• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      降雨類(lèi)型對(duì)褐土橫壟坡面土壤侵蝕過(guò)程的影響

      2018-01-09 01:09:42吳元芝
      關(guān)鍵詞:細(xì)溝雨型雨強(qiáng)

      安 娟,于 妍,吳元芝

      ?

      降雨類(lèi)型對(duì)褐土橫壟坡面土壤侵蝕過(guò)程的影響

      安 娟,于 妍,吳元芝

      (山東省水土保持與環(huán)境保育重點(diǎn)實(shí)驗(yàn)室,臨沂大學(xué)資源環(huán)境學(xué)院,臨沂 276005)

      雨型是影響土壤侵蝕過(guò)程的重要因子之一,而影響效應(yīng)與耕作措施密切相關(guān)。目前,雨型對(duì)橫壟坡面土壤侵蝕過(guò)程的影響機(jī)制尚不清楚。該文以褐土橫壟坡面為研究對(duì)象,設(shè)計(jì)了平均雨強(qiáng)和降雨量相同的4種雨型(增加、減弱、增加-減弱和減弱-增加型),采用可同時(shí)調(diào)節(jié)壟向和坡面坡度的土槽進(jìn)行模擬降雨,研究各個(gè)雨型下不同侵蝕階段的產(chǎn)流產(chǎn)沙特征。結(jié)果表明:雨型間的徑流量和侵蝕量在細(xì)溝間和細(xì)溝侵蝕階段均差異顯著,且差異在細(xì)溝階段體現(xiàn)的更為明顯。雨型間徑流量的大小順序?yàn)樵黾?減弱型>減弱型>減弱-增加型>增加型,侵蝕量則為增加-減弱型>減弱-增加型>減弱型>增加型。給定雨強(qiáng)下(30、60或90 mm/h),徑流量、徑流貢獻(xiàn)率和侵蝕量貢獻(xiàn)率均隨降雨過(guò)程中雨強(qiáng)發(fā)生時(shí)序的延遲而增加,而單位徑流侵蝕量呈相反趨勢(shì);雨型間給定雨強(qiáng)同一發(fā)生時(shí)序下的徑流量和侵蝕量及其它們對(duì)總徑流量和總侵蝕量的貢獻(xiàn)率均差異顯著。4種雨型下,冪函數(shù)均能很好的描述細(xì)溝間和細(xì)溝侵蝕階段內(nèi)產(chǎn)沙率與徑流率間的關(guān)系,且方程中的指數(shù)均低于2,但雨型間冪函數(shù)方程中的指數(shù)存在明顯差異。以上研究結(jié)果有助于深入理解褐土壟作系統(tǒng)下的土壤侵蝕機(jī)理,并為橫坡壟作的合理利用提供科學(xué)指導(dǎo)。

      土壤;侵蝕;徑流;橫坡壟作;褐土;模擬降雨;雨型

      0 引 言

      雨強(qiáng)是影響土壤侵蝕過(guò)程最為重要的因子之一。自然降雨中,雨強(qiáng)存在時(shí)空變異性[1-2],且隨降雨歷時(shí)變化不同雨強(qiáng)的組合被定義為雨型。然而,以往的研究對(duì)天然降雨過(guò)程中雨強(qiáng)的不均一性及其組合變化考慮不足[3-4],且已有的土壤侵蝕估算模型也是建立在均勻雨強(qiáng)的基礎(chǔ)上[5-7],這將導(dǎo)致研究結(jié)果與實(shí)際情況存在較大出入。

      目前,國(guó)內(nèi)外的學(xué)者針對(duì)雨型對(duì)土壤侵蝕過(guò)程的影響進(jìn)行了初步研究。Dunkerley[8]設(shè)計(jì)了平均和峰值雨強(qiáng)相同但分布不同的雨型,研究了雨型對(duì)徑流特征的影響,發(fā)現(xiàn)變雨強(qiáng)雨型下的徑流率和峰值徑流量是均勻雨型下的85%~570%。基于人工模擬降雨試驗(yàn),研究了總降雨量和雨強(qiáng)分布均相同雨型下的侵蝕過(guò)程,鄭粉莉等[9]發(fā)現(xiàn)峰值型雨型引起的坡面侵蝕量最大,分別是谷值型、減弱型、均勻型和增強(qiáng)型雨型下的1.20、1.63、1.78和1.80倍。An等[10]研究了降雨量和平均雨強(qiáng)相同的5種雨型下侵蝕過(guò)程,發(fā)現(xiàn)雨型間的徑流量無(wú)顯著差異,而侵蝕量的大小順序?yàn)椋涸黾有?增加-減弱型=減弱型>減弱-增加型>均勻型。設(shè)計(jì)了4種總降雨動(dòng)能相同而雨強(qiáng)變化不同的次降雨雨型,Wang等[11]發(fā)現(xiàn)延遲型的侵蝕量明顯高于增加型、中間型和均勻型。Mohamadi和Kavian[12]利用野外觀測(cè)資料把天然降雨按照雨強(qiáng)和降雨歷時(shí)劃分成不同的降雨機(jī)制,結(jié)果表明雨型間的侵蝕量和含沙量表現(xiàn)為增加型>增加-減弱型>減弱-增加型>減弱型。秦偉等[13]基于野外常年降雨觀測(cè)資料,選取雨量、歷時(shí)和雨強(qiáng)為雨型劃分指標(biāo),分析不同雨型下的侵蝕能力,發(fā)現(xiàn)不同雨型下的單位雨量侵蝕能力大小順序?yàn)锳雨型(高頻次、短歷時(shí)、小雨量、大雨強(qiáng))>B雨型(中頻次、中歷時(shí)、中雨量、中雨強(qiáng))>C雨型(低頻次、長(zhǎng)歷時(shí)、大雨量、小雨強(qiáng))。綜上發(fā)現(xiàn),1)以往的研究對(duì)雨型的劃分標(biāo)準(zhǔn)不統(tǒng)一;2)國(guó)外的研究大多側(cè)重于雨型整體對(duì)土壤侵蝕過(guò)程的影響,且忽視了雨型中雨強(qiáng)發(fā)生時(shí)序?qū)ζ旅媲治g的影響;3)國(guó)內(nèi)的研究主要集中于對(duì)野外常年降雨觀測(cè)資料的描述,對(duì)次降雨過(guò)程中的侵蝕動(dòng)態(tài)變化考慮不足。值得一提的是,雨型對(duì)坡面侵蝕過(guò)程的影響與耕作措施緊密相關(guān),而以往開(kāi)展的相關(guān)研究幾乎均是在平坡上開(kāi)展。

