• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      復(fù)合改性雙基推進(jìn)劑降感技術(shù)及感度機(jī)理研究進(jìn)展

      2017-12-31 22:39:18吳雄崗樊學(xué)忠
      火炸藥學(xué)報(bào) 2017年6期
      關(guān)鍵詞:感度增塑劑推進(jìn)劑

      陳 京,王 晗,劉 萌,吳雄崗,樊學(xué)忠,2

      (1. 西安近代化學(xué)研究所, 陜西 西安 710065;2. 西安近代化學(xué)研究所燃燒與爆炸技術(shù)重點(diǎn)實(shí)驗(yàn)室, 陜西 西安 710065)

      復(fù)合改性雙基推進(jìn)劑降感技術(shù)及感度機(jī)理研究進(jìn)展

      陳 京1,王 晗1,劉 萌1,吳雄崗1,樊學(xué)忠1,2

      (1. 西安近代化學(xué)研究所, 陜西 西安 710065;2. 西安近代化學(xué)研究所燃燒與爆炸技術(shù)重點(diǎn)實(shí)驗(yàn)室, 陜西 西安 710065)

      從高價(jià)值武器平臺(tái)戰(zhàn)術(shù)導(dǎo)彈面臨的安全性問(wèn)題出發(fā),綜述了復(fù)合改性雙基(CMDB)推進(jìn)劑含能組分降感技術(shù)及感度機(jī)理的研究進(jìn)展。從含能填料改性降感及取代降感技術(shù)、含能增塑劑降感技術(shù)及綜合降感技術(shù)等方面,總結(jié)了CMDB推進(jìn)劑能量與感度的匹配技術(shù)途徑。介紹了近年來(lái)含能組分與多組分感度機(jī)理研究工作,概述了CMDB推進(jìn)劑感度機(jī)理及預(yù)測(cè)方法。研究趨勢(shì)表明,新型鈍感材料和新降感技術(shù)有待進(jìn)一步應(yīng)用于CMDB推進(jìn)劑,應(yīng)結(jié)合理論計(jì)算研究形成感度預(yù)測(cè)方法,以提高CMDB推進(jìn)劑的研制效率及綜合性能。附參考文獻(xiàn)101篇。

      改性雙基推進(jìn)劑;CMDB推進(jìn)劑;鈍感高能填料;鈍感增塑劑;感度機(jī)理;感度預(yù)測(cè)

      引 言

      改性雙基推進(jìn)劑(CMDB推進(jìn)劑)具有能量高、特征信號(hào)低、制造工藝成熟等特點(diǎn),是應(yīng)用于戰(zhàn)術(shù)導(dǎo)彈的重要固體推進(jìn)劑[1]。近年來(lái),隨著我國(guó)武裝直升機(jī)、武裝艦艇等高價(jià)值武器平臺(tái)的飛速發(fā)展,大量應(yīng)用CMDB推進(jìn)劑的戰(zhàn)術(shù)導(dǎo)彈被裝備于高價(jià)值武器平臺(tái)。CMDB推進(jìn)劑配方中含有大量高敏感的硝胺炸藥、硝化棉(NC)、硝化甘油(NG)等含能材料,導(dǎo)致其感度較高[2]。據(jù)統(tǒng)計(jì)[3],裝備CMDB推進(jìn)劑的戰(zhàn)術(shù)導(dǎo)彈在勤務(wù)、貯存及使用過(guò)程中發(fā)生意外燃爆,已成為導(dǎo)致高制造成本武器平臺(tái)巨大損失的主要原因之一。戰(zhàn)術(shù)導(dǎo)彈用高能固體推進(jìn)劑裝藥鈍感化,已成為當(dāng)下提升高價(jià)值武器平臺(tái)生存能力的關(guān)鍵技術(shù)途徑之一[4]。

      近年來(lái),國(guó)內(nèi)外利用新型鈍感材料及降感技術(shù)對(duì)高能CMDB推進(jìn)劑進(jìn)行了大量研究,并針對(duì)CMDB推進(jìn)劑降感機(jī)理進(jìn)行了理論探索。本文對(duì)CMDB推進(jìn)劑感度與能量特性的匹配技術(shù)、含能組分感度機(jī)理及預(yù)測(cè)等方面的研究成果進(jìn)行綜述。

      1 CMDB推進(jìn)劑感度與能量特性的匹配

      能量性能優(yōu)化一直是CMDB推進(jìn)劑研究的主要方向。目前已應(yīng)用的CMDB推進(jìn)劑的比沖可達(dá)2160N·s·kg-1以上[5-6],而含鋁粉及CL-20的新型高能CMDB推進(jìn)劑能量已達(dá)到2641.3N·s·kg-1[7]。固體推進(jìn)劑能量的釋放來(lái)自其含能組分的分解,而固體推進(jìn)劑的燃爆引發(fā)同樣來(lái)自外界刺激下的組分分解[8-9],因此具有更高能量的CMDB推進(jìn)劑往往也具有更高的感度。如螺壓硝胺CMDB推進(jìn)劑的摩擦感度高達(dá)50%,特性落高僅為24.1cm[10];含CL-20的CMDB推進(jìn)劑各配方的特性落高均小于20cm,摩擦感度均大于30%[11]。為了開(kāi)發(fā)同時(shí)具備高能量和低感度的CMDB推進(jìn)劑,國(guó)內(nèi)外均探索了CMDB推進(jìn)劑中主要含能組分的感度特性。CMDB推進(jìn)劑配方中含量最多、感度最高的硝胺炸藥和硝酸酯增塑劑的降感技術(shù)得到了重點(diǎn)研究。

      1.1 含能填料改性降感及取代降感技術(shù)研究

      目前針對(duì)含能填料的降感研究,一方面圍繞RDX/HMX的改性降感技術(shù),包括晶體優(yōu)化和包覆改性等方法,維持CMDB推進(jìn)劑能量特性且降低其感度;另一方面圍繞新型高能鈍感填料的開(kāi)發(fā),用以替代RDX/HMX,進(jìn)一步提高CMDB推進(jìn)劑的能量及安全性。

      1.1.1 RDX/HMX改性降感技術(shù)

      RDX/HMX的感度特性主要?dú)w納于炸藥的熱點(diǎn)起爆機(jī)理,該理論認(rèn)為炸藥不同的細(xì)觀結(jié)構(gòu)可結(jié)合外界刺激產(chǎn)生局部“熱點(diǎn)”,引起氣泡絕熱壓縮、材料快速形變、撞擊面或顆粒間摩擦、破碎薄片絕熱壓縮等現(xiàn)象,產(chǎn)生熱量導(dǎo)致炸藥燃燒或爆炸[12]。基于熱點(diǎn)理論,目前研究從兩方面入手降低RDX/HMX的感度:一方面控制炸藥晶體的粒度、球形度、表面光滑度和內(nèi)部空隙率等形貌參數(shù),減少局部熱點(diǎn)的生成概率[13-14];另一方面采用不敏感包覆材料形成炸藥顆粒的良好界面作用,吸收機(jī)械和熱刺激來(lái)避免熱點(diǎn)形成和傳播。

      (1)RDX/HMX晶體優(yōu)化降感技術(shù)

      通過(guò)球形化處理、結(jié)晶缺陷減少及粒度控制等技術(shù)對(duì)RDX/HMX的晶體進(jìn)行形貌優(yōu)化[15],可以改善硝胺炸藥的安全性且不降低能量指標(biāo),使其適用于高能鈍感CMDB推進(jìn)劑體系。這些技術(shù)原理成熟、產(chǎn)能充足、成本可控,且不影響原料RDX/HMX的化學(xué)穩(wěn)定性。

