李安鑫 呂建雄 蔣佳荔
(中國林業(yè)科學(xué)研究院木材工業(yè)研究所 國家林業(yè)局木材科學(xué)與技術(shù)重點實驗室 北京 100091)
流變學(xué)(rheology)主要研究材料在應(yīng)力/應(yīng)變、溫度、濕度等條件下與時間因素有關(guān)的變形規(guī)律和機制,以研究材料的黏彈性為主要內(nèi)容。木材是一種生物高分子聚合物材料,其對應(yīng)力的響應(yīng)同時體現(xiàn)彈性固體和黏性流體的雙重特性,即黏彈性。木材黏彈性主要研究木材在應(yīng)力作用下所發(fā)生的與時間因素有關(guān)的變形規(guī)律和機制,以蠕變研究為典型代表。蠕變是在恒定應(yīng)力作用下木材應(yīng)變隨時間增加而增大的現(xiàn)象,木材發(fā)生蠕變時時,其質(zhì)際承載結(jié)構(gòu)是細(xì)胞壁,細(xì)胞壁的壁層構(gòu)造和化學(xué)組分對木材宏觀黏彈行為有著極其重要的影響(Salménetal., 2009; Navietal., 2009)。Eder等(2006)首次聯(lián)合利用厚度為200 μm的木材組織切片和單根纖維拉伸技術(shù),分別從組織和細(xì)胞壁水平上揭示了S2層微纖絲角對木材力學(xué)松弛行為的影響。Zhang等(2012)首次采用原位納米壓痕技術(shù)研究了木材細(xì)胞壁的黏彈行為。此外,對于木材單根纖維(本文特指針葉材的管胞和闊葉材的木纖維)而言,深入了解其黏彈性及濕熱軟化機制,對于實現(xiàn)木纖維/塑料復(fù)合材料的高效設(shè)計具有重要意義,并可為高效節(jié)能的制漿造紙工藝設(shè)計提供科學(xué)依據(jù)。因此,將木材流變學(xué)研究從宏觀引向微觀尺度,從細(xì)胞壁水平上揭示木材結(jié)構(gòu)與黏彈性之間的關(guān)系及其影響因子,才能真正掌握木材黏彈行為的作用機制。然而,在我國木材科學(xué)領(lǐng)域,目前關(guān)于細(xì)胞壁水平的木材黏彈行為研究較少,尤其是圍繞細(xì)胞壁結(jié)構(gòu)與黏彈性關(guān)系的系統(tǒng)研究更少。
鑒于此,本文從歸納木材細(xì)胞壁構(gòu)造和化學(xué)組分的最新研究成果入手,圍繞微纖絲角和化學(xué)組分對木材細(xì)胞壁黏彈行為的影響規(guī)律與作用機制進(jìn)行綜述,總結(jié)開展木材細(xì)胞壁黏彈性研究的測試方法和技術(shù)手段,并且提出今后進(jìn)一步開展這方面工作的建議與設(shè)想。
微纖絲在細(xì)胞壁各層的沉積主要取決于細(xì)胞的幾何尺寸、纖維素分子鏈的數(shù)量以及微纖絲之間的橫向距離(Emonsetal., 1998; 2000)。由于S2層最厚,占細(xì)胞壁質(zhì)量的80%以上,其對木材宏觀性質(zhì)具有決定性影響,因此S2層一直是木材細(xì)胞壁結(jié)構(gòu)研究的關(guān)鍵與熱點。
隨著現(xiàn)代顯微技術(shù)的不斷發(fā)展,透射電子顯微鏡(TEM)、原子力顯微鏡(AFM)和小角X-射線散射儀(SAXS)的應(yīng)用,木材細(xì)胞壁S2層的超微構(gòu)造逐漸被揭示。人們認(rèn)識到,細(xì)胞壁纖維素聚集體(cellulose aggregate)的尺寸分布范圍為3.5~30 nm(Fahlénetal., 2003; 2005; Bardageetal., 2004; Jungnikletal., 2007),平均尺寸為16~20 nm,具有吸濕性,與水分子作用會引起橫向尺寸發(fā)生較大變化,因此可推測纖維素聚集體內(nèi)存在部分結(jié)晶的纖維素或無定形的半纖維素(Salménetal., 2006a)。Andersson等(2015)研究了銀杏(Ginkgobiloba)木材沿髓心至樹皮方向細(xì)胞壁S2層纖維素的微晶尺寸分布,結(jié)果發(fā)現(xiàn)纖維素微晶的平均寬度為3.1~3.2 nm,長度為27.5~30.0 nm。?kerholm等(2001; 2003)利用動態(tài)傅里葉紅外光譜(FTIR)證明了針葉材的纖維素與葡甘露聚糖之間存在緊密連接,在外力作用下2個組分的分子性能顯示二者之間有較強的交互作用。