      橫壟因能匯集雨水、增加雨水就地入滲,減少水土流失,從而成為被廣泛采用的保護(hù)性耕作措施之一[14]。然而,橫壟在阻止徑流向坡下流動(dòng)的同時(shí),壟向微坡度的存在會(huì)導(dǎo)致雨水在位置較低處的壟溝內(nèi)積聚,進(jìn)而發(fā)生漫流。當(dāng)漫流的侵蝕力超過(guò)土壤的臨界剪切力時(shí),水流就會(huì)剝蝕壟面的土體顆粒,進(jìn)而誘發(fā)細(xì)溝的生成。細(xì)溝貫穿壟面后,壟溝內(nèi)蓄積的雨水會(huì)以較高的流速瀉出,致使橫壟發(fā)生垮塌,最終導(dǎo)致橫壟失去水土保持作用[15]。可見(jiàn),橫坡壟作系統(tǒng)具有獨(dú)特的土壤侵蝕特點(diǎn)。然而,目前針對(duì)橫壟坡面的侵蝕過(guò)程主要集中于2個(gè)方面:1)不同降雨參數(shù)(雨強(qiáng)、歷時(shí)和雨量等)和壟作結(jié)構(gòu)因子(壟寬、壟向坡度和壟高等)下的侵蝕特征[14,16-18];2)與其他耕作措施對(duì)比下,橫坡壟作措施的水土保持效益[19-20]。因此,深入探討橫壟措施下雨型對(duì)坡面土壤侵蝕過(guò)程的影響意義重大。鑒于此,本研究擬以褐土橫壟為研究對(duì)象,基于人工模擬降雨試驗(yàn),分析4個(gè)雨型(增加、減弱型、增加-減弱和減弱-增加型)下的產(chǎn)沙產(chǎn)流特征,以期深入理解褐土坡面土壤侵蝕機(jī)理,并為橫坡壟作的合理運(yùn)用提供科學(xué)依據(jù)。

      1 試驗(yàn)材料與方法

      1.1 試驗(yàn)材料

      降雨試驗(yàn)在山東省水土保持和環(huán)境保育重點(diǎn)實(shí)驗(yàn)室降雨大廳內(nèi)進(jìn)行。降雨試驗(yàn)裝置為安裝Veejet 80100噴頭的槽式模擬降雨系統(tǒng),有效降雨面積為2.2 m×12 m。該系統(tǒng)通過(guò)調(diào)節(jié)噴頭經(jīng)過(guò)噴水窗口的頻率控制雨強(qiáng)[21],降雨均勻度89%以上。試驗(yàn)所用土為可同時(shí)調(diào)節(jié)壟向與坡面坡度的鋼槽(圖1)。該土槽主體由通過(guò)鉸鏈連接的2個(gè)分體土槽構(gòu)成,每個(gè)分體土槽長(zhǎng)×寬=160 cm×80 cm。壟向坡度的調(diào)節(jié)通過(guò)上下移動(dòng)螺旋(a)來(lái)實(shí)現(xiàn),調(diào)節(jié)范圍為0~15°。通過(guò)安裝在支撐腿上的螺旋(b)進(jìn)行坡向坡度的調(diào)節(jié),范圍為0~25°。出口處(g)用于收集徑流泥沙樣。

      a.壟向坡度調(diào)節(jié)螺旋b.坡面坡度調(diào)節(jié)螺旋f.上坡位置產(chǎn)流產(chǎn)沙收集口 g.壟面下坡位置產(chǎn)流產(chǎn)沙收集口

      試驗(yàn)采用的土壤為魯中南山地丘陵區(qū)腹地沂蒙山區(qū)丘陵地帶廣泛分布的褐土,取自玉米地表層20 cm的耕層土。所用土的基本理化性質(zhì)見(jiàn)表1。

      表1 試驗(yàn)用土的基本理化性質(zhì)

      1.2 試驗(yàn)設(shè)計(jì)

      參考當(dāng)?shù)貧夂驍?shù)據(jù)和侵蝕性降雨標(biāo)準(zhǔn)[22],并結(jié)合試驗(yàn)實(shí)際情況,設(shè)計(jì)4個(gè)雨型。各個(gè)雨型包括30、60和90 mm/h三個(gè)雨強(qiáng),每個(gè)雨強(qiáng)在降雨過(guò)程中持續(xù)20 min。其中,雨型包括增加型(雨強(qiáng)逐漸增大,30-60-90 mm/h)、減弱型(雨強(qiáng)逐漸減小,90-60-30 mm/h)、增加-減弱型(雨強(qiáng)在降雨中期達(dá)到峰值,60-90-30 mm/h)和減弱-增加型(雨強(qiáng)在降雨中期達(dá)到最小值,60-30-90 mm/h)。野外實(shí)際調(diào)查數(shù)據(jù)表明,壟寬多為60~80 cm,壟溝方向上坡長(zhǎng)在150 cm左右會(huì)出現(xiàn)壟溝低洼積水區(qū)域,且橫坡系統(tǒng)下溝道的長(zhǎng)度一般在0~6 m。為模擬坡面壟溝內(nèi)積水漫流的情形,基于壟溝內(nèi)的微觀匯水單元,設(shè)計(jì)了壟寬為80 cm,坡長(zhǎng)為160 cm,坡度10°,壟向坡度為6°,壟高為12 cm的橫坡壟作系統(tǒng)。針對(duì)壟寬,壟上側(cè)在土槽平面上的投影線(xiàn)長(zhǎng)度約為下側(cè)的2倍:即80 cm的壟寬,上側(cè)壟面在土槽平面上的投影為53.3 cm,下側(cè)壟面則為26.7 cm。共設(shè)計(jì)8場(chǎng)降雨試驗(yàn),即每個(gè)雨型下重復(fù)2次。

