• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      隔溝灌溉下水肥供應(yīng)頻率對(duì)芥菜生理與鎘富集特性影響

      2017-12-05 06:07:08李轉(zhuǎn)玲李培嶺黃國(guó)勤
      關(guān)鍵詞:芥菜水肥根部

      李轉(zhuǎn)玲 李培嶺 黃國(guó)勤 燕 輝

      (1.江西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院, 南昌 330045; 2.江西青年職業(yè)學(xué)院經(jīng)濟(jì)管理系, 南昌 330045;3.江西農(nóng)業(yè)大學(xué)國(guó)土資源與環(huán)境學(xué)院, 南昌 330045)

      隔溝灌溉下水肥供應(yīng)頻率對(duì)芥菜生理與鎘富集特性影響

      李轉(zhuǎn)玲1,2李培嶺3黃國(guó)勤1燕 輝3

      (1.江西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院, 南昌 330045; 2.江西青年職業(yè)學(xué)院經(jīng)濟(jì)管理系, 南昌 330045;3.江西農(nóng)業(yè)大學(xué)國(guó)土資源與環(huán)境學(xué)院, 南昌 330045)

      研究隔溝灌溉下芥菜生物量及重金屬富集與轉(zhuǎn)移特性,對(duì)土壤重金屬污染植物修復(fù)具有重要作用。試驗(yàn)于2014年3月—2015年11月實(shí)施,設(shè)置灌水頻率(I3、I4、I5分別為灌水3、4、5次,灌溉總量為0.15 m)及追肥頻率(基肥0.74 g/m3,施肥總量1.3 g/m3,追肥次數(shù)F0、F1、F2、F3、F4)2因素處理,結(jié)果表明在灌溉頻率影響下,芥菜葉片的超氧化歧化酶活性、脯氨酸隨灌水頻率增加而呈增長(zhǎng),丙二醛呈下降趨勢(shì)。生物量、鎘質(zhì)量比、鎘富集系數(shù)、鎘累積總量I4比I3分別提高12.33%~89.71%、5.00%~44.33%、0.50%~55.36%、22.22%~114.81%;I5比I3提高19.21%~87.37%、24.00%~93.51%、13.44%~112.30%、77.42%~168.75%。其中地上部生物量增幅大于根部,鎘質(zhì)量比、鎘富集系數(shù)和鎘累積總量增幅則根部大于地上部。在施肥頻率影響下生物量、鎘質(zhì)量比、鎘富集系數(shù)和鎘累積總量,高頻施肥(F4)比低頻施肥(F1)分別增長(zhǎng)22.55%~99.71%、30.68%~87.40%、37.80%~112.20%、71.43%~213.51%,且低頻灌溉情況下根部增幅大于地上部,中、高頻率灌溉下地上部大于根部。另外轉(zhuǎn)移系數(shù)隨水肥供應(yīng)頻率增加略有下降,但整體維持較高水平。通過(guò)模型模擬與驗(yàn)證,表明年際間芥菜重金屬修復(fù)能力對(duì)水肥供應(yīng)頻率響應(yīng)趨于一致。

      隔溝灌溉; 水肥供應(yīng)頻率; 芥菜; 鎘富集; 土壤重金屬

      引言

      在土壤重金屬污染植物修復(fù)領(lǐng)域,印度薺菜作為重要的土壤重金屬修復(fù)植物受到國(guó)內(nèi)外廣泛關(guān)注,主要用來(lái)修復(fù)土壤中鎘、鉛和鋅等重金屬污染,已有研究結(jié)果表明印度芥菜具有顯著的重金屬富集特性且修復(fù)效率較高[1],但受土壤水肥環(huán)境影響下印度芥菜生長(zhǎng)發(fā)育受到抑制,進(jìn)而影響土壤重金屬修復(fù)效率,因此改善生育特性是穩(wěn)定和提升修復(fù)效率的關(guān)鍵[1-3],而水肥是影響植物生長(zhǎng)發(fā)育的重要因素,因此水肥調(diào)控理論和技術(shù)對(duì)于土壤重金屬污染植物修復(fù)具有重要意義。目前常規(guī)均勻灌溉和施肥方式,水肥的深層滲漏損失及地表徑流損失問(wèn)題突出,而且容易造成土壤重金屬污染擴(kuò)散[4-6]。已有田間水肥調(diào)控技術(shù)研究表明,采用根區(qū)交替灌溉等方式節(jié)約水資源同時(shí),減少了灌水入滲面積和地表徑流,可顯著降低土壤剖面根區(qū)水分、養(yǎng)分的深層滲漏[7-9],可能有利于控制重金屬污染地表遷移和深層擴(kuò)散。另外現(xiàn)有的水肥供應(yīng)制度下植物根系發(fā)育誘導(dǎo)作用不明顯,且養(yǎng)分與重金屬吸收相互制約問(wèn)題突出,不利于土壤復(fù)合重金屬多植物吸收[10-13];現(xiàn)有水肥調(diào)配制度下植物生理代謝與修復(fù)特性的相互制約問(wèn)題突出,影響植物重金屬轉(zhuǎn)運(yùn)效率和累積能力[14-17]。近年來(lái),隔溝灌溉技術(shù)得到廣泛應(yīng)用和推廣[18],是調(diào)節(jié)大田植物水肥供應(yīng)的重要技術(shù),本文在此基礎(chǔ)上設(shè)置隔溝交替灌溉方式,研究其對(duì)植物生育特性及植物重金屬的富集能力的影響,以期為農(nóng)業(yè)生態(tài)環(huán)境的重金屬污染修復(fù)提供理論依據(jù)和技術(shù)支持。