      RDX/HMX的球形化處理可以優(yōu)化晶體內(nèi)部及表面結(jié)構(gòu),減少晶體內(nèi)和晶體間產(chǎn)生熱點(diǎn)的概率,有效降低RDX/HMX晶體的感度。采用的方法主要為重結(jié)晶[16-18]或噴霧干燥[19]等,技術(shù)手段較為成熟,目前已經(jīng)開(kāi)展工藝研究。同時(shí),國(guó)內(nèi)外研究者采用物理研磨[20]、氣體反溶劑[21]、重結(jié)晶[22]、噴霧細(xì)化[23]等方法制備了超細(xì)化炸藥,并研究了RDX/HMX晶體粒度和粒度分布情況[24-25]對(duì)其感度的影響。呂春玲等[26-27]對(duì)HMX晶體不同粒度與撞擊感度的關(guān)系進(jìn)行了研究,發(fā)現(xiàn)晶體內(nèi)部的活性中心是炸藥受撞擊時(shí)的起爆點(diǎn),而大晶粒炸藥中更易形成優(yōu)先點(diǎn)火的活性中心,因而撞擊感度越大;當(dāng)粒度在一定范圍內(nèi)減小時(shí),炸藥顆粒的堆積密度與比表面積提高,可接受能量變大,減少了熱點(diǎn)生成的可能性[28]。隨著納米技術(shù)的發(fā)展,新型納米級(jí)硝胺炸藥得到了開(kāi)發(fā)[29],國(guó)外Qiu等[30]研究發(fā)現(xiàn)納米級(jí)RDX具有低于微米級(jí)產(chǎn)品的沖擊波感度和機(jī)械感度。劉杰等[31-33]通過(guò)共沸分散體系或機(jī)械粉碎法實(shí)現(xiàn)了納米R(shí)DX與納米HMX的批量制備,具有良好應(yīng)用前景。

      (2)RDX/HMX包覆降感技術(shù)

      研究顯示,用鈍感材料[34-36]對(duì)炸藥晶體進(jìn)行包覆,能夠改善晶體界面的缺陷[37]并緩沖機(jī)械刺激,可有效降低炸藥燃速和燃燒轉(zhuǎn)爆轟過(guò)程(DDT)發(fā)展,是硝胺炸藥顆粒的重要降感措施之一。然而鈍感材料的使用會(huì)導(dǎo)致推進(jìn)劑能量性能的損失,目前采用兩種途徑來(lái)減小這一影響:一是采用真空氣相沉積和原子層沉積[38-39]等技術(shù)將包覆層厚度控制在納米尺度,如李茂果等[40]通過(guò)真空氣相沉積技術(shù),在HMX炸藥顆粒表面100%包覆了較薄的石蠟和paralene膜,發(fā)現(xiàn)經(jīng)包覆的HMX機(jī)械感度下降;二是使用含能彈性體[41]和鈍感炸藥[42]等包覆材料,如高元元等[43]采用溶液重結(jié)晶法用較鈍感的3-硝基-1,2,4-三唑-5-酮(NTO)包覆HMX,并測(cè)試了其機(jī)械感度,包覆HMX的H50值提高了14.8cm,撞擊感度降低了66%,且摩擦感度從100%降至50%。這兩種方法均能在降低顆粒感度的同時(shí),極大程度地減小能量損失。因此,未來(lái)研發(fā)的RDX/HMX包覆降感技術(shù),采用的材料除了具備改善顆粒界面功能之外需含有較高能量,而采用的工藝應(yīng)進(jìn)一步降低包覆層厚度。

      可以看出,目前RDX/HMX的改性降感技術(shù)研究思路豐富、手段較為成熟,其中部分方法工藝簡(jiǎn)單、降感效果顯著,可大批量制備低感度硝胺炸藥。RDX/HMX的改性降感技術(shù)對(duì)于低感度CMDB推進(jìn)劑的研制具有重要意義,有必要進(jìn)一步開(kāi)展新工藝和現(xiàn)有工藝放大研究,拓展其應(yīng)用范圍。

      1.1.2 新型高能鈍感填料的應(yīng)用

      僅對(duì)RDX/HMX進(jìn)行降感改性,無(wú)法有效提高CMDB推進(jìn)劑的能量性能。因此研究人員設(shè)計(jì)研發(fā)出了能量密度更高且更加安全的高能鈍感填料。使用這些新型填料取代RDX/HMX,以實(shí)現(xiàn)CMDB推進(jìn)劑的高能鈍感性能,具有巨大潛力。

      1,1-二氨基-2,2-二硝基乙烯(FOX-7)是近幾年研究較為活躍的一種高能鈍感炸藥[44-46],其耐熱性好,能量密度與RDX相當(dāng),但感度接近TNT[47],與CMDB推進(jìn)劑的主要組分均可以良好相容[48],是CMDB推進(jìn)劑降感技術(shù)的主要備選含能填料之一。樊學(xué)忠等[49]研究表明,F(xiàn)OX-7 不但可以明顯降低CMDB 推進(jìn)劑的感度,大幅提高CMDB 推進(jìn)劑低壓下的燃速,且保持了CMDB 推進(jìn)劑的高能量、低特征信號(hào)和較好的力學(xué)性能等優(yōu)點(diǎn)。此外,N-脒基脲二硝酰胺鹽(FOX-12)、2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)等新型含能填料均在CMDB推進(jìn)劑中得到了應(yīng)用[50-52],然而這些推進(jìn)劑能量性能均弱于RDX/HMX-CMDB推進(jìn)劑。值得注意的是,3,4-二硝基呋咱基氧化呋咱(DNTF)、1,3,3-三硝基氮雜環(huán)丁烷(TNAZ)等新材料,能量性能和安全性能均優(yōu)于RDX/HMX[53-56],有望作為新一代CMDB推進(jìn)劑含能填料的備選材料。

      1.2 含能增塑劑降感技術(shù)

      增塑劑是CMDB推進(jìn)劑的重要組分之一,目前CMDB推進(jìn)劑廣泛使用的增塑劑是NG。NG具有優(yōu)秀的能量性能與塑化能力,然而其機(jī)械感度和熱感度極高,因此替代降感研究得到了重點(diǎn)關(guān)注。目前采用新型低感度增塑劑,對(duì)NG進(jìn)行全部或部分替代,是CMDB推進(jìn)劑降感的重要途徑。

      三羥甲基乙烷三硝酸酯(TMETN)是一種具有代表性的低感度增塑劑,已經(jīng)在20世紀(jì)90年代被成功用于替代雙基推進(jìn)劑配方中的NG[57]。此外1,2,4-丁三醇三硝酸酯(BTTN)[58]、丁基-硝氧乙基硝胺(Bu-NENA)[59-60]、3-硝基呋咱-4-甲醚(NFME)[61]等新型增塑劑,均在鈍感配方體系中得到應(yīng)用研究。然而,這些低感度增塑劑的使用帶來(lái)了能量損失的問(wèn)題。為了在CMDB推進(jìn)劑感度性能與能量性能之間進(jìn)行平衡,近年來(lái)研究者開(kāi)始關(guān)注混合增塑劑對(duì)于推進(jìn)劑感度的影響[62-63],如BDNPF/A[64-65]、NG/BTTN[66]、NG/DEGDN[67]等混合增塑劑,在CMDB推進(jìn)劑中應(yīng)用后,均表現(xiàn)出了優(yōu)于單組分增塑劑的良好力學(xué)與安全性能[68]。伴隨著新型含能增塑劑的開(kāi)發(fā)與應(yīng)用,混合增塑劑體系可依據(jù)應(yīng)用需求進(jìn)行組合設(shè)計(jì),因此混合增塑技術(shù)在低感度CMDB推進(jìn)劑領(lǐng)域具有較大應(yīng)用前景。

      1.3 CMDB推進(jìn)劑綜合降感技術(shù)

      雖然含能填料與增塑劑在CMDB推進(jìn)劑配方中所占質(zhì)量分?jǐn)?shù)可達(dá)60%以上,但是針對(duì)推進(jìn)劑整體的降感技術(shù)不限于這兩者的改性和取代。CMDB推進(jìn)劑是具有多種組分的復(fù)合含能體系,各個(gè)組分之間的比例、相互作用等均會(huì)對(duì)推進(jìn)劑整體感度特性產(chǎn)生影響[69]。此外針對(duì)不同組分,結(jié)合多種降感技術(shù),可更加有效地降低CMDB推進(jìn)劑的感度。例如滕學(xué)峰等[70]采用某低感增塑劑部分代替NG,結(jié)合某高導(dǎo)熱碳基材料進(jìn)行協(xié)同降感,明顯降低了AP/CMDB推進(jìn)劑的摩擦感度和撞擊感度。因此,在掌握CMDB推進(jìn)劑含能填料與增塑劑的降感技術(shù)之外,探索其他組分的物理或化學(xué)降感手段,并將這些技術(shù)進(jìn)行匹配結(jié)合,可實(shí)現(xiàn)對(duì)CMDB推進(jìn)劑安全性能的良好控制。