      1.3 試驗(yàn)步驟

      試驗(yàn)用土風(fēng)干后未過(guò)篩,以保持原有的土壤結(jié)構(gòu)。將土槽調(diào)整為設(shè)計(jì)的壟向坡度后,利用分層法進(jìn)行土槽填充。土槽底部每5 cm一層填裝20 cm厚的褐土,容重控制在1.5 g/cm3,用于模擬犁底層。裝上層土之前用1 cm厚的木板抓毛下層土壤表面,以便保持顆??臻g分布的相似性和防止土層之間出現(xiàn)分層。之后按照填土之前在土槽四壁勾畫(huà)的壟作輪廓線(xiàn),修建壟高為12 cm,壟寬為80 cm的土壟兩根,裝土容重為1.15 g/cm3。

      填裝土槽完畢后,進(jìn)行雨強(qiáng)為10 mm/h的前期預(yù)降雨。此過(guò)程中,將1 mm×1 mm尼龍紗網(wǎng)覆蓋在土槽之上以減弱雨滴打擊對(duì)土壤表層的影響。最后,將填裝土槽的坡面坡度調(diào)整為10°,并按照設(shè)計(jì)的雨型進(jìn)行人工模擬降雨。待出口出現(xiàn)持續(xù)水流后,每隔2 min收集一次徑流樣。降雨過(guò)程中時(shí)刻觀察坡面的變化,待細(xì)溝發(fā)生后,收集樣品的間隔為30 s。降雨結(jié)束后,將收集的樣品立即稱(chēng)質(zhì)量。

      1.4 數(shù)據(jù)分析

      利用SPSS 16軟件下的方差分析(ANOVA)對(duì)雨型間的徑流量和侵蝕量進(jìn)行顯著性檢驗(yàn),基于最小顯著差法(LSD)開(kāi)展不同雨型下徑流、泥沙的多重比較,并在0.05水平上達(dá)到顯著。另,在SPSS軟件下構(gòu)建回歸模型,并檢驗(yàn)回歸系數(shù)的顯著性。

      2 試驗(yàn)結(jié)果與分析

      2.1 雨型對(duì)坡面徑流和侵蝕量的影響

      侵蝕階段內(nèi),雨型對(duì)徑流量和侵蝕量的影響明顯不同。雨型間的總徑流量差異顯著,表現(xiàn)為增加-減弱型>減弱型>減弱-增加型>增加型(表2)。增加-減弱型、減弱型和減弱-增加型的總徑流量比增加型分別增加49.41%、40.91%和25.22%。然而,以往在平坡開(kāi)展的相關(guān)研究認(rèn)為雨型對(duì)徑流的產(chǎn)生無(wú)顯著影響[10,23]。這可能是因?yàn)闄M坡壟作系統(tǒng)下的耕作方向改變了徑流的匯水路徑和匯水區(qū)面積[24],進(jìn)而導(dǎo)致產(chǎn)流機(jī)制發(fā)生了改變。

      表2 細(xì)溝間和細(xì)溝侵蝕階段的徑流量和侵蝕量

      注:同列不同字母表示處理間差異顯著(<0.05)。下同。

      Note: Different letters in same column indicate significant difference (<0.05). The same as below.

      不同雨型下總侵蝕量大小順序?yàn)樵黾?減弱型>減弱-增加型>減弱型>增加型(表2),降雨前、后坡面侵蝕狀態(tài)進(jìn)一步佐證了不同雨型下侵蝕程度的大?。▓D2a-2e)。與增加型相比,增加-減弱型、減弱-增加型和減弱型的總侵蝕量分別增加43.03%、10.30%和3.03%。這與以往在平坡上開(kāi)展的研究結(jié)果不一致[10-11]。這可能一方面是因?yàn)闄M坡壟作下來(lái)自上坡的泥沙不斷沉積在下坡壟溝內(nèi);另一方面是當(dāng)細(xì)溝發(fā)生后,壟溝內(nèi)的大量物質(zhì)傾瀉而出,且積聚的雨水不斷流出,從而導(dǎo)致雨型對(duì)產(chǎn)沙的影響機(jī)制較平坡下發(fā)生了巨大改變。

      圖2 不同雨型下降雨前、后坡面侵蝕狀態(tài)

      進(jìn)一步分析發(fā)現(xiàn),細(xì)溝間和細(xì)溝侵蝕階段雨型間的徑流量和侵蝕量均存在顯著差異,但徑流量和侵蝕量的差異在細(xì)溝階段體現(xiàn)的更為明顯。且雨型對(duì)侵蝕量的影響較徑流量更為明顯。細(xì)溝間階段,與增加型相比,減弱型、增加-減弱型和減弱-增加型的徑流量分別減少?65.04%、14.24%和59.18%,相應(yīng)的侵蝕量分別減少?19.06%、29.19%和50.91%;細(xì)溝階段,減弱型、減弱-增加型和增加-減弱型的徑流量較增加型分別增加8.89%、77.60%和193.62%,相應(yīng)的侵蝕量分別增加?27.05%、92.59%和238.89%。

