• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Some Sharp Schwarz Inequalities of the Unit Disk in

      2017-12-16 05:13:14WUKekeCHENWeiTANGXiaomin
      關(guān)鍵詞:邊界點(diǎn)湖州圓盤(pán)

      WU Keke, CHEN Wei, TANG Xiaomin

      (School of Science, Huzhou University, Huzhou 313000, China)

      SomeSharpSchwarzInequalitiesoftheUnitDiskin

      WU Keke, CHEN Wei, TANG Xiaomin

      (School of Science, Huzhou University, Huzhou 313000, China)

      In this paper, we establish a new type of the classical Schwarz lemma for holomorphic functions on the unit disk in, and we also obtain some Schwarz inequalities of the derivative of the holomorphic function at a boundary point of the unit disk. Those results extend the classical inner Schwarz lemma and boundary Schwarz lemma respectively.

      holomorphic function; Schwarz lemma; unit disk; boundary point

      0 Introduction

      The Schwarz lemma is one of the most important results in the classical complex analysis, which has become a crucial theme in many branches of mathematical research for over a hundred years. LetDbe the open unit disk in the complex plane. And let ?Dbe the boundary ofD. The classical Schwarz lemma is stated as follows.

      Theorem1[1]Letf:D→Dbe holomorphic andf(0)=0. Then |f(z)|≤|z| for anyz∈Dand |f′(0)|≤1. Moreover, if |f(z0)|=|z0| for somez0∈D{0} or if |f′(0)|=1, then there is a real numberθsuch thatf(z)=eiθz.

      A great deal of work has been devoted to generalizations of Schwarz lemma to more general settings. We refer to [2-7] for a more complete insight on the Schwarz lemma.

      From the point of view of applications, it has been a very natural task to obtain various versions of the Schwarz lemma at the boundary. There is the following classical boundary Schwarz lemma.

      Theorem2[1]Letf:D→Dbe a holomorphic function. Iffis holomorphic atz=1 withf(0)=0 andf(1)=1, thenf′(1)≥1. Moreover, the inequality is sharp.

      In [8], ?rnek got some sharp forms of the Schwarz lemma on the boundary of the unit disk. Osserman gave the Schwarz lemma at the boundary of the unit disk, and presented some sharp Schwarz inequalities at a boundary point of the unit disk in [9]. One of the typical results, in this paper, is stated as follows.

      Theorem3[9]Letf:D→Dbe a holomorphic function. Iff(z) is holomorphic atz0∈?Dwithf(0)=0 and |f(z0)|=1, then

      Moreover,

      |f′(z0)|≥1.

      (1)

      And the equality holds in (1) if and only iff(z)=zeiθf(wàn)or someθ∈. Furthermore, iff(0)=f′(0)=…=f(n-1)(0)=0, then

      |f′(z0)|≥n.

      (2)

      The equality holds in (2) if and only iff(z)=zneiθf(wàn)or someθ∈.

      Establishing various versions of the Schwarz lemma at the boundary has attracted attentions of many mathematicians. Here we refer the reader to [10-15], as well as, many references therein for discussions related to such studies. Our main purpose here is to establish a new type of the classical Schwarz lemma for holomorphic function on the unit disk, and give the optimal estimates of the derivative of the holomorphic function at a boundary point of the unit disk.

      1 Main results

      We first introduce some notations and definitions, and present the Schwarz lemma for the holomorphic functions on the unit disk.

      Leta∈Dand consider the M?bius mappingφaofDthat interchangesaand 0,

      Theorem4 Letfbe a holomorphic function onDwith |f(z)-b|<1 andf(0)=a, where -1+b

      (3)

      Moreover,

      |f′(0)|≤1-(a-b)2.

      (4)

      The equality in (3) for some nonzeroz∈Dor in (4) holds if and only if

      for someθ∈.

      ProofTakeg(z)=f(z)-band

      for anyz∈D. Thengandφare both holomorphic self-mappings ofDwithφ(0)=0. It follows from Theorem 1 that |φ(z)|≤|z| for eachz∈Dand |φ′(0)|≤1. This implies

      Hence, we obtain

      |f(z)|-a≤|f(z)-a|≤|z||1-(a-b)(f(z)-b)|≤|z|(|1+(a-b)b|+|a-b||f(z)|).

      This gives

      Notice that

      This, together with |φ′(0)|≤1, yields

      Thus, we have

      |f′(0)| ≤1-(a-b)2.

      By Theorem 1, the equality in (3) for some nonzeroz∈Dor in (4) holds if and only if

      whereθ∈. It follows that

      whereθ∈. The proof is complete.

      Now, we give the Schwarz inequality of holomorphic function at a boundary point of the unit disk.

      Theorem5 Letfbe a holomorphic function onDwith |f(z)-b|<1 andf(0)=a, where -1+b

      (5)

      The equality holds in (5) if and only if

      whereθ∈satisfieseiθ=.

      Thus, by the Theorem 3 we get

      |φ′(z0)|≥1.

      (6)

      Since

      (7)

      combine (6) and (7) to obtain

      It follows that

      Notice that

      Then

      [1+(a-b)b]z0eiθ+a= [1+(a-b)z0eiθ](1 +b),

      This yields

      The proof is complete.

      Finally, we consider the Schwarz inequality at a boundary point of the unit disk for the holomorphic function with some special Taylor expansion.

      Theorem6 Letfbe a holomorphic function onD. Suppose thatf(z)=a+cnzn+cn+1zn+1+… and |f(z)-b|<1, wheren≥1,cn≠0, -1+b

      (8)

      The equality holds in (8) if and only if

      whereθ∈satisfieseiθ=.

      bnzn+bn+1zn+1+…,

      wherebn,bn+1,…∈andbn=≠0. Hence,

      φ(0)=φ′(0)=φ″(0)=…=φn-1(0)=0.