      2 CMDB推進(jìn)劑感度機(jī)理及感度預(yù)測(cè)進(jìn)展

      上述采用的CMDB推進(jìn)劑降感技術(shù),其本質(zhì)以試驗(yàn)驗(yàn)證為主,存在較大的盲目性[71],缺少理論指導(dǎo)。要研究含能材料的感度機(jī)理,除熱點(diǎn)起爆機(jī)理等宏觀水平解釋外[72-73],還需要結(jié)構(gòu)化學(xué)和反應(yīng)動(dòng)力學(xué)的理論支撐。為了更好地解釋感度現(xiàn)象,指導(dǎo)高能鈍感CMDB推進(jìn)劑的設(shè)計(jì),近年來(lái)國(guó)內(nèi)外均開(kāi)展了含能材料感度機(jī)理研究,目前已經(jīng)在材料感度和結(jié)構(gòu)參數(shù)之間建立了關(guān)系,形成了相應(yīng)的感度判據(jù)[8,74]。將理論判據(jù)與經(jīng)驗(yàn)數(shù)據(jù)相結(jié)合,可用于單組分及多組分含能體系感度特性的解釋及預(yù)測(cè)。

      2.1 含能組分感度機(jī)理及預(yù)測(cè)

      燃爆引發(fā)現(xiàn)象的產(chǎn)生與含能材料的化學(xué)結(jié)構(gòu)密切相關(guān),因此研究CMDB推進(jìn)劑中含能填料及增塑劑感度機(jī)理,需要深入其分子內(nèi)部,研究結(jié)構(gòu)特征與熱力學(xué)數(shù)據(jù)的變化規(guī)律[75-76],并用實(shí)驗(yàn)數(shù)據(jù)進(jìn)行驗(yàn)證。目前CMDB推進(jìn)劑含能組分感度機(jī)理的研究方法,主要有量子化學(xué)(QC)[77-78]、定量結(jié)構(gòu)-性質(zhì)相關(guān)性(QSPR)法[79-80]及分子動(dòng)力學(xué)(MD)方法[81-84]等。

      QC方法中用于感度機(jī)理分析的主要參數(shù)有含能組分的硝基電荷[85]、前沿軌道能級(jí)差[86]、靜電勢(shì)[87]等。肖鶴鳴課題組[88-90]對(duì)CaHbNcOd炸藥的撞擊感度機(jī)理提出了“最小鍵級(jí)”、“最易躍遷原理”等熱力學(xué)判據(jù)和“熱解引發(fā)反應(yīng)活化能”的動(dòng)力學(xué)判據(jù)。目前QC方法給出的機(jī)理解釋涉及分子結(jié)構(gòu)的多種參數(shù),但適用的前提不盡相同,往往僅在同系材料中存在規(guī)律,因此難以用于解釋龐大含能材料家族的感度機(jī)理[8]。

      QSPR方法使用遺傳算法和神經(jīng)網(wǎng)絡(luò)方法,在反映出含能材料拓?fù)浣Y(jié)構(gòu)及電子狀態(tài)的基礎(chǔ)上,通過(guò)構(gòu)建模型來(lái)預(yù)測(cè)含能材料的撞擊感度[91]。錢博文等[92]采用基于遺傳算法的人工神經(jīng)網(wǎng)絡(luò),在較大的樣本集中篩選相關(guān)的分子結(jié)構(gòu)參數(shù),結(jié)合實(shí)驗(yàn)數(shù)據(jù)建立構(gòu)效關(guān)系,提供了精度較高、適用范圍較大的模型。QSPR方法需要基于經(jīng)驗(yàn)數(shù)據(jù),然而目前感度試驗(yàn)缺乏統(tǒng)一的試驗(yàn)標(biāo)準(zhǔn),測(cè)試數(shù)據(jù)存在較大的偏差,因此該方法需要進(jìn)一步解決精度問(wèn)題。

      MD方法通過(guò)計(jì)算硝胺炸藥和硝酸酯增塑劑的引發(fā)鍵最大鍵長(zhǎng)(Lmax)、引發(fā)鍵連雙原子作用能和內(nèi)聚能密度(CED)等,可在不同的環(huán)境條件下進(jìn)行材料感度的預(yù)測(cè)[93]。此外,使用MD方法還可以模擬RDX等含能組分分解過(guò)程,利用反應(yīng)動(dòng)力學(xué)數(shù)據(jù)解釋材料感度特性[94]。MD方法優(yōu)點(diǎn)在于能為研究對(duì)象提供不同的環(huán)境條件,然而目前動(dòng)力學(xué)數(shù)據(jù)與材料感度之間還無(wú)法建立量化的規(guī)律性關(guān)系。

      2.2 多組分的感度機(jī)理及預(yù)測(cè)

      CMDB推進(jìn)劑各組分間在各層面的相互作用也會(huì)對(duì)體系性能產(chǎn)生影響,因此僅研究其含能組分自身的感度特性,無(wú)法全面地預(yù)測(cè)配方的感度特性[74]。然而CMDB推進(jìn)劑組分復(fù)雜,研究其感度機(jī)理需要進(jìn)行大量試驗(yàn),且難以保證數(shù)據(jù)重復(fù)性和操作安全性[95-96],因此有必要結(jié)合理論計(jì)算的方法進(jìn)行模擬分析。目前CMDB推進(jìn)劑等復(fù)合含能體系感度機(jī)理研究,主要包括宏觀的有限元分析及微觀的MD模擬。

      有限元方法可以分析推進(jìn)劑各組分界面接受到的外界機(jī)械刺激作用,模擬感度測(cè)試過(guò)程應(yīng)力傳遞情況,尋找燃爆的起點(diǎn),從而揭示材料感度機(jī)理[97]。將有限元方法應(yīng)用于CMDB推進(jìn)劑的感度機(jī)理分析時(shí),需結(jié)合不同配方的組分與界面差異,針對(duì)性地進(jìn)行研究。

      MD方法可以構(gòu)建多種組分的共混模型,并對(duì)模型中的分子原子狀態(tài)進(jìn)行統(tǒng)計(jì)分析。研究人員重點(diǎn)關(guān)注混合體系中的易爆燃組分,同時(shí)考察其他組分與易爆燃組分之間相互作用引起的結(jié)構(gòu)、性質(zhì)變化,從而預(yù)測(cè)體系感度的變化規(guī)律[74]。齊曉飛等[98-99]利用MD方法對(duì)CMDB推進(jìn)劑的組分相互作用進(jìn)行了模擬和分析,驗(yàn)證了增塑劑-黏合劑模型的可靠性,為CMDB推進(jìn)劑的感度機(jī)理模擬奠定了基礎(chǔ)。在此基礎(chǔ)上,使用MD方法研究不同配比復(fù)合含能體系的感度判據(jù),如引發(fā)鍵最大鍵長(zhǎng)[100]、體系結(jié)合能[101]等參數(shù),可以比較不同配比CMDB推進(jìn)劑的安全性。

      結(jié)合模擬計(jì)算的方法,探索復(fù)合含能體系的感度機(jī)理,并將其用于指導(dǎo)CMDB推進(jìn)劑配方設(shè)計(jì),可以極大地減少配方試驗(yàn)量,提高研制效率,增加試制安全性,對(duì)于推進(jìn)劑領(lǐng)域具有深遠(yuǎn)意義。

      3 結(jié)論及展望

      綜上,目前CMDB推進(jìn)劑降感技術(shù)及感度機(jī)理的研究現(xiàn)狀及發(fā)展趨勢(shì)如下:

      (1)RDX/HMX改性降感技術(shù)發(fā)展較為成熟,降感效果顯著,已在CMDB推進(jìn)劑中得到了應(yīng)用。同時(shí),新型高能鈍感填料及增塑劑已經(jīng)開(kāi)始取代RDX/HMX和NG,初步應(yīng)用于CMDB推進(jìn)劑配方中,顯示出了良好的綜合性能。

      (2)固體推進(jìn)劑含能組分的感度機(jī)理研究主要采用模擬計(jì)算的方法,目前已形成多個(gè)層面的機(jī)理解釋。對(duì)于CMDB推進(jìn)劑等復(fù)合含能體系的感度機(jī)理研究起步較晚,目前只提出了初步機(jī)理與判據(jù)。

      (3)未來(lái)軍事需求進(jìn)一步提升,CMDB推進(jìn)劑需要結(jié)合新型高能鈍感材料,進(jìn)一步探索配方能量與安全特性的平衡點(diǎn),擴(kuò)大其應(yīng)用范圍。因此開(kāi)發(fā)新型高能鈍感材料的同時(shí),將其應(yīng)用于CMDB推進(jìn)劑,是本領(lǐng)域內(nèi)重要研究方向之一。

      (4)未來(lái)感度機(jī)理需進(jìn)一步形成系統(tǒng)化理論,以實(shí)現(xiàn)新型含能材料感度的可靠預(yù)測(cè)。此外囿于復(fù)合含能體系的復(fù)雜性和有限的模擬計(jì)算手段,仍無(wú)法對(duì)其進(jìn)行量化的感度預(yù)測(cè)。因此,針對(duì)復(fù)合含能體系開(kāi)發(fā)新的理論模型并將其應(yīng)用于感度預(yù)測(cè),是重要的研究趨勢(shì)之一。

      [1] 劉所恩, 陳錦芳, 潘葆, 等. 新型螺壓高能改性雙基推進(jìn)劑研究[J]. 兵工學(xué)報(bào), 2015, 36(6): 1123-1127.