      2.2 雨強(qiáng)發(fā)生時(shí)序?qū)搅骱颓治g量的影響

      為進(jìn)一步探討雨型間徑流和侵蝕量的差異,對(duì)比分析了雨型中給定雨強(qiáng)不同發(fā)生時(shí)序下的徑流量、侵蝕量及其對(duì)總侵蝕量的貢獻(xiàn)率。由表3可知,徑流量和其對(duì)徑流總量的貢獻(xiàn)率(徑流貢獻(xiàn)率)隨雨型中給定雨強(qiáng)發(fā)生時(shí)序的延遲而不斷增加。30 mm/h雨強(qiáng)下,中間和結(jié)束階段(增加-減弱型)的徑流量較起始階段分別顯著增加78.33和113.78倍,相應(yīng)的貢獻(xiàn)率分別增加64.21和78.11倍;60 mm/h雨強(qiáng)下,中間階段(減弱型)的徑流量和貢獻(xiàn)率分別比起始階段(減弱-增加型)顯著增加4.41和3.80倍;90 mm/h雨強(qiáng)下,與起始階段相比,中間和結(jié)束階段(增加型)的徑流量分別顯著增加1.34和1.19倍,相應(yīng)的貢獻(xiàn)率分別增加1.21和2.08倍。表明,雨強(qiáng)越小,發(fā)生時(shí)序?qū)Ξa(chǎn)流的影響越大,即時(shí)序效應(yīng)越明顯。這主要與結(jié)皮的形成和土壤入滲能力有關(guān)。進(jìn)一步發(fā)現(xiàn),給定雨強(qiáng)同一發(fā)生時(shí)序下,不同雨型該雨強(qiáng)發(fā)生時(shí)序下的徑流量和貢獻(xiàn)率仍均存在明顯差異。30 mm/h雨強(qiáng)結(jié)束階段下,增加-減弱型的徑流量和貢獻(xiàn)率分別是減弱型的1.51和1.43倍;60 mm/h雨強(qiáng)中間階段下,減弱型的徑流量和貢獻(xiàn)率較增加型分別增加2.81和2.00倍;90 mm/h雨強(qiáng)結(jié)束階段下,與減弱-增加型相比,增加型的徑流量和貢獻(xiàn)率分別增加1.01和1.26倍。然而,以往在平坡開(kāi)展的研究認(rèn)為雨強(qiáng)發(fā)生時(shí)序?qū)搅髁亢蛷搅髫暙I(xiàn)率的影響不顯著[9,25]。

      表3 雨強(qiáng)不同發(fā)生時(shí)序下的徑流量、侵蝕量和貢獻(xiàn)率

      雨強(qiáng)發(fā)生時(shí)序?qū)Ξa(chǎn)沙的影響效應(yīng)明顯不同于對(duì)徑流的影響。單位徑流侵蝕量隨雨型中給定雨強(qiáng)發(fā)生時(shí)序的推遲而減小,而其貢獻(xiàn)率呈相反趨勢(shì)。30 mm/h雨強(qiáng)下,起始和中間階段的單位徑流侵蝕量較結(jié)束階段(減弱型)分別增加3.71倍和93.87%,相應(yīng)的貢獻(xiàn)率分別減小93.81%和?89.32%;60 mm/h雨強(qiáng)下,起始階段(減弱-增加型)的單位徑流侵蝕量較中間階段(減弱型)增加50.74%,貢獻(xiàn)率減少73.93%;90 mm/h雨強(qiáng)下,與結(jié)束階段(增加型)相比,起始和中間階段的單位徑流侵蝕量分別增加9.13%和22.62%,相應(yīng)的貢獻(xiàn)率分別減少51.78%和8.43%。進(jìn)一步分析發(fā)現(xiàn),雨型間給定雨強(qiáng)同一發(fā)生時(shí)序下的單位徑流侵蝕量和侵蝕貢獻(xiàn)率均差異顯著。30 mm/h雨強(qiáng)結(jié)束階段下,增加-減弱型的單位徑流侵蝕量和侵蝕貢獻(xiàn)率比減弱型增加29.90%和41.81%;60 mm/h雨強(qiáng)中間階段下,減弱型的單位徑流侵蝕量和侵蝕貢獻(xiàn)率較增加型分別增加-32.25%和84.14%;90 mm/h雨強(qiáng)結(jié)束階段下,與減弱-增加型相比,增加型的單位徑流侵蝕量和侵蝕貢獻(xiàn)率分別增加15.76%和29.35%。

      2.3 不同雨型下徑流與侵蝕量之間的關(guān)系

      4個(gè)雨型下,細(xì)溝間和細(xì)溝侵蝕階段的產(chǎn)沙率均隨徑流率的增加大體上呈現(xiàn)逐漸增大的趨勢(shì)(圖3a-d),但增大的動(dòng)態(tài)變化幅度不同。利用線(xiàn)性、指數(shù)和冪函數(shù)對(duì)不同雨型下細(xì)溝間和細(xì)溝階段產(chǎn)沙率和徑流率之間的關(guān)系進(jìn)行模擬。發(fā)現(xiàn),對(duì)于給定的雨型,冪函數(shù)方程的決定系數(shù)都在0.67以上,表明模擬方程達(dá)到了適用性的要求[26]。說(shuō)明,侵蝕階段內(nèi)產(chǎn)沙率與徑流率之間符合冪函數(shù)關(guān)系,這與以往在平坡開(kāi)展的研究結(jié)果一致[27-29]。然而,雨型間冪函數(shù)方程中的指數(shù)存在明顯差異。細(xì)溝間階段,增加型、增加-減弱和減弱-增加型雨型下的指數(shù)較減弱型分別增加20.73%、58.54%和71.95%。細(xì)溝階段,與增加型相比,減弱型、增加-減弱和減弱-增加型下的指數(shù)分別增加2.46、2.52和1.46倍??梢?jiàn),細(xì)溝階段雨型間的產(chǎn)沙動(dòng)力機(jī)制差異更明顯。