Joseleau(2007)研究表明,對于闊葉材,半纖維素包括低取代度的木聚糖和高取代度的木聚糖2種類型,其中低取代度的木聚糖首先沉積于微纖絲上并與之形成緊密連接,從而增加了微纖絲的聚合度。Bardage等(2004)利用快速冷凍和深度蝕刻技術(shù)(RFDE)揭示了針葉材管胞S2層的微纖絲沿細(xì)胞軸向呈波浪形聚集態(tài)分布,相鄰的纖維素聚集體之間形成紡錘形狀,其橫向直徑為3~14 nm(圖1),證實了之前Boyd(1982)所提出的木材細(xì)胞壁微纖絲排列呈紡錘狀的設(shè)想。正是根據(jù)S2層的這種結(jié)構(gòu)特點,可以對“濕熱處理或脫部分Matrix物質(zhì)(全部由半纖維素和木質(zhì)素組成)處理會引起纖維素聚合度增加”(Duchesneetal., 2000; Hultetal., 2001; Fahlénetal., 2003)的現(xiàn)象做出解釋: 沿細(xì)胞壁軸向,纖維素聚集體之間被Matrix物質(zhì)填充,經(jīng)過破壞半纖維素的濕熱處理和脫Matrix物質(zhì)處理后,相鄰纖維素聚集體之間的距離減小、接觸面積增大,從而使纖維素聚合度增加(Salmén, 2006)。關(guān)于纖維素聚集體的空間排列方式,目前的觀點認(rèn)為是沿細(xì)胞軸向呈同心圓的層狀排列(Fahlénetal., 2005; Salménetal., 2006a)。
諸多研究表明,木材細(xì)胞壁S2層中不同類型木質(zhì)素是以特定方式與不同種類的半纖維素相結(jié)合的(Lawokoetal., 2005; Joseleauetal., 2005)。Joseleau等(2005)采用免疫標(biāo)記法研究了位于纖維素聚集體之間的Matrix中半纖維素和木質(zhì)素的結(jié)構(gòu)排列,在細(xì)胞壁形成的不同階段,觀察到了非縮合型木質(zhì)素(包括愈創(chuàng)木基結(jié)構(gòu)和紫丁香基結(jié)構(gòu))、縮合型木質(zhì)素(愈創(chuàng)木基結(jié)構(gòu))和多種木聚糖的沉積,提出了“縮合型木質(zhì)素和低取代度木聚糖的早期沉積會將Matrix與纖維素聚集體更緊密地聯(lián)系在一起”的觀點。Lawoko等(2005)對云杉(Piceaasperata)的木質(zhì)素-碳水化合物復(fù)合體(LCC)進(jìn)行了化學(xué)分析,發(fā)現(xiàn)高縮合型木質(zhì)素與葡甘露聚糖之間、低縮合型木質(zhì)素與木聚糖之間均存在化學(xué)連接。對于闊葉材,低取代度木聚糖在纖維素與縮合型木質(zhì)素之間起連接作用,而高取代度木聚糖與非縮合型木質(zhì)素之間的結(jié)合更為緊密。對于針葉材,低取代度木聚糖的位置被葡甘露聚糖取代,如圖1所示。至于纖維素聚合體內(nèi)部的半纖維素與微纖絲之間是否存在交聯(lián)作用以及交聯(lián)的方式,目前仍不清楚(Terashimaetal., 2004)。由此可見,木材細(xì)胞各化學(xué)組分之間的連接與相互作用極其復(fù)雜,其共同決定了細(xì)胞壁的物理力學(xué)性能(Salménetal., 1998)。
圖1 針葉材管胞壁結(jié)構(gòu)示意 (Salmén et al., 2009)Fig.1 Schematic illustration of tracheid wall structure of softwood
木材細(xì)胞壁主要由纖維素、半纖維素和木質(zhì)素構(gòu)成。針對單個細(xì)胞而言,可視為由微纖絲(全部由纖維素構(gòu)成)與Matrix(全部由木質(zhì)素和半纖維素構(gòu)成)組成。對于纖維素,過去30年來研究取得的最大進(jìn)展是對其Iα和Iβ晶型結(jié)構(gòu)的認(rèn)識(Atallaetal., 1984)。迄今為止,關(guān)于2種晶型結(jié)構(gòu)的差異是否會對纖維素的力學(xué)性質(zhì)產(chǎn)生影響仍不清楚。