      LIU Suo-en, CHEN Jin-fang, PAN Bao, et al. Study of novel screw extruded high energy composite double-base propellant[J]. Acta Armamentarii, 2015, 36(6): 1123-1127.

      [2] Asthana S N, Athawale B K, Singh H. Impact, friction, shock sensitivities and ddt behaviour of advanced cmdb propellants[J]. Defence Science Journal, 2013, 39(1).

      [3] 劉所恩, 周偉良, 趙效民, 等. 螺壓硝胺改性雙基推進(jìn)劑對(duì)沖擊波激勵(lì)的安全性評(píng)價(jià)[J]. 含能材料, 2015, 23(7): 644-647.

      LIU Suo-en, ZHOU Wei-liang, ZHAO Xiao-min, et al. Safety analysis of screw extrusion nitramine modified double base propellant on shock wave[J]. Chinese Journal of Energetic Materials, 2015, 23(7): 644-647.

      [4] Jaiprakashagrawal, 阿格拉沃爾, 歐育湘. 高能材料:火藥、炸藥和煙火藥[M]. 北京:國(guó)防工業(yè)出版社, 2013.

      [5] 付小龍, 樊學(xué)忠, 畢福強(qiáng), 等. 硝基呋咱/CMDB推進(jìn)劑能量特性[J]. 含能材料, 2014,22(6): 852-856.

      FU Xiao-long, FAN Xue-zhong, BI Fu-qiang, et al. Energy characteristics of CMDB propellants with nitrofurazan compounds[J]. Chinese Journal of Energetic Materials, 2014, 22(6):852-856.

      [6] 田軍, 王寶成, 桑軍鋒, 等. DNTF-CMDB推進(jìn)劑性能的實(shí)驗(yàn)研究[J]. 火炸藥學(xué)報(bào), 2015,38(4): 76-79.

      TIAN Jun, WANG Bao-cheng, SANG Jun-feng, et al. Experimental research on the properties of CMDB propellant containing DNTF[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2015, 38(4):76-79.

      [7] 金溪, 王江寧, 宋秀鐸, 等. 含CL-20改性雙基推進(jìn)劑的能量計(jì)算與分析[J]. 含能材料, 2012, 20(1): 67-70.

      JIN Xi, WANG Jiang-ning, SONG Xiu-duo, et al. Calculation and analysis on energy characteristics of composite modified double-based propellant containing CL-20[J]. Chinese Journal of Energetic Materials, 2012, 20(1): 67-70.

      [8] Zeman S, Jungová M. Sensitivity and performance of energetic materials[J]. Propellants,Explosives,Pyrotechnics, 2016, 41(3): 426-451.

      [9] Charlery R, Renouf M, Saulot A, et al. Experimental and numerical modelling of the ignition of solid propellant[J]. Tribology International, 2015, 82: 330-342.

      [10] 劉所恩, 趙效民, 趙美玲, 等. 螺壓硝胺改性雙基推進(jìn)劑對(duì)機(jī)械刺激的安全性分析[J]. 含能材料, 2013, (6): 818-820.

      LIU Suo-en, ZHAO Xiao-min, ZHAO Mei-ling, et al. Safety performance of modified nitramine double base propellant by screw extrusion subject to mechanical stimulus[J]. Chinese Journal of Energetic Materials, 2013, 21(6):818-820.

      [11] 徐司雨, 趙鳳起, 李上文, 等. 含CL-20的改性雙基推進(jìn)劑的機(jī)械感度[J]. 推進(jìn)技術(shù), 2006, 27(2): 182-186.

      XU Si-yu, ZHAO Feng-qi, LI Shang-wen, et al. Impact and friction sensitivity of composite modified double base propellant containing hexanitrohexaazaisowurtzitane (CL-20)[J]. Journal of Propulsion Technology, 2006, 27(2):182-186.

      [12] Bernecker R. The deflagration-to-detonation transition process for high-energy propellants——a review[J]. Aiaa Journal, 2015, 24(1): 82-91.

      [13] 李洪珍, 康彬, 李金山, 等. RDX晶體特性對(duì)沖擊感度的影響規(guī)律[J]. 含能材料, 2010, 18(5): 487-491.

      LI Hong-zhen, KANG Bin, LI Jin-shan, et al. Effects of RDX crystal characteristics on shock sensitivities[J]. Chinese Journal of Energetic Materials, 2010, 18(5):487-491.

      [14] 徐容, 李洪珍, 康彬, 等. HMX晶體內(nèi)部孔隙率、缺陷類型及顆粒度對(duì)沖擊波感度的影響[J]. 含能材料, 2011, 19(6): 632-636.

      XU Rong, LI Hong-zhen, KANG Bin, et al. Effects of HMX crystal characteristics on shock sensitivities:crystalline inter voids,particle size,morphology[J]. Chinese Journal of Energetic Materials, 2011, 19(6): 632-636.

      [15] 楊志劍, 曾貴玉, 李金山, 等. 敏感炸藥的高效降感技術(shù)研究進(jìn)展[C]∥全國(guó)危險(xiǎn)物質(zhì)與安全應(yīng)急技術(shù)研討會(huì)論文集(上). 重慶:中國(guó)工程物理研究院, 2011.

      YANG Zhi-jian, ZENG Gui-yu, LI Jin-shan, et al. Research progress of highly sensitive drop technology for sensitive explosives[C]∥Proceedings of National Symposium on Emergency Technology for Hazardous Materials and Safety. Chongqing: China Academy of Engineering Physics, 2011.

      [16] 趙雪, 芮久后, 馮順山. 重結(jié)晶法制備球形化RDX[J]. 北京理工大學(xué)學(xué)報(bào), 2011, 31(1): 5-7.

      ZHAO Xue, RUI Jiu-hou, FENG Shun-shan. Recrystallization method for preparation of spherical RDX[J]. Transactions of Beijing Institute of Technology, 2011, 31(1):5-7.

      [17] 荊肖凡, 徐文崢, 王晶禹. 超聲和噴霧輔助制備微米球形化RDX[J]. 火工品, 2013(4): 46-48.

      JING Xiao-fan, XU Wen-zheng, WANG Jing-yu. Study on ultrasound- and spray-assisted precipitation of micrometer and spherical RDX[J]. Initiators & Pyrotechnics, 2013(4): 46-48.

      [18] Song X, Wang Y, An C, et al. Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine[J]. Journal of Hazardous Materials, 2008, 159(2-3): 222-229.

      [19] 王江, 劉英, 李小東, 等. 噴霧干燥法制備球形RDX的工藝優(yōu)化[J]. 火炸藥學(xué)報(bào), 2015, 38(1): 16-21.

      WANG Jiang, LIU Ying, LI Xiao-dong, et al. Optimization of process for preparing spherical RDX by the spray drying method[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2015, 38(1):16-21.

      [20] 付廷明, 楊毅, 李鳳生. 球形超細(xì)HMX的制備[J]. 火炸藥學(xué)報(bào), 2002, 25(2): 12-13.

      FU Ting-ming, YANG Yi, LI Feng-sheng. Preparation of HMX microsphere[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2002, 25(2): 12-13.