      圖3 產(chǎn)沙率與徑流率之間的關(guān)系

      進(jìn)一步分析發(fā)現(xiàn),給定雨型下,冪函數(shù)方程中的指數(shù)變化與侵蝕階段密切相關(guān)。減弱型和增加-減弱雨型下,細(xì)溝階段冪函數(shù)方程中的指數(shù)均高于細(xì)溝間階段。與細(xì)溝間階段相比,減弱型和增加-減弱雨型細(xì)溝階段的方程指數(shù)分別增加128.05%和46.15%。說(shuō)明,細(xì)溝發(fā)生后徑流的搬運(yùn)能力急劇增加。然而,增加和減弱-增加型下細(xì)溝階段的指數(shù)較細(xì)溝間階段分別減小了45.45%和5.67%,這可能是該雨型下細(xì)溝發(fā)生后壟作坡面的匯水路徑與匯水區(qū)的動(dòng)態(tài)變化導(dǎo)致被分離的土壤部分被阻擋攜帶輸出,也許是細(xì)溝發(fā)生后沉積在壟溝內(nèi)物質(zhì)的傾瀉阻礙了徑流和分離物質(zhì)的前行。

      3 討 論

      自然降雨中,變雨強(qiáng)是一種常見(jiàn)現(xiàn)象。然而,針對(duì)變雨強(qiáng)組合(雨型)對(duì)坡面侵蝕過(guò)程影響的研究嚴(yán)重不足,尤其是橫坡壟作系統(tǒng)下。本文的研究發(fā)現(xiàn)橫坡壟作系統(tǒng)下,4種雨型(增加、減弱型、增加-減弱和減弱-增加型)間的徑流量和侵蝕量存在顯著差異,且雨型中給定雨強(qiáng)不同發(fā)生時(shí)序下的侵蝕特征明顯不同。這可能與土壤可蝕性和產(chǎn)沙過(guò)程有關(guān)。

      隨降雨進(jìn)行,土壤表面結(jié)皮程度和土壤結(jié)構(gòu)的劇烈變化將導(dǎo)致土壤可蝕性發(fā)生明顯改變[30-31]。前期研究表明,土壤可蝕性值隨降雨進(jìn)行逐漸增加,達(dá)到最大值后逐漸趨向平穩(wěn)[3]。而雨強(qiáng)在一定程度上決定了土壤結(jié)皮和土壤結(jié)構(gòu)的變化幅度[32]。說(shuō)明降雨過(guò)程中雨型中給定雨強(qiáng)不同發(fā)生時(shí)序下的土壤可蝕性可能存在較大差異。即土壤可蝕性會(huì)隨雨型的改變而發(fā)生明顯變化[33]。而徑流的搬運(yùn)能力和土壤的分離能力與土壤可蝕性緊密相關(guān)[34]。因此,土壤可蝕性的不同可能是雨型間和給定雨強(qiáng)不同發(fā)生時(shí)序下徑流和侵蝕量差異的主要原因。

      為進(jìn)一步探討雨型間侵蝕過(guò)程的差異,分析了侵蝕階段內(nèi)含沙量的動(dòng)態(tài)變化,以便明確雨型間的產(chǎn)沙過(guò)程是否發(fā)生了改變。增加型下,細(xì)溝間階段含沙量隨降雨進(jìn)行呈現(xiàn)逐漸降低的趨勢(shì),而細(xì)溝階段其表現(xiàn)為急劇增加后降低并最終趨于平穩(wěn)(圖4a)。且降雨后壟溝內(nèi)仍存在較多匯集的雨水(圖2b)。說(shuō)明該雨型下降雨過(guò)程中土壤顆粒的分離量在很大程度上決定了產(chǎn)沙的多少。減弱型和增加-減弱雨型下,細(xì)溝間階段含沙量隨降雨進(jìn)行呈急劇增加達(dá)到極值后迅速下降,而細(xì)溝階段表現(xiàn)為逐漸下降的趨勢(shì)(圖4b、圖4c)。說(shuō)明這2種雨型下降雨前期產(chǎn)沙主要取決于徑流的特性,而后期主要受制于搬運(yùn)物質(zhì)量的多少。降雨后,減弱型下壟溝內(nèi)存在的大量雨水(圖2c);增加-減弱型下出現(xiàn)很窄、較深的溝道(圖2d)。這進(jìn)一步說(shuō)明,2種雨型下侵蝕階段內(nèi)土壤顆粒分離量在很大程度上決定了產(chǎn)沙強(qiáng)度。減弱-增加雨型下,細(xì)溝間和細(xì)溝階段,隨降雨時(shí)間的延長(zhǎng)含沙量均呈逐漸增加到極值后急劇降低并最終趨于平穩(wěn)的趨勢(shì)(圖4d)。而雨后該雨型下壟溝內(nèi)存在大量匯集的雨水且坡面存在兩條匯水路徑(圖2e)。說(shuō)明減弱-增加雨型下侵蝕階段內(nèi)土壤顆粒分離量和徑流特性對(duì)產(chǎn)沙強(qiáng)度的影響呈動(dòng)態(tài)變化。進(jìn)一步分析發(fā)現(xiàn),不同雨型下細(xì)溝出現(xiàn)的時(shí)間存在較大差異(圖4)。增加型下細(xì)溝在50.45 s時(shí)發(fā)生,減弱型、增加-減弱型和減弱-增加型下細(xì)溝產(chǎn)生的時(shí)間較增加型分別縮短了13.37、27.01和12.28 s??梢?jiàn),降雨過(guò)程中不同雨型下的產(chǎn)沙過(guò)程存在較大差異。

      圖4 不同雨型下含沙量隨降雨歷時(shí)的變化

      雨型間土壤可蝕性的差異和產(chǎn)沙過(guò)程的改變,將導(dǎo)致徑流與侵蝕量之間關(guān)系的變化。雖然不同雨型下細(xì)溝間和細(xì)溝階段徑流率與侵蝕速率間均符合冪函數(shù)關(guān)系,但是雨型間冪函數(shù)方程的指數(shù)存在明顯差異。這主要是由于雨型間細(xì)溝發(fā)生的時(shí)間(圖4)和細(xì)溝特征不同(圖2),因?yàn)榧?xì)溝發(fā)生時(shí)大量泥沙物質(zhì)的輸出與溝道的形態(tài)密切相關(guān)[30]。另外,土壤的入滲與坡面侵蝕狀態(tài)緊密相關(guān),這將影響徑流的搬運(yùn)能力。以往在平坡開(kāi)展的研究認(rèn)為侵蝕量與徑流量符合的冪函數(shù)關(guān)系方程中的指數(shù)確定為2[35]。然而,本研究中冪函數(shù)方程中的指數(shù)均低于2。導(dǎo)致這種現(xiàn)象的原因:1)壟向坡度的存在導(dǎo)致雨水和來(lái)自上坡的泥沙在位置較低的壟溝內(nèi)匯集;2)壟溝削弱了徑流的流速;3)細(xì)溝發(fā)生后沉積在壟溝內(nèi)的物質(zhì)會(huì)阻礙分離顆粒的輸出或填充溝道。