據(jù)報道,結(jié)晶纖維素的剛度約為134 GPa(Nishinoetal., 1995); 然而,纖維素作為細(xì)胞壁的骨架物質(zhì),其有效剛度仍亟待研究。此外,對于纖維素聚集體的結(jié)晶度與剛度之間的關(guān)系也亟待闡明。對于半纖維素和木質(zhì)素,由于處于分離狀態(tài)和原位狀態(tài)時其分子結(jié)構(gòu)和空間排列均存在很大差異,因此,木材細(xì)胞壁半纖維素和木質(zhì)素單一組分的力學(xué)參數(shù)測定有賴于細(xì)胞壁原位測試技術(shù)的進(jìn)步(Salménetal., 2009)。Takeichi等(2013)利用原位測試技術(shù)獲得日本柳杉(Cryptomeriajaponica)細(xì)胞壁木質(zhì)素的拉伸彈性模量為2.8 GPa。
纖維素、半纖維素和木質(zhì)素之間的鍵合方式對木材細(xì)胞壁性能有重要影響。迄今為止,未發(fā)現(xiàn)纖維素與木質(zhì)素之間存在直接交聯(lián)。而具有雙親性的半纖維素: 一方面,通過氫鍵與纖維素之間建立物理連接; 另一方面,與木質(zhì)素之間既存在物理連接,同時也存在化學(xué)連接(酯鍵、醚鍵、苷鍵等共價鍵)。Westbye等(2007)研究證實了木質(zhì)素與木聚糖之間通過共價鍵連接,揭示了木聚糖同時沉積于木質(zhì)素和纖維素表面。有研究指出,葡甘露聚糖的脫除,能增強木質(zhì)素與纖維素之間的交聯(lián),可揭示木質(zhì)素對細(xì)胞壁軸向剛度的貢獻(xiàn)(Salménetal., 2016)。由此可見,木材細(xì)胞壁是通過半纖維素將剛性的、親水性的纖維素與黏性的、疏水性的木質(zhì)素聯(lián)系在一起,從而維持細(xì)胞壁的整體性(圖1)。
圍繞木材細(xì)胞壁黏彈性的研究,考察的對象主要有3類: 1) 拉伸模式下厚度不大于200 μm的組織切片(Kojimaetal., 2004; 2005; Roszyketal., 2010; 2012); 2) 拉伸模式下的單根纖維(Ederetal., 2006; Dongetal., 2010; Olssonetal., 2014); 3) 單個細(xì)胞壁橫截面的原位壓痕(Zhangetal., 2012; Mengetal., 2015)。所涉及的研究內(nèi)容主要是從材料內(nèi)因(微纖絲角、化學(xué)組分)和環(huán)境外因(主要是水分)2個角度探討木材細(xì)胞壁黏彈性的響應(yīng)機制。本文分別以“細(xì)胞壁S2層微纖絲角”和“細(xì)胞壁的化學(xué)組分”對木材細(xì)胞壁黏彈性的影響為主線,同時將水分通過改變細(xì)胞壁結(jié)構(gòu)進(jìn)而影響其黏彈性的研究結(jié)果穿插其中,歸納了近年來木材細(xì)胞壁流變學(xué)的研究進(jìn)展和取得的主要結(jié)論。
細(xì)胞壁S2層微纖絲角對木材細(xì)胞壁的蠕變行為有顯著影響。諸多研究表明,木材細(xì)胞壁縱向拉伸蠕變變形量隨著微纖絲角的增加而增大(Kojimaetal., 2004; 2005; Dongetal., 2010; Roszyketal., 2010; 2012)。可通過木材細(xì)胞壁的復(fù)合結(jié)構(gòu)理論來解釋這一現(xiàn)象: 木材細(xì)胞壁可視為由Matrix與纖維素微纖絲構(gòu)成,其中,Matrix全部由半纖維素和木質(zhì)素構(gòu)成,其黏性大,對木材細(xì)胞壁的蠕變變形起主要貢獻(xiàn); 而纖維素微纖絲具有高剛度,包裹于Matrix中,作為其增強相存在。當(dāng)微纖絲角很小時,微纖絲沿細(xì)胞軸向的剛度分量大,制約了Matrix沿軸向的蠕變變形; 隨著微纖絲角增大,微纖絲沿細(xì)胞軸向的剛度分量減小,即對Matrix沿軸向蠕變變形的約束力減弱,使得木材細(xì)胞的軸向蠕變變形量增加(Engelundetal., 2011; Roszyketal., 2013)。