      [21] 王保民, 張景林. 氣體反溶劑(GAS)過(guò)程細(xì)化技術(shù)及對(duì)炸藥安全性能的影響研究[J]. 中國(guó)安全科學(xué)學(xué)報(bào), 2001, 11(4): 32-34.

      WANG Bao-min, ZHANG Jing-lin. Study on fining technology of gas anti-solvent (GAS) process and its effect on safety of the explosive[J]. China Safety Science Journal, 2001, 11(4): 32-34.

      [22] 耿孝恒, 王晶禹, 張景林. 不同粒度RDX的重結(jié)晶制備和機(jī)械感度研究[J]. 工業(yè)安全與環(huán)保, 2009, 35(7): 29-30.

      GENG Xiao-heng, WANG Jing-yu, ZHANG Jing-lin. Recrystallization preparation of different particle RDX and study on the mechanical sensitivity[J]. Industrial Safety & Environmental Protection, 2009, 35(7): 29-30.

      [23] 韻勝, 劉玉存, 于雁武, 等. 超細(xì)微球形低感度HMX的制備[J]. 含能材料, 2011, 19(3): 305-309.

      YUN Sheng, LIU Yu-cun, YU Yan-wu, et al. Preparation of microspherical and desensitized HMX[J]. Chinese Journal of Energetic Materials, 2011, 19(3):305-309.

      [24] 宋小蘭, 李鳳生, 張景林, 等. 粒度和形貌及粒度分布對(duì)RDX安全和熱分解性能的影響[J]. 固體火箭技術(shù), 2008, 31(2): 168-172.

      SONG Xiao-lan, LI Feng-sheng, ZHANG Jing-lin, et al. Influence of particle size,morphology and size distribution on the safety and thermal decomposition properties of RDX[J]. Journal of Solid Rocket Technology, 2008, 31(2):168-172.

      [25] 汪波, 劉玉存, 李敏. HMX粒度對(duì)其撞擊感度的影響研究[J]. 中北大學(xué)學(xué)報(bào)自然科學(xué)版, 2005, 26(1): 35-37.

      WANG Bo, LIU Yu-cun, LI Min. Study on the influence of particle size on the impact sensitivity of HMX[J]. Journal of North China Institute of Technology, 2005, 26(1): 35-37.

      [26] 呂春玲, 張景林. 粒度對(duì)HMX撞擊感度的影響[J]. 爆炸與沖擊, 2003, 23(5): 472-474.

      Lü Chun-ling, ZHANG Jing-lin. Influence of particle size on the impact sensitivity of HMX[J]. Explosion & Shock Waves, 2003 23(5): 472-474.

      [27] 田龍, 吳曉青, 鄭主宜, 等. 粒度對(duì)炸藥感度影響的研究進(jìn)展[J]. 四川化工, 2013, 16(1): 28-30.

      TIAN Long, WU Xiao-qing, ZHENG Zhu-yi, et al. Progress of grain size of explosives sensitivity[J]. Sichuan Chemical Industry, 2013, 16(1): 28-30.

      [28] 陳天石, 張玉若, 張英浩. HMX粒度對(duì)其機(jī)械感度的影響研究[J]. 四川兵工學(xué)報(bào), 2006, 27(5): 27-28.

      CHEN Tian-shi, ZHANG Yu-ruo, ZHANG Ying-hao. Study on the influence of particle size on the impact sensitivity of HMX[J]. Journal of North China Institute of Technology, 2006, 27(5): 27-28.

      [29] Gao H, Hou X T, Ke X, et al. Effects of nano-HMX on the properties of RDX-CMDB propellant: higher energy and lower sensitivity[J]. Defence Technology, 2017, 13(5): 323-326.

      [30] Qiu H, Stepanov V, Stasio A R D, et al. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity[J]. Journal of Hazardous Materials, 2011, 185(1): 489-93.

      [31] 劉杰, 王龍祥, 李青, 等. 鈍感納米R(shí)DX的制備與表征[J]. 火炸藥學(xué)報(bào), 2012, 35(6): 46-50.

      LIU Jie, WANG Long-xiang, LI Qing, et al. Preparation and characterization of insensitive nano RDX[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2012, 35(6):46-50.

      [32] 劉杰, 李青, 曾江保, 等. 機(jī)械粉碎法制備不敏感納米R(shí)DX [J]. 爆破器材, 2013(4): 1-5.

      LIU Jie, LI Qing, ZENG Jiang-bao, et al. Mechanical pulverization for the production of sensitivity reduced nano-RDX[J]. Explosive Materials, 2013(4): 1-5.

      [33] 曾江保, 劉杰, 王龍祥, 等. 納米HMX的制備及熱性能分析和感度研究[J]. 爆破器材, 2014(1): 8-12.

      ZENG Jiang-bao, LIU Jie, WANG Long-xiang, et al. Preparation, thermal performance analysis and sensitivities study of nano HMX[J]. Explosive Materials, 2014(1): 8-12.

      [34] 王娟, 孫笑, 周新利. 高級(jí)脂肪酸酯類化合物包覆RDX的研究[J]. 含能材料, 2015, 23(6): 527-531.

      WANG Juan, SUN Xiao, ZHOU Xin-li. Properties of RDX coated by higher aliphatic ester compounds[J]. Chinese Journal of Energetic Materials, 2015, 23(6):527-531.

      [35] 楊雪芹, 常雙君, 趙蘆奎, 等. 包覆改性RDX及其在CMDB推進(jìn)劑中的應(yīng)用[J]. 爆破器材, 2014, (6): 22-25.

      YANG Xue-qin, CHANG Shuang-jun, ZHAO Lu-kui, et al. Coating of RDX and its application in CMDB propellant[J]. Explosive Materials, 2014(6): 22-25.

      [36] 王彩玲, 王江, 刁小強(qiáng), 等. 噴霧干燥法制備微米級(jí)球形RDX復(fù)合顆粒及性能表征[J]. 中國(guó)膠粘劑, 2015(10): 8-11.

      WANG Cai-ling, WANG Jiang, DIAO Xiao-qiang, et al. Micron grade-spherical RDX compound particles prepared by spray drying and its properties characterization[J]. China Adhesives, 2015(10): 8-11.

      [37] Czerski H, Proud W G, Field J E. The relationship between shock sensitivity and morphology in granular RDX[J]. Qc Physics, 2006(3): 3-13.

      [38] 秦利軍, 龔婷, 郝海霞, 等. 原子層沉積氧化物包覆層對(duì)奧克托金感度的影響[J]. 高等學(xué)校化學(xué)學(xué)報(bào), 2015, 36(3): 420-427.

      QIN Li-jun, GONG Ting, HAO Hai-xia, et al. Study of the HMX particles coated by vapor deposition[J]. Chemical Journal of Chinese Universities, 2015, 36(3): 420-427.

      [39] Li R, Wang J, Shen J P, et al. Preparation and characterization of insensitive HMX/graphene oxide composites[J]. Propellants,Explosives,Pyrotechnics, 2013, 38(6): 798-804.

      [40] 李茂果, 杜自衛(wèi), 廖宏. HMX顆粒的氣相沉積包覆研究[J]. 真空, 2013, 50(6): 23-26.

      LI Mao-guo, DU Zi-wei, LIAO Hong. Study of the HMX particles coated by vapor deposition[J]. Vacuum, 2013, 50(6): 23-26.

      [41] 李寧, 肖樂(lè)勤, 菅曉霞, 等. GAP基含能聚氨酯彈性體包覆RDX的研究[J]. 固體火箭技術(shù), 2012, 35(2): 212-215.

      LI Ning, XIAO Le-qin, JIAN Xiao-xia, et al. Coating of RDX with GAP-based energetic polyurethane elastomer[J]. Journal of Solid Rocket Technology, 2012, 35(2):212-215.

      [42] 陸明, 周新利. RDX的TNT包覆鈍感研究[J]. 火炸藥學(xué)報(bào), 2006, 29(6): 16-18.

      LU Ming, ZHOU Xin-li. Research on insensitivity of RDX coated with TNT[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2006, 29(6):16-18.

      [43] 高元元, 朱順官, 陳鵬源. NTO包覆HMX的鈍感研究[J]. 火炸藥學(xué)報(bào), 2014, 37(1): 61-65.

      GAO Yuan-yuan, ZHU Shun-guan, CHEN Peng-yuan. Research on insensitivity of HMX coated with NTO[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2014, 37(1):61-65.