      4 結(jié) 論

      基于橫坡壟作系統(tǒng),利用同時(shí)可調(diào)節(jié)壟向和坡面坡度的土槽進(jìn)行模擬降雨,定量研究了4種雨型(增加、減弱型、增加-減弱和減弱-增加型)下的產(chǎn)流和產(chǎn)沙特征,結(jié)論如下:

      1)細(xì)溝間和細(xì)溝侵蝕階段,雨型間的徑流量和侵蝕量均存在顯著差異,而差異在細(xì)溝階段體現(xiàn)的更為明顯。增加-減弱型、減弱型和減弱-增加型的總徑流量比增加型分別增加49.41%、40.91%和25.22%。與增加型相比,增加-減弱型、減弱-增加型和減弱型的總侵蝕量分別增加43.03%、10.30%和3.03%。

      2)雨型中的給定雨強(qiáng)下的徑流量、徑流貢獻(xiàn)率和侵蝕量貢獻(xiàn)率均隨該雨強(qiáng)發(fā)生時(shí)序的延遲而增加,但單位徑流侵蝕量呈相反趨勢(shì),且這種效應(yīng)在小雨強(qiáng)(30mm/h)下體現(xiàn)的更為明顯;雨型間給定雨強(qiáng)同一發(fā)生時(shí)序下的徑流量和侵蝕量及其它們的貢獻(xiàn)率均存在顯著差異。

      3)細(xì)溝間和細(xì)溝侵蝕階段內(nèi),產(chǎn)沙率與徑流率之間均符合冪函數(shù)關(guān)系,但雨型間冪函數(shù)方程中的指數(shù)差異明顯。

      4)侵蝕階段內(nèi),土壤可蝕性和產(chǎn)沙過(guò)程的變化是導(dǎo)致雨型間侵蝕特征改變的主要原因。

      [1] Dunkerley D. Rain event properties in nature and in rainfall simulation experiments: A comparative review with recommendations for increasingly systematic study and reporting[J]. Hydrological Processes, 2008, 22(22): 4415-4435.

      [2] Fang N F, Shi Z H, Li L, et al. The effects of rainfall regimes and land use changes on runoff and soil loss in a small mountainous watershed[J]. Catena, 2012, 99: 1-8.

      [3] Assouline S, Ben-Hur M. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing[J]. Catena, 2006, 66(3): 211-220.

      [4] Arnaez J, Lasanta T, Ruiz-Fla?o P, et al. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards[J]. Soil & Tillage Research, 2007, 93(2): 324-334.

      [5] Nearing M A, Foster G R, Lane L J, et al. A process-based soil erosion model for USDA-water erosion prediction project technology[J]. Transactions of the American Society of Agricultural Engineers, 1989, 32(5): 1587-1593.

      [6] Renard K G, Foster G R, Weesies G A, et al. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation. Agriculture handbook no. 703[R]. Washington: US Department of Agriculture, 1997.

      [7] Hairsine P B, Rose C W. Rainfall detachment and deposition: Sediment transport in the absence of flow driven processes[J]. Soil Science Society of American Journal, 1991, 55(2): 320-324.

      [8] Dunkerley D. Effects of rainfall intensity fluctuations on infiltration and runoff: Rainfall simulations on dryland soils, Fowlers Gap, Australia[J]. Hydrological Processes, 2012, 26(15): 2211-2224.

      [9] 鄭粉莉,邊鋒,盧嘉,等. 雨型對(duì)東北典型黑土區(qū)順坡壟作坡面土壤侵蝕的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(2):90-97.

      Zheng Fenli, Bian Feng, Lu Jia, et al. Effects of rainfall patterns on hillslope erosion with longitudinal ridge in typical black soil region of Northeast China[J]. Transaction of the Chinese Society for Agricultural Machinery, 2016, 47(2): 90-97. (in Chinese with English abstract)

      [10] An J, Zheng F L, Han Y. Effects of rainstorm patterns on runoff and sediment yield processes[J]. Soil Science, 2014, 179(6): 293-303.

      [11] Wang W T, Yin S Q, Xie Y, et al. Effects of four storm patterns on soil loss from five soils under natural rainfall[J]. Catena, 2016, 141: 56-65.

      [12] Mohamadi M A, Kavian A. Effect of rainfall patterns on runoff and soil erosion in field plots[J]. International Soil and Water Conservation Research, 2015, 3(4): 273-281.

      [13] 秦偉,左長(zhǎng)清,晏清洪,等. 紅壤裸露坡地次降雨土壤侵蝕規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(2):124-132.

      Qin Wei, Zuo Changqing, Yan Qinghong, et al. Regularity of individual rainfall soil erosion in bare slope land of red soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(2): 124-132. (in Chinese with English abstract)

      [14] Liu Q J, Zhang H Y, An J, et al. Soil erosion processes on row sideslopes within contour ridging systems[J]. Catena, 2014, 115: 11-18.

      [15] USDA-ARS. User’s reference guide, Revised Universal Soil Loss Equation Version2[EB/OL]. http://www.ars.usda.gov/ sp2UserFiles/Place/64080510/RUSLE/RUSLE2_User_Ref_Guide.pdf (01.03.13), 2008.