      1 材料與方法

      1.1 供試材料

      供試植物印度芥菜(B.juncea)購(gòu)自湖北安谷植物科技公司。試驗(yàn)田位于江西農(nóng)業(yè)大學(xué)科技園內(nèi), 園區(qū)內(nèi)農(nóng)作物試驗(yàn)區(qū)約11 hm2,具有完善的灌溉與排水設(shè)施,常年進(jìn)行水稻、棉花、油菜等作物的水肥調(diào)控研究,本試驗(yàn)區(qū)土壤性質(zhì)為:pH 值5.7,有機(jī)質(zhì)3.56%, 全氮質(zhì)量比1.45 g/kg, 堿解氮質(zhì)量比142.3 mg/kg, 有效磷質(zhì)量比12.24 mg/kg, 速效鉀質(zhì)量比154.3 mg/kg。土壤全Cd質(zhì)量比為3.48~4.85 mg/kg,屬于重度污染土壤。

      1.2 試驗(yàn)設(shè)計(jì)

      1.3 測(cè)定項(xiàng)目及方法

      出苗后65 d剪取葉片測(cè)定各生理指標(biāo)。超氧化歧化酶活性采用NBT光化還原法測(cè)定[18];丙二醛含量采用硫代巴比妥酸顯色法測(cè)定[18];脯氨酸的測(cè)定采用磺基水楊酸法[18]。2014、2015年分別于播種后138 d、128 d收獲植物 (地上部和根系)測(cè)定鎘質(zhì)量比; 同時(shí)取土壤樣品, 土樣于室溫風(fēng)干后過(guò)孔徑為0.85 mm篩, 分析有效態(tài)鎘質(zhì)量比。植物鎘含量采用石墨爐原子吸收光譜法檢測(cè),采用富集系數(shù)(植物重金屬含量/土壤中重金屬含量)和轉(zhuǎn)移系數(shù)(地上部重金屬含量/根部重金屬含量)評(píng)價(jià)植物富集土壤重金屬的能力,越大說(shuō)明植物富集重金屬能力與重金屬轉(zhuǎn)移能力越強(qiáng)。

      表1 隔溝灌溉下芥菜水肥供應(yīng)頻率試驗(yàn)方案Tab.1 Experiment scheme of mustard irrigation and fertilizer supply frequency under separate furrow irrigation

      1.4 統(tǒng)計(jì)學(xué)分析

      數(shù)據(jù)取3次重復(fù)的平均值, 用SPSS 11.5軟件分析處理平均值間的差異顯著性。

      1.5 模型構(gòu)建

      本模型將Logistic模型中不以時(shí)間為自變量,而是用灌水量和施肥量作為自變量的一個(gè)函數(shù)來(lái)代替,將灌水量、施肥量對(duì)芥菜生物量、鎘含量、鎘富集系數(shù)和鎘累積總量的影響考慮在內(nèi),方程構(gòu)建為

      (1)

      式中D——模擬指標(biāo)(生物量、重金屬質(zhì)量比、重金屬富集系數(shù)、重金屬累積質(zhì)量)

      以往的繼續(xù)教育資源供給者主要集中于高校繼續(xù)教育部門和政府勞動(dòng)社會(huì)保障部門,但隨著繼續(xù)教育需求者數(shù)量增多、個(gè)性化需求增多,一些行業(yè)企業(yè)、培訓(xùn)機(jī)構(gòu)等亦參與進(jìn)來(lái),呈現(xiàn)出供給者從單一到多元化的趨勢(shì)。