      It follows from Theorem 3 that

      This implies

      If the equality holds in (8), then |φ′(z0) |=n. Hence, by Theorem 3 we have

      which yields

      whereθ∈satisfieseiθ, Then

      Thus, we have

      The proof is complete.

      RemarkFrom the proof of Theorem 5 and 6, it is clear that we only to need assume that the function f is1up to the boundary ofDnearz0.

      [1] GARNETT J. Bounded Analytic Functions [M]. New York: Academic Press, 1981.

      [2] AHLFORS L. An extension of Schwarz's lemma [J]. Trans Amer Math Soc, 1938, 43(3): 359-364.

      [3] YAU S. A general Schwarz lemma for K?hler manifolds [J]. Amer J Math, 1978, 100(1): 197-203.

      [4] CHELST D. A generalized Schwarz lemma at the boundary [J]. Proc Amer Math Soc, 2001, 129(11): 3 275-3 278.

      [5] KIM K, LEE H. Schwarz's Lemma from a Differential Geometric Viewpoint [M]. Bangalore: IISc Press, 2011.

      [6] KRANTZ S G. The Schwarz lemma at the boundary [J]. Complex Var Elliptic Equ, 2011, 56(5): 455-468.

      [7] ELIN M, JACOBZON F, LEVENSHTEIN M, et al. The Schwarz Lemma: Rigidity and Dynamics, Harmonic and Complex Analysis and Its Applications [M]. Berlin: Springer, 2014.

      [8] ?RNEK B. Sharpened forms of the Schwarz lemma on the boundary [J]. Bull Korean Math Soc, 2013, 50(6): 2 053-2 059.

      [9] OSSERMAN R. A sharp Schwarz inequality on the boundary [J]. Proc Amer Math Soc, 2000, 128(12): 3513-3517.

      [10] BURNS D M, KRANTZ S G. Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary [J]. J Amer Math Soc, 1994, 7(3): 661-676.

      [11] HUANG X J. A preservation principle of extremal mappings near a strongly pseudoconvex point and its applications [J]. Illinois J Math, 1994, 38(2): 283-302.

      [12] LIU T S, WANG J F, TANG X M. Schwarz lemma at the boundary of the unit ball innand its applications [J]. J Geom Anal, 2015, 25(3): 1 890-1 914.

      [13] LIU T S, TANG X M. Schwarz lemma at the boundary of strongly pseudoconvex domain inn[J]. Math Ann, 2016, 366(1-2): 655-666.

      [14] TANG X M, LIU T S. Schwarz lemma at the boundary of the egg domainBp1,p2inn[J]. Canad Math Bull, 2015, 58(2): 381-392.

      [15] TANG X M, LIU T S, ZHANG W J. Schwarz lemma at the boundary and rigidity property for holomorphic mappings on the unit ball ofn[J]. Proc Amer Math Soc, 2017, 145(4): 1 709-1 716.

      單位圓盤(pán)上若干精確的Schwarz不等式

      吳科科, 陳 偉, 唐笑敏

      (湖州師范學(xué)院 理學(xué)院, 浙江 湖州 313000)

      建立了復(fù)平面中單位圓盤(pán)上全純函數(shù)的一個(gè)新型Schwarz引理,并獲得了單位圓盤(pán)上全純函數(shù)的導(dǎo)函數(shù)在邊界點(diǎn)處的若干Schwarz不等式.這些結(jié)果分別推廣了經(jīng)典的內(nèi)部型Schwarz引理和邊界型Schwarz引理.

      全純函數(shù); Schwarz引理; 單位圓盤(pán); 邊界點(diǎn)

      O174.56

      date:2017-09-14

      s:This work is supported by the NNSF of China (11571105) and the Xinmiao Talent Project of Zhejiang Province (2016R427003).

      Biography:TANG Xiaomin, Ph.D, Professor, Research Interests: complex analysis. E-mail:txm@zjhu.edu.cn

      O174.56DocumentcodeAArticleID1009-1734(2017)10-0006-06

      MSC2010:30C80; 32H02

      MSC2010:30C80; 32H02

      [責(zé)任編輯吳志慧]

      猜你喜歡
      邊界點(diǎn)湖州圓盤(pán)
      道路空間特征與測(cè)量距離相結(jié)合的LiDAR道路邊界點(diǎn)提取算法
      層次化點(diǎn)云邊界快速精確提取方法研究
      圓盤(pán)鋸刀頭的一種改進(jìn)工藝
      石材(2020年6期)2020-08-24 08:27:00
      單位圓盤(pán)上全純映照模的精細(xì)Schwarz引理
      奇怪的大圓盤(pán)
      湖州出土郡國(guó)五銖錢(qián)
      湖州特色小鎮(zhèn)的“特”與“色”
      基于Profibus-DP的圓盤(pán)澆鑄控制系統(tǒng)的應(yīng)用
      湖州練市小學(xué)
      一種去除掛網(wǎng)圖像鋸齒的方法及裝置
      電腦與電信(2014年6期)2014-03-22 13:21:06
      东乌| 民县| 稷山县| 平江县| 容城县| 松江区| 呼和浩特市| 怀柔区| 镇坪县| 广德县| 宣城市| 潞西市| 宾川县| 五大连池市| 中西区| 肥西县| 大埔区| 静安区| 叶城县| 石首市| 洪湖市| 九龙城区| 芜湖市| 新化县| 开江县| 上栗县| 陕西省| 杭州市| 华坪县| 汤阴县| 渑池县| 上高县| 衢州市| 江都市| 阳曲县| 茶陵县| 南陵县| 碌曲县| 资阳市| 建昌县| 阳信县|