      [44] Klap?tke T M, Witkowski T G. Covalent and ionic insensitive high-explosives[J]. Propellants Explosives Pyrotechnics, 2016, 41(3): 470-483.

      [45] Anniyappan M, Talawar M B, Gore G M, et al. Synthesis, characterization and thermolysis of 1,1-diamino-2,2-dinitroethylene (FOX-7) and its salts[J]. Journal of Hazardous Materials, 2006, 137(2): 812-819.

      [46] Dan C S, Boatz J A, Thompson D L. Classical and quantum-mechanical studies of crystalline FOX-7 (1,1-diamino-2,2-dinitroethylene)[J]. Journal of Physical Chemistry A, 2001, 105(20): 5010-5021.

      [47] 蔡華強(qiáng), 舒遠(yuǎn)杰, 郁衛(wèi)飛, 等. FOX-7的合成和反應(yīng)機(jī)理研究[J]. 化學(xué)學(xué)報(bào), 2004, 62(3): 295-301.

      CAI Hua-qiang, SHU Yuan-jie, YU Wei-fei, et al. Study on synthesis of FOX-7 and its reaction mechanism[J]. Acta Chimica Sinica, 2004, 62(3):295-301.

      [48] 趙鳳起, 高紅旭, 徐司雨, 等. 含1,1-二氨基-2,2-二硝基乙烯(FOX-7)的鈍感微煙推進(jìn)劑能量參數(shù)和燃燒特性[J]. 火炸藥學(xué)報(bào), 2010, 33(4): 1-4.

      ZHAO Feng-qi, GAO Hong-xu, XU Si-yu, et al. Energy parameters and combustion characteristics of the insensitive and minimum smoke propellants containing FOX-7[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2010, 33(4): 1-4.

      [49] 樊學(xué)忠, 付小龍, 邵重斌, 等. FOX-7對(duì)CMDB固體推進(jìn)劑性能的影響[J]. 固體火箭技術(shù), 2016, 39(2): 201-206.

      FAN Xue-zhong, FU Xiao-long, SHAO Chong-bin, et al. Effect of 1,1-diamino-2,2-dintroethene(FOX-7) on properties of CMDB propellants[J]. Journal of Solid Rocket Technology, 2016, 39(2):201-206.

      [50] 王伯周, 劉愆, 張志忠, 等. 新型含能材料FOX-12性能研究[J]. 含能材料, 2004,12(1): 38-39.

      WANG Bo-zhou, LIU Qian, ZHANG Zhi-zhong, et al. Study on properties of FOX-12[J]. Energetic Materials, 2004,12(1): 38-39.

      [51] 龐軍, 王江寧, 張蕊娥, 等. CL-20、DNTF和FOX-12在CMDB推進(jìn)劑中的應(yīng)用[J]. 火炸藥學(xué)報(bào), 2005, 28(1): 19-21.

      PANG Jun, WANG Jiang-ning, ZHANG Rui-e, et al. Application of CL-20, FOX-12 and DNTF in CMDB propellant[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2005, 28(1): 19-21.

      [52] 張超, 張曉宏, 楊立波, 等. 含LLM-105的改性雙基推進(jìn)劑的機(jī)械感度[J]. 火工品, 2014(2): 33-36.

      ZHANG Chao, ZHANG Xiao-hong, YANG Li-bo, et al. Mechanical sensitivity of composite modified double base propellant containing 2,6-diamino-3,5-dinitro pyrazine-1-oxide[J]. Initiators & Pyrotechnics, 2014(2): 33-36.

      [53] Fengqi Z, Pei C, Rongzu H, et al. Thermochemical properties and non-isothermal decomposition reaction kinetics of 3,4-dinitrofurazanfuroxan (DNTF)[J]. Journal of Hazardous Materials, 2004, 113(1-3): 67.

      [54] Sikder N, Sikder A K, Bulakh N R, et al. 1,3,3-Trinitroazetidine (TNAZ), a melt-cast explosive: synthesis, characterization and thermal behaviour[J]. Journal of Hazardous Materials, 2004, 113(1-3): 35.

      [55] Talawar M B, Singh A, Naik N H, et al. Effect of organic additives on the mitigation of volatility of 1-nitro-3,3′-dinitroazetidine (TNAZ): next generation powerful melt cast able high energy material[J]. Journal of Hazardous Materials, 2006, 134(1/3): 8-18.

      [56] Li X, Wang B L, Lin Q H, et al. Compatibility study of DNTF with some insensitive energetic materials and inert materials[J]. Journal of Energetic Materials, 2016, 34(4): 409-415.

      [57] 趙鳳起, 李上文, 宋洪昌, 等. 國(guó)外新型鈍感雙基推進(jìn)劑的研究[J]. 飛航導(dǎo)彈, 1999(9): 29-32.

      ZHAO Feng-qi, LI Shang-wen, SONG Hong-chang, et al. Research on new insensitive double base propellant abroad[J]. Aerodynamic Missile Journal, 1999(9): 29-32.

      [58] 顧健, 周雷, 吳京漢. 鈍感GAP微煙推進(jìn)劑的能量性能計(jì)算[J]. 固體火箭技術(shù), 2012, 35(1): 88-92.

      GU Jian, ZHOU Lei, WU Jing-han. Energy characteristics calculation of insensitive and minimum smoke GAP solid propellant[J]. Journal of Solid Rocket Technology, 2012, 35(1):88-92.

      [59] Rao K P C, Sikder A K, Kulkarni M A, et al. Studies on n-butyl nitroxyethylnitramine (n-BuNENA): synthesis, characterization and propellant evaluations[J]. Propellants Explosives Pyrotechnics, 2010, 29(2): 93-98.

      [60] 何利明, 鄭劍, 羅運(yùn)軍. 含BuNENA鈍感交聯(lián)改性雙基推進(jìn)劑能量分析[J]. 固體火箭技術(shù), 2015(1): 90-94.

      HE Li-ming, ZHENG Jian, LUO Yun-jun. Energy properties of the insensitive and cross-linked BuNENA propellant[J]. Journal of Solid Rocket Technology, 2015(1): 90-94.

      [61] 沈華平, 盧艷華, 曹一林, 等. 新型鈍感含能增塑劑3-硝基呋咱-4-甲醚的合成與性能研究[J]. 含能材料, 2011, 19(6): 735-738.

      SHEN Hua-ping, LU Yan-hua, CAO Yi-lin, et al. Synthesis and characterization of novel insensitive energetic plasticizer 3-nitrofurazan-4-monomethyl ether[J]. Chinese Journal of Energetic Materials, 2011, 19(6):735-738.

      [62] 張偉, 劉運(yùn)飛, 謝五喜, 等. 熱分析法研究AlH3與固體推進(jìn)劑組分的相容性[J]. 火炸藥學(xué)報(bào), 2015, 38(1): 41-46.

      ZHANG Wei, LIU Yun-fei, XIE Wu-xi, et al. Study on compatibility of AlH3with compositions of solid propellant by thermal analysis method[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2015, 38(1):41-46.

      [63] 李磊, 劉明珠, 王敏, 等. AlH3/PEG/NG/BTTN體系的熱行為研究[J]. 固體火箭技術(shù), 2015, 38(4): 533-536.

      LI Lei, LIU Ming-zhu, WANG Min, et al. An investigation on thermal properties of AlH3/PEG/NG/BTTN[J]. Journal of Solid Rocket Technology, 2015, 38(4):533-536.

      [64] Gore G M, Tipare K R, Divekar C N, et al. Studies on effect of incorporation of BDNPF/A on burning rates of RDX/AP/AI filled CMDB propellants[J]. Journal of Energetic Materials, 2002, 20(3): 255-278.

      [65] 劉長(zhǎng)波, 朱天兵, 馬英華, 等. BDNPF/A增塑劑的性能及其應(yīng)用[J]. 化學(xué)推進(jìn)劑與高分子材料, 2010, 8(1): 23-27.

      LIU Chang-bo, ZHU Tian-bing, MA Ying-hua, et al. Properties and its application of BDNPF/A plasticizer[J]. Chemical Propellants & Polymeric Materials, 2010, 8(1): 23-27.

      [66] 張昊越, 付小龍, 蔚紅建, 等. 疊氮推進(jìn)劑的感度和能量特性研究[J]. 化學(xué)推進(jìn)劑與高分子材料, 2014, 12(1): 45-48.