      Dmax——模擬指標(biāo)的最大值

      I——灌水頻率F——施肥頻率

      τ(I,F)=ε+λI+ωF

      則式(1)可寫為

      (2)

      模型模擬采用軟件Sigmaplot 12.5,模型驗(yàn)證中均方根誤差計(jì)算式為

      (3)

      2 結(jié)果與分析

      2.1隔溝灌溉下水肥供應(yīng)頻率對(duì)芥菜生理生態(tài)特性的調(diào)節(jié)作用

      通過(guò)隔溝灌溉調(diào)節(jié)植物生理指標(biāo)和發(fā)育特性,為植物重金屬高效轉(zhuǎn)移與累積奠定生理基礎(chǔ)。本試驗(yàn)中芥菜葉片的超氧化歧化酶活性、脯氨酸質(zhì)量比隨灌水頻率增加而增長(zhǎng),丙二醛呈顯著下降趨勢(shì)(表2),表明增加灌溉頻率提高了芥菜抗氧化系統(tǒng)能力,有利于根部重金屬吸收、地上部重金屬轉(zhuǎn)移和累積。在灌溉頻率影響下,芥菜發(fā)育特性隨灌溉頻率增加而顯著改善,生物量I4相比I3地上部、根部分別提高12.33%~89.71%、22.70%~50.41%,I5比I3地上部、根部分別提高35.65%~78.35%、19.21%~87.37%(圖1),可見生物量累積顯著提高,為芥菜重金屬轉(zhuǎn)運(yùn)載體形成奠定基礎(chǔ)。

      在施肥頻率影響下,芥菜葉片生理指標(biāo)對(duì)施肥頻率響應(yīng)不顯著,芥菜葉片超氧化歧化酶、脯氨酸質(zhì)量比和丙二醛總體生理指標(biāo)差異較小(表2)。但芥菜生物量同一灌水頻率下相比F0,由F1、F2、F3和F4地上部增長(zhǎng)為22.55%~99.71%,根部增長(zhǎng)29.87%~64.75%(圖1),其中低灌水頻率(I3)下肥料肥力釋放效應(yīng)有限,養(yǎng)分主要滿足芥菜根部發(fā)育需求,因此根部增幅大于地上部;隨著灌水頻率增長(zhǎng)肥料肥力釋放效應(yīng)越明顯,在中(I4)、高(I5)灌水頻率下則地上部增幅大于根部,有利于地上部重金屬轉(zhuǎn)運(yùn)載體形成。圖中差異顯著性水平小寫英文字母為地上部,大寫字母為根部(Plt;0.05)(下同)。

      表2 隔溝灌溉下水肥供應(yīng)頻率對(duì)芥菜的葉片生理指標(biāo)影響Tab.2 Effect of irrigation and fertilizer supply frequency on mustard leaf physiological indicators

      注:同列不同小寫字母表示差異顯著性水平Plt;0.05。

      圖1 隔溝灌溉下灌溉和施肥頻率對(duì)芥菜的生物量影響Fig.1 Effect of irrigation and fertilization frequency under separate furrow irrigation on mustard biomass

      由于2015年芥菜快速生育期連續(xù)陰天數(shù)較多,葉片超氧化歧化酶、脯氨酸質(zhì)量比比2014年略有降低,而丙二醛略有升高,且生物量比2014年略有降低,對(duì)芥菜重金屬轉(zhuǎn)運(yùn)與累積有顯著影響。

      2.2隔溝灌溉下芥菜鎘質(zhì)量比與富集系數(shù)對(duì)水肥供應(yīng)頻率的響應(yīng)

      重金屬質(zhì)量比與富集系數(shù)是反映植物重金屬累積潛力,已有研究結(jié)果表明利用隔溝灌溉能夠誘導(dǎo)植物根系水平和深層延伸,進(jìn)而改善根系與土壤重金屬接觸表面積。由表3可知,本試驗(yàn)中隨灌水頻率增加,根部鎘吸收和富集特性均顯著提升,根部鎘質(zhì)量比、富集系數(shù)I4比I3分別提高5.00%~44.33%、0.5%~55.36%,I5比I3分別提高49.78%~93.51%、57.53%~112.30%。另外地上部鎘富集特性也得到顯著改善,地上部鎘質(zhì)量比、富集系數(shù)I4比I3分別提高5.00%~23.96%、5.18%~35.50%,I5比I3分別提高24.00%~48.40%、13.44%~63.88%,表明增加灌溉頻率有利于重金屬吸收和轉(zhuǎn)運(yùn)特性提升。