      [16] Liu Q J, An J, Zhang G H, et al. The effect of row grade and length on soil erosion from concentrated flow in furrows of contouring ridge systems[J]. Soil & Tillage Research, 2016, 160: 92-100.

      [17] Liu Q J, Shi ZH, Yu XX, et al. Influence of microtopography, ridge geometry and rainfall intensity on soil erosion induced by contouring failure[J]. Soil & Tillage Research, 2014, 136: 1-8.

      [18] Hessel R, Messing I, Chen L D, et al. Soil erosion simulations of and use scenarios for a small Loess Plateau catchment[J]. Catena, 2003, 54(1): 289-302.

      [19] 林超文,陳一兵,黃晶晶,等. 不同耕作方式和雨強(qiáng)對(duì)紫色土養(yǎng)分流失的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2007,40(10):2241-2249.

      Lin Chaowen, Chen Yibing, Huang Jingjing, et al. Effect of different cultivation methods and rain intensity on soil nutrient loss from a purple soil[J]. Scientia Agricultura Sinica, 2007, 40(10): 2241-2249. (in Chinese with English abstract)

      [20] Hansen N C, Gupta S C, Moncrief J F. Snowmelt runoff, sediment, and phosphorus losses under three different tillage systems[J]. Soil & Tillage Research, 2000, 57: 93-100.

      [21] 謝云,林小鵑,劉英娜,等. 槽式擺噴頭下噴式人工模擬降雨機(jī)的雨強(qiáng)及其空間分布率定[J]. 水土保持通報(bào),2008,28(4):1-6.

      Xie Yun, Lin Xiaojuan, Liu Yingna, et al. Calibration of simulated rainfall and its spatial distribution for trough rainfall simulator[J]. Bulletin of Soil and Water Conservation, 2008, 28(4): 1-6. (in Chinese with English abstract)

      [22] 于興修,李振煒,劉前進(jìn),等. 沂蒙山區(qū)典型小流域降雨徑流的磷素輸出特征[J]. 環(huán)境科學(xué),2012,33(8):2644-2651.

      Yu Xingxiu, Li Zhenwei, Liu Qianjin, et al. Output characteristics of rainfall runoff phosphorus pollution from a typical small watershed in Yimeng mountainous area[J]. Environmental Science, 2012, 33(8): 2644-2651. (in Chinese with English abstract)

      [23] Parsons A J, Stone P M. Effects of intra-storm variations in rainfall intensity on inter-rill runoff and erosion[J]. Catena, 2006, 67: 68-78.

      [24] Alvarez-Mozos J, Campo-Bescós M á, Giménez R, et al. Implications of scale, slope, tillage operation and direction in the estimation of surface depression storage[J]. Soil & Tillage Research, 2011, 111(2): 142-153.

      [25] 溫磊磊,鄭粉莉,楊青森,等. 雨型對(duì)東北黑土區(qū)坡耕地土壤侵蝕影響的試驗(yàn)研究[J]. 水利學(xué)報(bào),2012,43(9):1084-1091.

      Wen Leilei, Zheng Fenli, Yang Qingsen, et al. Effects of rainfall patterns on hillslope farmland erosion in black soil region of Northeast China[J]. Journal of Hydraulic Engineering, 2012, 43(9): 1084-1091. (in Chinese with English abstract)

      [26] Santhi C, Arnold J G, Williams J R, et al. Application of a watershed model to evaluate management effects on point and nonpoint source pollution[J]. Journal of Electronic Packaging, 2001, 44(6): 1559-1570.

      [27] Truman C C, Bradford J M. Relationships between rainfall intensity and the interrill soil loss-slope steepness ratio as affected by antecedent water content[J]. Soil Science, 1993, 156(6): 405-413.

      [28] Benik S R, Wilson B N, Biesboer D D, et al. Performance of erosion control products on a highway embankment[J]. Transactions of the American Society of Agricultural Engineers, 2003, 46(4): 1113-1119.

      [29] Meyer L D. How rain intensity affects interrill erosion[J]. Transactions of the American Society of Agricultural Engineers, 1981, 24: 1472-1475.

      [30] Huang C, Gascuel-Odoux C, Cros-Cayot S. Hill slope topographic and hydrologic effects on overland flow and erosion[J]. Catena, 2001, 46: 177-188.

      [31] 張科利,蔡永明,劉寶元,等. 黃土高原地區(qū)土壤可蝕性及其應(yīng)用研究[J]. 生態(tài)學(xué)報(bào),2001,21(10):1687-1695.

      Zhang Keli, Cai Yongming, Liu Baoyuan, et al. Evaluation of soil erodibility on the Loess Plateau[J]. Acta Ecologica Sinica, 2001, 21(10): 1687-1695. (in Chinese with English abstract)

      [32] 路培,王林華,吳發(fā)啟. 不同降雨強(qiáng)度下土壤結(jié)皮強(qiáng)度對(duì)侵蝕的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(8):141-146.

      Lu Pei, Wang Linhua, Wu Faqi. Effect of soil crust strength on erosion under different rainfall intensity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 141-146. (in Chinese with English abstract)

      [33] 張科利,蔡永明,劉寶元,等. 土壤可蝕性動(dòng)態(tài)變化規(guī)律研究[J]. 地理學(xué)報(bào),2001,6(6):673-681.

      Zhang Keli, Cai Yongming, Liu Baoyuan, et al. Fluctuation of soil erodibility due to rainfall intensity[J]. Acta Geographica Sinica, 2001, 6(6): 673-681. (in Chinese with English abstract)

      [34] Jin K, Cornelis W M, Gabriels D, et al. Residue cover and rainfall intensity effects on runoff soil organic carbon losses[J]. Catena, 2009, 78(1): 81-86.

      [35] Watson D A, Laflen J M. Soil strength, slope and rainfall intensity effects in interrill erosion[J]. Transactions of the American Society of Agricultural Engineers, 1985, 29(1): 98-102.