      ZHANG Hao-yue, FU Xiao-long, YU Hong-jian, et al. Study on sensitivity and energy performance of azide propellants[J]. Chemical Propellants & Polymeric Materials, 2014, 12(1): 45-48.

      [67] 官煥祥, 劉云飛, 姚維尚, 等. 降低硝酸酯增塑聚醚推進(jìn)劑燃速研究[J]. 推進(jìn)技術(shù), 2007, 28(2): 216-219.

      GUAN Huan-xiang, LIU Yun-fei, YAO Wei-shang, et al. Study on decreasing the burning rate of nitrate ester plasticized polyether propellant[J]. Journal of Propulsion Technology, 2007, 28(2): 216-219.

      [68] 翟進(jìn)賢, 楊榮杰, 李建民. 增塑劑及燃燒催化劑對(duì)BAMO-THF復(fù)合推進(jìn)劑性能的影響[J]. 推進(jìn)技術(shù), 2008, 29(2): 253-256.

      ZHAI Jin-xian, YANG Rong-jie, LI Jian-min. Influences of plasticizers and combustion catalyst on performance of composite BAMO-THF propellants[J]. Journal of Propulsion Technology, 2008, 29(2):253-256.

      [69] Choudhari M K, Dhar S S, Shrotri P G, et al. Effect of high energy materials on sensitivity of composite modified double base CMDB propellant system[J]. Defence Science Journal, 2013, 42(4): 253-257.

      [70] 滕學(xué)峰, 鄧重清, 胡銓, 等. 高氯酸銨(AP)基復(fù)合改性雙基(AP/CMDB)推進(jìn)劑燃速控制與降感研究[J]. 科學(xué)技術(shù)與工程, 2017, 17(6): 178-182.

      TENG Xue-feng, DENG Chong-qing, HU Quan, et al. Research of burning rate controlling and sensitivity reducing of AP/CMDB propellant[J]. Science Technology and Engineering, 2017, 17(6): 178-182.

      [71] 李煥, 樊學(xué)忠, 龐維強(qiáng). 低易損性固體推進(jìn)劑鈍感特性及評(píng)估試驗(yàn)方法研究進(jìn)展[J]. 化學(xué)推進(jìn)劑與高分子材料, 2017, 15(2): 56-59.

      LI Huan, FAN Xue-zhong, PANG Wei-qiang. Research progress in insensitivity characteristic and evaluation test method of low vulnerability solid propellant[J]. Chemical Propellants & Polymeric Materials, 2017, 15(2): 56-59.

      [72] Asthana S N, Divekar C N, Singh H. Studies on thermal stability, autoignition and stabilizer depletion for shelf life of CMDB propellants[J]. Journal of Hazardous Materials, 1989, 21(1): 35-46.

      [73] 尚海林, 趙鋒, 王文強(qiáng), 等. 沖擊作用下炸藥熱點(diǎn)形成的3維離散元模擬[J]. 爆炸與沖擊, 2010, 30(2): 131-137.

      SHANG Hai-lin, ZHAO Feng, WANG Wen-qiang, et al. Three-dimensional discrete element simulation of hot spots in explosives under shock loading[J]. Explosion & Shock Waves, 2010, 30(2):131-137.

      [74] 肖鶴鳴, 朱衛(wèi)華, 肖繼軍, 等. 含能材料感度判別理論研究——從分子、晶體到復(fù)合材料[J]. 含能材料, 2012, 20(5): 514-527.

      XIAO He-ming, ZHU Wei-hua, XIAO Ji-jun, et al. Theoretical studies on sensitivity criterion of energetic materials——from molecules,crystals,to composite materials[J]. Chinese Journal of Energetic Materials, 2012, 20(5):514-527.

      [75] Yan Q L, Zeman S. Theoretical evaluation of sensitivity and thermal stability for high explosives based on quantum chemistry methods: a brief review[J]. International Journal of Quantum Chemistry, 2013, 113(8): 1049-1061.

      [76] Chen Z X, Xiao H M. Quantum chemistry derived criteria for impact sensitivity[J]. Propellants Explosives Pyrotechnics, 2014, 39(4): 487-495.

      [77] 廉鵬宰, 來(lái)蔚鵬, 王伯周, 等. 新型高能量密度化合物3,6-雙(3,5-二硝基-1,2,4-三唑-1)-1,2,4,5-四嗪-1,4-二氧化物的性能預(yù)估及合成路線設(shè)計(jì)[J]. 化學(xué)學(xué)報(bào), 2009, 67(20): 2343-2348.

      LIAN Peng-zai, LAI Wei-peng, WANG Bo-zhou, et al. Design of synthetic route and prediction of properties for a novel high energetic density compound 3,6-Bis(3,5-dinitro-1,2,4-triazol-1-yl)-1,2,4,5-tetrazine-1,4-dioxide[J]. Acta Chimica Sinica, 2009, 67(20):2343-2348.

      [78] 杜軍良, 舒遠(yuǎn)杰, 周陽(yáng), 等. 用分子拓?fù)鋮?shù)預(yù)估多硝基芳香族化合物的撞擊感度[J]. 火炸藥學(xué)報(bào), 2010, 33(6): 5-10.

      DU Jun-liang, SHU Yuan-jie, ZHOU Yang, et al. Predication on impact sensitivity of polynitroaromatic compounds using principal component regression[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2010, 33(6):5-10.

      [79] Liu H, Jiang F, Guo-Qiang Y U, et al. Application research of genetic-neural network method in the prediction of explosives' impact sensitivity[J]. Initiators & Pyrotechnics, 2010, 42(2): 221-32.

      [80] Keshavarz M H, Jaafari M. Investigation of the various structure parameters for predicting impact sensitivity of energetic molecules via artificial neural network[J]. Propellants Explosives Pyrotechnics, 2010, 31(3): 216-225.

      [81] Zhang L, Zybin S V, Duin A C T V, et al. Shock induced decomposition and sensitivity of energetic materials by ReaxFF molecular dynamics[C] ∥14th APS Topical Conference on Shock Compression of Condensed Matter. Baltimore: Bulletin of the American Physical Society, 2006: 585-588.

      [82] Xiao J, Wang W, Chen J, et al. Study on the relations of sensitivity with energy properties for HMX and HMX-based PBXs by molecular dynamics simulation[J]. Physica B Condensed Matter, 2012, 407(17): 3504-3509.

      [83] Xiao J J, Li S Y, Chen J, et al. Molecular dynamics study on the correlation between structure and sensitivity for defective RDX crystals and their PBXs[J]. Journal of Molecular Modeling, 2013, 19(2): 803-809.

      [84] Guo D, An Q, Iii W a G, et al. Compressive shear reactive molecular dynamics studies indicating that cocrystals of TNT/CL-20 decrease sensitivity[J]. Journal of Physical Chemistry C, 2014, 118(51): 30202-30208.

      [85] Zhang C. Review of the establishment of nitro group charge method and its applications[J]. Journal of Hazardous Materials, 2009, 161(1): 21.

      [86] Edwards J, Eybl C, Johnson B. Correlation between sensitivity and approximated heats of detonation of several nitroamines using quantum mechanical methods[J]. International Journal of Quantum Chemistry, 2004, 100(5): 713-719.

      [87] And B M R, Hare J J. A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules[J]. Journal of Physical Chemistry A, 2002, 106(9): 1770-1783.

      [88] Xiao H M, Fan J F, Gu Z M, et al. Theoretical study on pyrolysis and sensitivity of energetic compounds : (3) Nitro derivatives of aminobenzenes[J]. Chemical Physics, 1998, 226(1-2): 15-24.

      [89] Gu Z M, Fan J F, Xiao H M, et al. A theoretical study on pyrolysis and sensitivity of energetic compounds*(V) - Nitro derivatives of methylbenzene[J]. Chemical Research in Chinese Universities, 1999, 16(1): 21-30.

      [90] Chen Z X, Xiao H, Yang S. Theoretical investigation on the impact sensitivity of tetrazole derivatives and their metal salts[J]. Chemical Physics, 1999, 250(3): 243-248.

      [91] 劉歡, 姜峰, 于國(guó)強(qiáng), 等. 遺傳-神經(jīng)網(wǎng)絡(luò)方法在炸藥撞擊感度預(yù)測(cè)中的應(yīng)用研究[J]. 火工品, 2010, (6): 42-45.