      隔溝灌溉有利于肥料肥力釋放,本試驗(yàn)中增加施肥頻率能夠通過(guò)養(yǎng)分促進(jìn)重金屬轉(zhuǎn)運(yùn)與累積,由F1到F4地上部、根部的鎘質(zhì)量比分別提高30.68%~58.26%、36.82%~87.40%,富集系數(shù)分別提高40.73%~79.22%、37.80%~112.20%,而且灌溉頻率越高情況下根部鎘質(zhì)量比、富集系數(shù)由F1到F4增幅越大,說(shuō)明施肥頻率對(duì)芥菜重金屬富集特性具有顯著調(diào)節(jié)作用。在2015年連續(xù)陰天數(shù)較多情況下芥菜根部重金屬離子滲透作用下降,致使重金屬質(zhì)量比與富集系數(shù)比2014年略有偏低。

      2.3隔溝灌溉下水肥供應(yīng)頻率對(duì)芥菜重金屬累積與轉(zhuǎn)移特性影響

      鎘累積總量與轉(zhuǎn)移系數(shù)是反映芥菜修復(fù)能力重要指標(biāo),由于隔溝灌溉提高了植物根部吸收性能和水分轉(zhuǎn)運(yùn)效率,可能有利于植物重金屬由根部至地上部轉(zhuǎn)移。由圖2可知,本試驗(yàn)中增加灌溉頻率促進(jìn)了芥菜重金屬高效轉(zhuǎn)移與累積,其中地上部鎘累積總量I4比I3、I5比I3分別提高25.71%~114.81%、77.42%~140.00%,根部鎘累積總量I4比I3、 I5比I3分別提高22.22%~106.25%、87.5%~168.75%,另外根部鎘累積量的增幅大于地上部,使得轉(zhuǎn)移系數(shù)I4比I3以及I5比I3下降0~32.99%,但總體轉(zhuǎn)移系數(shù)維持較高水平。

      表3 隔溝灌溉下水肥供應(yīng)頻率對(duì)芥菜鎘的質(zhì)量分?jǐn)?shù)及富集系數(shù)影響Tab.3 Effect of irrigation and fertilizer supply frequency on Cd mass fraction and enrichment coefficientunder separate irrigation

      圖2 灌溉與施肥頻率影響下芥菜鎘累積總量及轉(zhuǎn)移系數(shù)Fig.2 Mustard cadmium accumulation amount and transfer coefficient under influence of irrigation and fertilization frequency

      隔溝灌溉下增加施肥頻率有利于肥料肥力釋放,促進(jìn)重金屬累積載體形成, 其中F4比F1處理的鎘累積總量地上部和根部分別提高71.43%~213.51%、89.47%~181.81%,可見根部和地上部鎘累積總量整體顯著提升。另外轉(zhuǎn)移系數(shù)低灌溉頻率(I3)情況下隨施肥頻率增加(F4相比F1)提高4.55%~5.81%,而I4和I5情況下轉(zhuǎn)移系數(shù)下降11.63%~19.32%,但整體維持較高水平。由于2015年連續(xù)陰雨天數(shù)較多影響了肥料肥力釋放,致使芥菜重金屬累積水平比2014年略有下降。

      2.4隔溝灌溉下芥菜生物量與鎘累積對(duì)水肥供應(yīng)頻率響應(yīng)模擬

      芥菜生物量、鎘質(zhì)量比、鎘富集系數(shù)和鎘累積量等指標(biāo)整體上反映了重金屬修復(fù)能力,本文利用2014年試驗(yàn)結(jié)果建立芥菜重金屬修復(fù)能力模型,再利用2015年試驗(yàn)結(jié)果進(jìn)行模型驗(yàn)證,分析年際間芥菜修復(fù)能力的差異性。模型系數(shù)回歸值和擬合度檢驗(yàn)(表4)表明模型擬合度相對(duì)較好。2015年度模型試驗(yàn)驗(yàn)證(圖3)得出決定系數(shù)R2在0.739~0.922之間,可見年際間芥菜生物量及重金屬累積特性對(duì)水肥供應(yīng)頻率的響應(yīng)趨于一致,同時(shí)表明隔溝灌溉下芥菜生育與鎘修復(fù)能力對(duì)水肥供應(yīng)頻率響應(yīng)較為敏感,是土壤重金屬植物修復(fù)技術(shù)調(diào)控的重要措施。

      表4 生物量響應(yīng)模型的回歸系數(shù)和擬合度檢驗(yàn)Tab.4 Biomass response model of regression coefficient value and goodness of fit tests

