-231細胞增殖和凋亡的影響[J]. 中國病理生理雜志,2014,30(2):262-267.
[16] Zhao L, Yu Y, Deng C. Protein and mRNA expression of Shh, Smo and Gli1 and inhibition by cyclopamine in hepatocytes of rats with chronic fluorosis[J]. Toxicol Lett, 2014, 225(2):318-324.
[17] Zhu SL, Luo MQ, Peng WX, et al. Sonic hedgehog signalling pathway regulates apoptosis through Smo protein in human umbilical vein endothelial cells[J]. Rheumatology, 2015, 54(6):1093-1102.
[18] Huang S, Yang L, An Y, et al. Expression of hedgehog signaling molecules in lung cancer[J]. Acta Histochem, 2011, 113(5):564-569.
[19] Wang XD, Inzunza H, Chang H, et al. Mutations in the hedgehog pathway genes SMO and PTCH1 in human gastric tumors[J]. PLoS One, 2013, 8(1):e54415.
[20] Karhadkar SS, Bova GS, Abdallah N, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis[J]. Nature, 2004, 431(7009):707-712.
[21] Lv X, Fu L, Zhao Y. aPKC I/λ: a potential target for the therapy of Hh-dependent and Smo-inhibitor-resistant advanced BCC[J]. Acta Biochim Biophys Sin (Shanghai), 2013, 45(7):610-611.
[22] Edeling M, Ragi G, Huang S, et al. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog[J]. Nat Rev Nephrol, 2016, 12(7):426-439.
(責任編輯: 陳妙玲, 余小慧)
Effects of Smo gene silencing on cell activity and apoptosis of human cervical carcinoma HeLa cells
SONG Ling1, ZHOU Qiang2, LI Na1, YU Jie1, LI Yang1, ZHANG Chi1
(1ShangqiuMedicalCollege,Shangqiu476100,China;2ZhengzhouChildren’sHospital,Zhengzhou450052,China.E-mail: 13937095548@163.com)
AIM: To investigate the effect of Hedgehog (Hh) signaling pathway on the viability and apoptosis of cervical carcinoma cells by shRNA technique to knock downSmoothened(Smo) gene.METHODSSmoshRNA was used to transfect the cervical carcinoma HeLa cells. The expression of Smo and Gli1 at mRNA and protein levels in the HeLa cells was determined by RT-PCR and Western blot, respectively. The effect ofSmogene silencing on the growth of the cells was measured by MTT assay. The apoptosis and cell cycle were determined by flow cytometry.RESULTSCompared with control group, the mRNA and protein expression of Smo and Gli1 were evenly reduced obviously after transfected withSmoshRNA for 72 h (P<0.05). The viability of HeLa cells transfected withSmoshRNA was significantly inhibited. The percentages of the cells in G0/G1phase and early apoptosis rate were obviously higher inSmoshRNA transfection group than those in control group.CONCLUSIONSmogene silencing effectively inhibits the cell growth and induces the apoptosis of human cervical carcinoma cells.
Smogene; Cervical carcinoma; RNA interference; Apoptosis
1000- 4718(2017)11- 2015- 05
2017- 05- 02
2017- 07- 17
商丘市科技發(fā)展計劃(No. 143008)
△通訊作者 Tel: 0370-3251978; E-mail: 13937095548@163.com
R737.9; R363
A
10.3969/j.issn.1000- 4718.2017.11.015