      LIU Huan, JIANG Feng, YU Guo-qiang, et al. Application research of genetic-neural network method in the prediction of explosives' impact sensitivity[J]. Initiators & Pyrotechnics, 2010, 42(2):221-32.

      [92] 錢博文, 陳利平, 陳網(wǎng)樺. 基于遺傳算法的人工神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)多硝基化合物撞擊感度[J]. 含能材料, 2016, 24(7): 644-650.

      QIAN Bo-wen, CHEN Li-ping, CHEN Wang-hua. Prediction of impact sensitivity of polynitro compounds by artificial neural network based on the genetic algorithm[J]. Chinese Journal of Energetic Materials, 2016, 24(7): 644-650.

      [93] 劉冬梅, 趙麗, 肖繼軍, 等. 不同溫度下HMX和RDX晶體的感度判別和力學(xué)性能預(yù)估——分子動(dòng)力學(xué)比較研究[J]. 高等學(xué)?;瘜W(xué)學(xué)報(bào), 2013, 34(11): 2558-2565.

      LIU Dong-mei, ZHAO Li, XIAO Ji-jun, et al. Sensitivity criterion and mechanical properties prediction of HMX and RDX crystals at different temperatures——comparative study with molecular dymamics simulation[J]. Chemical Journal of Chinese Universities, 2013, 21(5):563-569.

      [94] 劉軼. 含能材料和自燃推進(jìn)劑的反應(yīng)動(dòng)力學(xué)模擬研究[C]∥ 全國(guó)強(qiáng)動(dòng)載效應(yīng)及防護(hù)學(xué)術(shù)會(huì)議暨復(fù)雜介質(zhì)/結(jié)構(gòu)的動(dòng)態(tài)力學(xué)行為創(chuàng)新研究群體學(xué)術(shù)研討會(huì). 北京: 中國(guó)力學(xué)學(xué)會(huì), 2013.

      LIU Yi. Simulation study on reaction kinetics of energetic materials and self-ignition propellants [C]∥ Symposium on Dynamic Load Effects and Protection in China, and Dynamic Mechanical Behavior of Complex Media/Structures. Beijing: Chinese Society of Theoretical and Applied Mechanics, 2013.

      [95] 嚴(yán)啟龍, 宋振偉, 安亭, 等. 含能材料物理化學(xué)性能理論預(yù)估研究進(jìn)展[J]. 火炸藥學(xué)報(bào), 2016, 39(5): 1-12.

      YAN Qi-long, SONG Zhen-wei, AN Ting, et al. Research progress in theoretical prediction of physicochemical properties for energetic materials[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2016, 39(5): 1-12.

      [96] Jaffe I, Price D. Safety information from propellant sensitivity studies[J]. Aiaa Journal, 2015, 1(2): 389-394.

      [97] So W, Francis E C. Dynamic finite element analysis of solid propellant impact test[J]. Journal of Spacecraft & Rockets, 1991, 28(6): 658-662.

      [98] 齊曉飛, 張曉宏, 李吉禎, 等. NC/NG共混體系的分子動(dòng)力學(xué)模擬研究[J]. 兵工學(xué)報(bào), 2013, 34(1): 93-99.

      QI Xiao-fei, ZHANG Xiao-hong, LI Ji-zhen, et al. Molecular dynamics simulation of NC/NG blends[J]. Acta Armamentarii, 2013, 34(1): 93-99.

      [99] 齊曉飛, 張曉宏, 張偉, et al. NC/NG共混體系的塑化行為[J]. 推進(jìn)技術(shù), 2013, 34(6): 843-848.

      QI Xiao-fei, ZHANG Xiao-hong, ZHANG Wei, et al. Study on plasticizing process of NC/NG blends[J]. Journal of Propulsion Technology, 2013, 34(6): 843-848.

      [100]朱偉, 劉冬梅, 肖繼軍, 等. 多組分高能復(fù)合體系的感度判據(jù)、熱膨脹和力學(xué)性能的MD研究[J]. 含能材料, 2014,22(5): 582-587.

      ZHU Wei, LIU Dong-mei, XIAO Ji-jun, et al. Molecular dynamics study on sensitivity criterion, thermal expansion and mechanical properties of multi-component high energy systems[J]. Chinese Journal of Energetic Materials, 2014, 22(5):582-587.

      [101] 付一政, 康志鵬, 郭志婧, 等. 共晶和共混對(duì)CL-20/DNB感度和熱解機(jī)理影響的MD模擬[J]. 含能材料, 2017, 25(2): 94-99.

      FU Yi-zheng, KANG Zhi-peng, GUO Zhi-jing, et al. Effect of cocrystallizing and mixing on sensitivity and thermal decomposition mechanisms of CL-20/DNB via MD simulation[J]. Chinese Journal of Energetic Materials, 2017, 25(2):94-99.

      Progress of Study on Desensitization Techniques and Sensitivity Mechanisms of Composite Modified Double-base Propellants

      CHEN Jing1, WANG Han1, LIU Meng1, WU Xiong-gang1, FAN Xue-zhong1,2

      (1. Xi′an Modern Chemistry Research Institute, Xi′an 710065, China; 2. Science and Technology on Combustion and Explosion Laboratory, Xi′an Modern Chemistry Research Institute, Xi′an 710065, China)

      Starting from the safety problems faced by high-value weapon platform tactical missiles, the research progress in the desensitizing techniques and sensitivity mechanisms of composite modified double-base (CMDB) propellant energetic components was summarized. From the aspects of modifying/replacing desensitization techniques of energetic filler, desensitization technique of energetic plasticizers and comprehensive desensitization technique etc., the matching technique approach between energy and sensitivity of CMDB propellant was summarized. The research work on the sensitivity mechanism of energetic component and multi components in recent years was introduced. The sensitivity mechanism and prediction method of CMDB propellant were summarized. The research trend show that the new insensitive materials and novel desensitization technique should be further applied to CMDB propellants and the sensitivity prediction method should be combined with the theoretical calculation to improve the development efficiency and comprehensive properties of CMDB propellants. With 101 conferences.

      composite modified double-base propellants;CMDB propellant; insensitive high energy filler; insensitive plasticizers; sensitivity mechanism; prediction of sensitivity

      2017-09-03;

      2017-10-29

      國(guó)家安全重大基礎(chǔ)研究項(xiàng)目

      陳京(1988-),男,博士,助理研究員,從事固體推進(jìn)劑研究。E-mail:chenjing_mcri@163.com

      樊學(xué)忠(1962-),男,研究員,博士生導(dǎo)師,從事固體推進(jìn)劑配方及工藝技術(shù)研究。E-mail:xuezhongfan@126.com

      10.14077/j.issn.1007-7812.2017.06.002

      TJ55;V512

      A

      1007-7812(2017)06-0007-10

      猜你喜歡
      感度增塑劑推進(jìn)劑
      氟橡膠包覆對(duì)CL-20機(jī)械感度及爆轟特性的影響研究
      爆破器材(2024年2期)2024-06-12 01:26:20
      均相催化六氫苯酐與C10直鏈醇制備環(huán)保增塑劑及其性能
      橡膠籽油基復(fù)合型環(huán)保增塑劑用于PVC的研究
      基于微納層疊技術(shù)的PVC分子取向?qū)υ鏊軇┻w移的影響
      增塑劑對(duì)PA6性能影響的研究
      KNSB推進(jìn)劑最佳配比研究
      高感度活性稀釋劑丙烯酰嗎啉的合成研究
      含LLM-105無(wú)煙CMDB推進(jìn)劑的燃燒性能
      無(wú)鋁低燃速NEPE推進(jìn)劑的燃燒性能
      FOX-7晶體形貌對(duì)感度的影響
      雷山县| 突泉县| 上林县| 资阳市| 大同县| 贵溪市| 禄劝| 尉犁县| 梁山县| 惠来县| 濮阳县| 新乡县| 客服| 怀集县| 金湖县| 利川市| 渭源县| 黄梅县| 凯里市| 凤冈县| 泰州市| 牙克石市| 太和县| 灵寿县| 丽江市| 高唐县| 商南县| 通道| 铅山县| 沅陵县| 田阳县| 济源市| 新建县| 黑山县| 文登市| 威海市| 东安县| 沂源县| 灵宝市| 台北县| 濉溪县|