      注:ε、λ、ω分別為模型式(2)的系數(shù)。

      圖3 芥菜生物量及重金屬累積特性的模型驗(yàn)證Fig.3 Model validation of mustard biomass and heavy metal accumulation characteristics

      3 討論

      3.1 芥菜生理特性和生物量累積的變化規(guī)律

      隔溝灌溉利用根系的干旱-復(fù)水-干旱的鍛煉,能夠刺激根系活性,提高根系吸收能力[6-9]。芥菜根系發(fā)育需要提高抗氧化酶防御系統(tǒng)能力,抑制自由基對(duì)細(xì)胞膜結(jié)構(gòu)和功能的影響[19-22],從而有效改善根部生育特性,降低重金屬對(duì)芥菜生長(zhǎng)發(fā)育的抑制作用,提高關(guān)鍵期的生物量累積,為芥菜重金屬修復(fù)奠定生理基礎(chǔ)。試驗(yàn)結(jié)果表明,增加灌溉頻率顯著改善芥菜抗氧化生理指標(biāo),并通過(guò)灌溉與施肥頻率增加顯著提升生物量,實(shí)現(xiàn)了芥菜生理調(diào)節(jié)及生物量高效累積的目的。相比國(guó)內(nèi)外相關(guān)研究試驗(yàn)[23-25],本試驗(yàn)通過(guò)相對(duì)較少的灌水量與施肥量實(shí)現(xiàn)了芥菜生物量高效累積,盡管芥菜出苗后連續(xù)陰天數(shù)2015年比2014年增多,隔溝灌溉下植物生理的水分調(diào)節(jié)作用下降,但芥菜生理指標(biāo)變化規(guī)律基本相同,生物量增幅未有明顯下降。

      3.2 芥菜重金屬富集與轉(zhuǎn)移特性變化規(guī)律

      土壤重金屬污染植物修復(fù)是以提高重金屬質(zhì)量分?jǐn)?shù)以及富集系數(shù)、轉(zhuǎn)移系數(shù)和累積總量為技術(shù)要點(diǎn)[26-28]。已有研究結(jié)果表明改善根系相關(guān)酶活性以及降低根部pH值,能夠?yàn)橹亟饘匐x子的轉(zhuǎn)移與吸收奠定基礎(chǔ)[29-30]。首先通過(guò)隔溝灌溉方式誘導(dǎo)植物根系水平和深層延伸[8-9],改善根系與土壤重金屬接觸表面積,進(jìn)一步有效滲透與高效提取重金屬,結(jié)果表明根部鎘質(zhì)量比、富集系數(shù)以及累積總量均隨灌溉頻率及施肥頻率增加而顯著增長(zhǎng),實(shí)現(xiàn)了芥菜重金屬高效修復(fù)的基礎(chǔ)目標(biāo)。第二,超富集植物根部與根毛的營(yíng)養(yǎng)成分的短程轉(zhuǎn)運(yùn)系統(tǒng)需要很多內(nèi)在的載體[27,30],這些轉(zhuǎn)運(yùn)營(yíng)養(yǎng)成分的載體也可轉(zhuǎn)運(yùn)重金屬離子,隔溝灌溉提高了根部營(yíng)養(yǎng)成分的轉(zhuǎn)移效率,為重金屬載體形成提供了養(yǎng)分基礎(chǔ),并通過(guò)較高的水分利用效率促進(jìn)重金屬由根部至地上部的轉(zhuǎn)移,從而有助于超富集植物積累較高濃度的重金屬,相比國(guó)內(nèi)外相關(guān)研究結(jié)果,植物重金屬質(zhì)量分?jǐn)?shù)和重金屬累積總量均有顯著提升[10,19,26]。本試驗(yàn)期間2015年比2014年連續(xù)陰雨天數(shù)增多,隔溝灌溉方式的水分調(diào)控作用下降,致使芥菜重金屬質(zhì)量分?jǐn)?shù)與富集系數(shù)略有下降,但隨水肥頻率影響的變化規(guī)律相同,因此芥菜修復(fù)能力仍然維持較高水平。

      3.3 芥菜生物量及重金屬累積特性的模型模擬

      土壤重金屬植物修復(fù)的相關(guān)模型較少,依賴水肥供應(yīng)的模型尚未深入開展研究,本文在Logistic模型基礎(chǔ)上引入灌水頻率和施肥頻率作為影響因子,以2014年試驗(yàn)數(shù)據(jù)進(jìn)行了芥菜的生物量、鎘質(zhì)量比、鎘富集系數(shù)及鎘累積總量的模擬,以及模型系數(shù)回歸值和擬合度檢驗(yàn),通過(guò)2015年數(shù)據(jù)進(jìn)行模型驗(yàn)證,結(jié)果表明模型擬合度相對(duì)較好,能夠一定程度反映隔溝灌溉下水肥供應(yīng)頻率對(duì)芥菜生物量和重金屬富集特性的影響,為芥菜修復(fù)土壤重金屬提供理論與技術(shù)支持。