      Effects of rainfall patterns on hillslope soil erosion process of cinnamon soil in contour ridge system

      An Juan, Yu Yan, Wu Yuanzhi

      (276005,)

      Varying of rainfall intensity during rainfall events is a common phenomenon, and soil erosion processes are strongly affected by intra-storm variations in rainfall characteristics. In general, the combination of rainfall intensities in the rainfall process can be regarded as the storm pattern. In agricultural fields, the influence of storm patterns on erosion processes is largely related to tillage treatments. Contour ridging is an effective soil conservation practice and is used throughout the world. However, less information is available regarding the effect of storm pattern on soil erosion processes in a contour ridge system. In this study, the rainfall simulation experiment was conducted to determine the characteristics of runoff and sediment yielding during inter-rill and rill erosion stages under 4 storm patterns (the rising, falling, rising-falling, and falling-rising patterns) for cinnamon soil in a contour ridge system. And the ridge direction and field slope could be simultaneously changed in the experimental plot. Each storm pattern included 3 rainfall intensities, i.e. 30, 60 and 90 mm/h, which respectively lasted for 20 min during rainfall and comprised the same total rainfall amount and kinetic energy. Results showed that not only the total runoff but also sediment yield exhibited significant differences among storm patterns during both inter-rill erosion and rill erosion stages. Runoff for varied storm patterns was ranked in the following order: falling-rising > falling > rising-falling > rising pattern, but the difference in sediment yield showed a sequence of falling-rising > rising-falling > falling > rising pattern. Runoff from the falling-rising, falling, and rising-falling patterns increased by 1.49, 1.41, and 1.25 times, respectively, compared to that from the rising pattern, while the corresponding increase ratio of sediment yield was 43.03%, 3.30%, and 10.03%, respectively. However, the differences were more pronounced during the rill erosion stage. Compared with the rising pattern, runoff and sediment yield from the falling, falling-rising patterns and rising-falling during this stage increased by 8.89% and -27.05%, 77.60% and 92.59%, 193.62% and 238.89%, respectively. For a given rainfall intensity, runoff, runoff contribution rate, and sediment yield contribution rate gradually increased with the delay of rainfall intensity occurring sequence during the rainfall, while sediment yield by unit runoff presented the opposite tendency. Even at the same occurring stage of a given rainfall intensity, runoff, sediment yield, and their contribution rates were significantly different among different storm patterns, while the influence of occurring sequence for a given rainfall intensity on soil erosion process was the most obvious under 30 mm/h rainfall intensity. Power function fitted the relationship between runoff rate and sediment yield rate for both inter-rill erosion and rill erosion stages, but the exponent was lower than 2. However, there was obvious difference in the exponent of power function among storm patterns, especially in the rill erosion stage. The exponent of power function from the falling, rising-falling, and falling-rising patterns during the rill erosion stage increased by 2.46, 2.52 and 1.46 times, respectively, compared to that from the rising pattern. This indicated that storm pattern greatly affected runoff and sediment yield, especially during the rill erosion stage. This is mainly because soil erodibility and sediment production process varied with the change of storm pattern. So, the effect of storm pattern should be considered when developing soil erosion models. These findings are helpful to deeply understand erosion mechanism in a contour ridge system and supply guidance for implementing contour ridge systems.

      soils; erosion; runoff; contour ridge system; cinnamon soil; simulated rainfall; rainfall pattern

      10.11975/j.issn.1002-6819.2017.24.020

      S157

      A

      1002-6819(2017)-24-0150-07

      2017-06-27

      2017-11-03

      國(guó)家自然科學(xué)基金青年項(xiàng)目(41301292);國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(201610452018)。

      安 娟,博士,講師,主要從事土壤侵蝕過(guò)程與機(jī)理研究。Email:anjuan0715@126.com

      安 娟,于 妍,吳元芝. 降雨類(lèi)型對(duì)褐土橫壟坡面土壤侵蝕過(guò)程的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):150-156. doi:10.11975/j.issn.1002-6819.2017.24.020 http://www.tcsae.org

      An Juan, Yu Yan, Wu Yuanzhi. Effects of rainfall patterns on hillslope soil erosion process of cinnamon soil in contour ridge system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 150-156. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.24.020 http://www.tcsae.org

      猜你喜歡
      細(xì)溝雨型雨強(qiáng)
      黑土坡面細(xì)溝形態(tài)及剖面特征試驗(yàn)研究
      概化的累計(jì)暴雨量百分?jǐn)?shù)法在太湖區(qū)域設(shè)計(jì)暴雨雨型研究的應(yīng)用
      江蘇水利(2020年9期)2020-10-09 02:53:52
      天津市設(shè)計(jì)暴雨雨型的演變
      陜北子洲“7?26”暴雨后坡耕地細(xì)溝侵蝕及其影響因素分析
      深圳市流域暴雨雨型及變化趨勢(shì)分析
      細(xì)溝發(fā)育與形態(tài)特征研究進(jìn)展
      托里降雨時(shí)間分布特征分析
      雨強(qiáng)及坡度對(duì)黃土區(qū)草地坡面水流流速的影響
      人民黃河(2018年4期)2018-09-10 15:14:42
      渭南市1961-2016年雨日、雨強(qiáng)的季節(jié)變化特征
      上海市設(shè)計(jì)雨型對(duì)雨水管網(wǎng)模擬的影響研究
      山西建筑(2017年21期)2017-09-03 10:29:20
      福贡县| 遂川县| 磐安县| 庆元县| 乌兰察布市| 滨州市| 金塔县| 石台县| 阳泉市| 晴隆县| 乌海市| 吕梁市| 拜城县| 广安市| 砚山县| 乃东县| 民县| 宿松县| 义马市| 东阿县| 台江县| 绥化市| 波密县| 天门市| 平利县| 宜昌市| 南漳县| 黄陵县| 龙里县| 三门县| 普定县| 海口市| 阿鲁科尔沁旗| 乐山市| 鄂托克旗| 水城县| 东莞市| 邹平县| 徐闻县| 九寨沟县| 方正县|