戴作科+董新漢
摘 要 設(shè)Ω和G都是邊界局部連通的有界單連通區(qū)域,假設(shè)f是Ω到G的解析逆緊映射. 通過將單連通區(qū)域提升至單位圓盤,本文得到了G的邊界點(diǎn)的分支數(shù)和其逆象點(diǎn)分支數(shù)之間的等式關(guān)系,并討論了f的拓?fù)涠群湍嫦簏c(diǎn)個數(shù)之間的不等式關(guān)系.
關(guān)鍵詞 割點(diǎn);拓?fù)涠?;分支?shù)
中圖分類號 G420; O174.5 文獻(xiàn)標(biāo)識碼 A 文章編號 1000-2537(2017)05-0077-03
Topological Degree of Proper Holomorphic Mapping on Bounded Simply Connected Domains
DAI Zuo-ke, DONG Xin-han
(College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China)
Abstract Letting Ω and G be two simply connected domains with locally connected boundary, letting f be a proper holomorphic mapping from Ω onto G, and lifting Ω and G onto unit discs, in this work, we have obtained the equality relationship between component numbers of the point on G and those of its different inverse image points on G. The inequality relationship between the topological degree of f and the number of the different inverse image points is also obtained and discussed.
Key words cut point; topological degree; component number
假設(shè)X和Y是兩個拓?fù)淇臻g,令Ω和G分別為X和Y中的兩個子集,f:Ω→G為一個連續(xù)映射,如果G中每個緊子集的逆象集都是Ω中的緊集,則稱f是Ω到G的逆緊映射[1]. 在分形幾何與復(fù)分析的交叉研究中[2-6],Cantor邊界性質(zhì)的專題研究必須借助全純逆緊映射的性質(zhì). 對一般解析函數(shù)(非逆緊),其定義域邊界的象集分全平面C為若干個連通分支,則相關(guān)連通分支的個數(shù)、拓?fù)涠群团袆e點(diǎn)個數(shù)又緊密聯(lián)系著. 著名的Riemann-Hurwitz公式闡述了這個聯(lián)系[7]. 為了更深入揭示Cantor邊界性質(zhì)中Cantor集C的性質(zhì),我們需要邊界上割點(diǎn)的重數(shù)[8]和連通分支上的拓?fù)涠戎g的聯(lián)系. 本文的目的就是刻畫這種聯(lián)系,至于它的應(yīng)用我們將另文給出.
多于一點(diǎn)的連通緊集稱為連續(xù)統(tǒng),它包含有不可數(shù)多個點(diǎn). 令E為一個局部連通的連續(xù)統(tǒng),對于a∈E,如果E\{a}不連通,則稱a為E的割點(diǎn)[8]. 令Ω為一個有界的區(qū)域,記由在Ω上解析且在上連續(xù)的函數(shù)構(gòu)成的空間為A(Ω),賦予上確界范數(shù),A(Ω)是一個Banach空間. 對于FΩ,記方程f(z)=w在F中的根的個數(shù)為nf(w,F(xiàn)),根的個數(shù)按重數(shù)計算.
參考文獻(xiàn):
[1] RUDIN W. Function theory in the unit ball of Cn [M]. New York: Springer Verlag, 1980.
[2] DONG X H, LAU K S. Cantor boundary behavior of analytic functions. Recent development in fractals and related fields[J]. Birkhuser, 2010,232(1):283-294.
[3] DONG X H, LAU K S, LIU J C. Cantor boundary behavior of analytic functions[J]. Adv Math, 2013,232(1):543-570.
[4] DONG X H, LAU K S, WU H H. Cauchy transform of self-similar measures: Starlikeness and univalence[J]. Trans Am Math Soc, 2017,369(7):4817-4842.
[5] DONG X H, LAU K S. Cauchy transforms of self-similar measures: the Laurent coefficients[J]. J Funct Anal, 2003,202(1):67-97.
[6] DONG X H, LAU K S. An integral related to the Cauchy transform on the Sierpinski gasket[J]. Exp Math, 2004,13(4):415-419.
[7] TEINMETZ N S. The formula of Riemann-Hurwitz and iteration of rational functions[J]. Complex Variables Theory Appl, 1993,22(3):203-206.
[8] POMMERENKE C. Boundary behaviour of conformal maps [M]. New York:Springer Verlag, 1992.endprint