      4 結(jié)束語(yǔ)

      隔溝灌溉下水肥供應(yīng)頻率對(duì)芥菜具有顯著的生理調(diào)節(jié)作用,增加灌溉與施肥頻率有利于地上部及根部生物量累積。通過(guò)隔溝灌溉方式下水肥供應(yīng)頻率誘導(dǎo)提高了芥菜根系重金屬質(zhì)量比、富集系數(shù)和累積總量,并利用水肥供應(yīng)頻率增加為重金屬轉(zhuǎn)運(yùn)載體形成與轉(zhuǎn)移提供了動(dòng)力,進(jìn)而維持較高的重金屬轉(zhuǎn)移系數(shù),實(shí)現(xiàn)了土壤重金屬芥菜修復(fù)特性的顯著提升。

      1 WILLSCHER S, JABLONSKI L, FONA Z, et al. Phytoremediation experiments withHelianthustuberosusunder different pH and heavy metal soil concentrations[J]. Hydrometallurgy, 2017, 168:153-158.

      2 SEBASTIAN W, DANIEL B, ANNA K, et al. Phytoremediation as an effective method to remove heavy metals from contaminated area-TG/FT-IR analysis results of the gasification of heavy metal contaminated energy crops[J]. Journal of the Energy Institute, 2017, 90(3):408-417.

      3 ARITZ B, LUR E, FERNANDO B, et al. Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil[J].Science of the Total Environment, 2017, 584-585:329-338.

      4 JUAN M M L, MARA J, SARA M, et al. Evaluation of the potential ofAtriplexhalimusstem cuttings for phytoremediation of metal-polluted soils[J].Ecological Engineering, 2016,97: 553-557.

      5 HAFIZ M T, SHAFAQAT A, MUHAMMAD R, et al. Phytoremediation of heavy metals byAlternantherabettzickiana: growth and physiological response[J]. Ecotoxicology and Environmental Safety, 2016, 126:138-146.

      6 KHOKAN K, AKANDA M, BISWAS S, et al. Field performance of alternate wetting and drying furrow irrigation on tomato crop growth, yield, water use efficiency, quality and profitability[J].Journal of Integrative Agriculture, 2016, 15 (10):2380-2392.

      7 XIAO Yu, ZHANG Jing, JIA Tingting, et al. Effects of alternate furrow irrigation on the biomass and quality of alfalfa (Medicagosativa)[J].Agricultural Water Management, 2015, 161:147-154.

      8 SIYAL A A, MASHORI A S, BRISTOW K L, et al. Alternate furrow irrigation can radically improve water productivity of okra[J].Agricultural Water Management, 2016, 173:55-60.

      9 KIDANE W, HINTSA L. Effect of different furrow and plant spacing on yield and water use efficiency of maize[J]. Agricultural Water Management, 2016, 177: 215-220.

      10 NAVARRO-TORRE S, MATEOS-NARANJO E, CAVIEDES M A, et al. Isolation of plant-growth-promoting and metal-resistant cultivable bacteria fromArthrocnemummacrostachyumin theOdielmarsheswith potential use in phytoremediation[J]. Marine Pollution Bulletin, 2016,110(1): 133-142.

      11 LIAO Changjun, XU Wending, LU Guoning, et al. Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zeamays. L)[J]. Ecological Engineering, 2016, 92: 10-17.

      12 HECKENROTH A, RABIER J, DUTOIT T, et al. Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: tools for a non-destructive and integrative approach[J].Journal of Environmental Management, 2016,183(3):850-863.

      13 CHILUNDO M, JOEL A, WESSTR?M I, et al. Response of maize root growth to irrigation and nitrogen management strategies in semi-arid loamy sandy soil[J]. Field Crops Research, 2017, 200:143-162.

      14 MANI D, KUMAR C, KUMAR P. Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils usingGladiolusgrandiflorusL. cut flower[J].Ecotoxicology and Environmental Safety, 2016, 124:435-446.

      15 ULLAH A, SUN Heng, MUHAMMAD F, et al Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review[J]. Environmental and Experimental Botany, 2015, 117:28-40.

      16 XI Mao, HAN Fengxiang, SHAO Xiaohou, et al. Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil[J]. Ecotoxicology and Environmental Safety, 2016, 125:16-24.

      17 BAUDDH K, SINGH K, SINGH B, et al. Ricinus communis: a robust plant for bio-energy and phytoremediation of toxic metals from contaminated soil [J]. Ecological Engineering, 2015, 84:640-652.

      18 ZHANG Zengqiang, WANG J, TANG Cilai, et al. Heavy metals and metalloids content and enrichment in Gulf Coast sediments in the vicinity of an oil refinery[J].Journal of Geochemical Exploration, 2015, 159:93-100.

      19 BALDANTONI D, CICATELLI A, BELLINO A, et al. Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements[J]. Journal of Environmental Management, 2014, 146: 94-99.

      20 ZHU Chuanyong, TIAN Hezhong, CHENG Ke, et al. Potentials of whole process control of heavy metals emissions from coal-fired power plants in China[J]. Journal of Cleaner Production, 2016, 114: 343-351.

      21 GALAL T M, SHEHATA H S. Bioaccumulation and translocation of heavy metals byPlantagomajorL. grown in contaminated soils under the effect of traffic pollution[J]. Ecological Indicators, 2015, 48: 244-251.

      22 張秋霞,張合兵,張會(huì)娟,等.糧食主產(chǎn)區(qū)耕地土壤重金屬高光譜綜合反演模型[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(3):148-155.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20170319amp;flag=1amp;journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2017.03.019.

      ZHANG Qiuxia, ZHANG Hebing, ZHANG Huijuan, et al. Hybrid inversion model of heavy metals with hyperspectral reflectance in cultivated soils of main grain producing areas[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2017,48(3):148-155. (in Chinese)

      23 龐妍,同延安,梁連友,等.污灌農(nóng)田土壤-作物體系重金屬污染評(píng)價(jià)[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(1):148-154.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20150122amp;flag=1amp;journal_id=jcsam. DOI:10.6041/j.issn.1000-1298.2015.01.022.

      PANG Yan, TONG Yan’an, LIANG Lianyou, et al. Assessment of heavy metal pollution in soil-crop system on sewage irrigated farmland[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2015,46(1):148-154. (in Chinese)

      24 楊卓,韓德才,李博文. 不同栽培條件下印度芥菜對(duì)重金屬的吸收比較[J]. 環(huán)境科學(xué)研究,2014,27(3): 295-300.

      YANG Zhuo,HAN Decai,LI Bowen.Comparative study of different cultivation conditions on the absorption of heavy metals inBrassicajuncea[J].Research of Environmental Sciences,2014,27(3): 295-300. (in Chinese)

      25 王豹,黃標(biāo),齊雁冰,等.風(fēng)干對(duì)淹水稻田土重金屬形態(tài)及其作物有效性的影響[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(5):89-95.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20130517amp;flag=1amp;journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2013.05.017.

      WANG Bao, HUANG Biao, QI Yanbing, et al. Effect of air drying on speciation and plant availability of heavy metals in flooded rice paddies[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2013,44(5):89-95. (in Chinese)

      26 SUN Zheng, CHEN Jiajun, WANG Xingwei, et al. Heavy metal accumulation in native plants at a metallurgy waste site in rural areas of Northern China[J].Ecological Engineering, 2016, 86: 60-68.

      27 SUN Yuebing, ZHOU Qixing, XU Yingming, et al. Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plantTagetespatula[J]. Journal of Hazardous Materials, 2011, 186(2-3):2075-2082.

      28 DONI S, MACCI C, PERUZZI E, et al. Heavy metal distribution in a sediment phytoremediation system at pilot scale[J].Ecological Engineering, 2015, 81:146-157.

      29 TOPAK R, ACAR B, UYAN?Z R, et al. Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area[J]. Agricultural Water Management, 2016, 176:180-190.

      30 PARVIZI H, SEPASKHAH A R, AHMADI S H. Physiological and growth responses of pomegranate tree (Punicagranatum(L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes[J].Agricultural Water Management, 2016, 163:146-158.

      EffectsofWaterandFertilizerSupplyonPhysiologicalandCadmiumEnrichmentandTransferCharacteristicsofBrassicajunceaunderSeparateFurrowIrrigation

      LI Zhuanling1,2LI Peiling3HUANG Guoqing1YAN Hui3

      (1.AgricultureCollege,JiangxiAgriculturalUniversity,Nanchang330045,China2.DepartmentofEconomicManagement,JiangxiYouthVocationalCollege,Nanchang330045,China3.CollegeofLandResourcesandEnvironment,JiangxiAgriculturalUniversity,Nanchang330045,China)

      Mustard biomass and heavy metal enrichment and transfer characteristic under the separate furrow irrigation was studied, which plays an important role in the phytoremediation of soil heavy metals pollution. The experiment was conducted from March, 2014 through November, 2015, the irrigation frequency (I3, I4 and I5 were irrigated 3, 4 and 5 times, respectively, and the irrigation amount was 0.15 m) and frequency of fertilizer (base fertilizer was 0.74 g/m3, fertilizer amount was 1.3 g/m3, according to water consumption of 0.01 m, according to frequency of F0, F1, F2, F3 and F4) were set up as two factors. Results showed that under the influence of irrigation frequency, mustard leaves of super oxide dismutase (sod) activity and proline were increased with the increase of irrigation frequency, malondialdehyde was on the decline. Biomass, cadmium mass fraction, cadmium enrichment coefficient, cadmium total accumulated amount of cadmium of I4 was increased by 12.33%~89.71%, 5.00%~44.33%, 0.50%~55.36% and 22.22%~114.81%, and those of I5 were increased by 19.21%~87.37%, 24.00%~93.51%,13.44%~112.30% and 77.42%~168.75%, respectively, compared with those of I3. The growth of biomass in the aboveground was greater than that of the root, but the root of the cadmium mass fraction, the cadmium concentration coefficient and the total amount of cadmium accumulation were greater than the ground. In the influence of fertilization frequency, mustard of biomass, cadmium mass fraction, cadmium total cadmium accumulation and cadmium enrichment coefficient under high frequency fertilization (F4) were increased by 22.55%~99.71%, 30.68%~87.40%, 37.80%~112.20% and 71.43%~213.51% than those under low frequency fertilization (F1), respectively, the roots growing rate was greater than the grounds in low frequency irrigation, and the middle and higher frequencies of irrigation the ground was lower than the roots. In addition, the cadmium transfer coefficient was decreased slightly with the increase of supply of water and fertilizer, but the overall maintenance level was high. Through model simulation and verification, the result showed that the ability of mustard heavy metal repair to be consistent with the frequency response of water and fertilizer.

      separate furrow irrigation; water and fertilizer supply frequency; mustard; cadmium enrichment; soil heavy metal

      10.6041/j.issn.1000-1298.2017.11.031

      S278

      A

      1000-1298(2017)11-0253-08

      2017-06-30

      2017-09-08

      國(guó)家自然科學(xué)基金項(xiàng)目(51469008、41661070)、江西省青年科學(xué)基金重點(diǎn)項(xiàng)目(20171ACB21024)、江西省科技計(jì)劃項(xiàng)目(20151BBF60059)和江西農(nóng)業(yè)大學(xué)研究生創(chuàng)新專項(xiàng)資金項(xiàng)目(NDYC2017-B002)

      李轉(zhuǎn)玲(1983—),女,博士生,江西青年職業(yè)學(xué)院講師,主要從事農(nóng)田土壤重金屬污染植物修復(fù)研究,E-mail: 616396687@qq.com

      黃國(guó)勤(1962—),男,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)生態(tài)修復(fù)理論與技術(shù)研究,E-mail: hgqjxnc@sina.com

      猜你喜歡
      芥菜水肥根部
      雅苒致力于推動(dòng)水肥一體化
      “水肥一體”新系統(tǒng) 助力增收有一手
      不同芥菜品種(系)對(duì)鎘脅迫的響應(yīng)
      降低低壓鑄造鋁合金輪轂輻條根部縮孔報(bào)廢率
      “水肥一體化”這么厲害!
      淺談水肥一體化技術(shù)在北方貧困山區(qū)的應(yīng)用與推廣
      根部穿孔性闌尾炎的腹腔鏡治療策略
      膝關(guān)節(jié)內(nèi)側(cè)半月板后根部撕裂的MRI表現(xiàn)
      磁共振成像(2015年9期)2015-12-26 07:20:31
      陰莖根部完全離斷再植成功1例報(bào)告
      種子在黑暗中能發(fā)芽嗎
      南阳市| 勐海县| 正镶白旗| 中山市| 深泽县| 崇仁县| 江陵县| 黎平县| 泸水县| 山丹县| 蕉岭县| 揭西县| 肇东市| 怀远县| 勃利县| 静安区| 梨树县| 秦皇岛市| 栾城县| 米脂县| 屯昌县| 文登市| 锡林浩特市| 镇赉县| 潮安县| 平陆县| 清苑县| 内江市| 黄浦区| 南召县| 钟山县| 昭苏县| 柳林县| 新蔡县| 康保县| 云南省| 南和县| 石城县| 阿拉善左旗| 柘城县| 和顺县|