微纖絲角不同是造成早材與晚材、幼齡材與成熟材、應(yīng)力木與正常材之間蠕變存在差異的主要原因(Dongetal., 2010; Brémaudetal., 2013; Sharmaetal., 2015)。Dong等(2010)研究了挪威云杉(Piceaabies)早材與晚材、成熟材與幼齡材的單根纖維蠕變行為,結(jié)果表明: 早材的微纖絲角比晚材大,早材的蠕變變形量大于晚材; 幼齡材的微纖絲角大于成熟材,是幼齡材蠕變變形量較大的原因。Roszyk等(2012)研究了歐洲赤松(Pinussylvestris)蠕變變形量與微纖絲角之間的關(guān)系,揭示了當(dāng)微纖絲角為10°~18°時,蠕變變形量與微纖絲角之間呈線性正相關(guān); 當(dāng)微纖絲角高于18°時,蠕變變形量顯著增大。Brémaud等(2013)比較研究了正常材和應(yīng)壓木的動態(tài)剛度與阻尼性質(zhì),證實了應(yīng)壓木的微纖絲角大于正常材,使得前者具有較低的動態(tài)剛度和較高的阻尼。圍繞微纖絲角對應(yīng)力木與正常材細(xì)胞壁應(yīng)力松弛行為的影響,Eder等(2006)以挪威云杉應(yīng)壓木和正常材為試驗材料,聯(lián)合利用厚度為200 μm的木材組織切片和單根纖維拉伸技術(shù)開展應(yīng)力松弛測定,揭示了與具有較小微纖絲角(10°~20°)的正常材組織切片及單根纖維相比,具有較大微纖絲角(40°~ 45°)的應(yīng)壓木組織切片和單根纖維的應(yīng)力松弛行為更顯著。
此外,木材細(xì)胞壁的水分變化也會引起微纖絲角發(fā)生改變,進(jìn)而影響細(xì)胞壁的蠕變行為。諸多研究表明,木材細(xì)胞壁縱向拉伸蠕變變形量隨著平衡含水率的增加而增大(Kojimaetal., 2005; Roszyketal., 2010; 2012; Engelundetal., 2012)。原因在于: 當(dāng)水分子進(jìn)入木材細(xì)胞壁時,會切斷細(xì)胞壁聚合物分子之間的氫鍵連接,進(jìn)而與非結(jié)晶纖維素、半纖維素和木質(zhì)素的羥基、羧基、羰基等極性基團之間形成新的氫鍵。一方面,加大了分子鏈之間的距離,“自由體積”增加,使得分子鏈的延展性增強; 另一方面,Matrix發(fā)生各向同性的吸濕潤脹,會對微纖絲產(chǎn)生橫向作用力,引起微纖絲角增大,促使微纖絲與Matrix之間發(fā)生剪切滑移,最終使得細(xì)胞壁的軸向蠕變變形量增加(Navietal., 2002; Placetetal., 2007; Engelundetal., 2011; Tobaetal., 2013)。Kojima等(2005)以日本柳杉早材組織切片為研究對象,在不同微纖絲角條件下探討了纖維飽和點以下的平衡含水率對細(xì)胞壁縱向拉伸蠕變性能的影響,結(jié)果表明: 當(dāng)微纖絲角很小(12.0°)時,含水率增加對細(xì)胞壁縱向拉伸蠕變的影響甚微,這是因為此時的微纖絲對Matrix發(fā)生縱向吸濕潤脹的束縛力大,制約了細(xì)胞壁的縱向蠕變變形; 當(dāng)微纖絲角增大(20.4°,29.8°、44.1°)時,微纖絲對Matrix發(fā)生縱向吸濕潤脹的約束力減弱,此時含水率增加會引起細(xì)胞壁縱向拉伸蠕變變形量明顯增大。
當(dāng)木材細(xì)胞壁中的水分處于動態(tài)變化時,在恒定外力下所產(chǎn)生的蠕變變形量比同載荷高平衡含水率下的蠕變變形量要大得多,這就是機械吸濕蠕變現(xiàn)象(Olssonetal., 2007; 2014; Dongetal., 2010; Roszyketal., 2010; Violaineetal., 2015)。當(dāng)發(fā)生機械吸濕蠕變時,木材往往在較低的應(yīng)力水平、較短的時間內(nèi)就發(fā)生破壞。然而,關(guān)于木材單根纖維是否存在機械吸濕蠕變現(xiàn)象曾存在爭議: Sedlachek等(1994; 1995)以采用化學(xué)分離法獲得的木材單根纖維為研究對象,沒有觀察到機械吸濕蠕變現(xiàn)象; Salmén等(2006b)、Navi等(2006)和Meylan(2006)通過機械分離法獲得了細(xì)胞次生壁中天然化學(xué)組分保持完整的木材單根纖維(Burgertetal., 2005),蠕變試驗結(jié)果表明, 單根纖維在相對濕度循環(huán)變化條件下的蠕變變形量要比在高恒定相對濕度下的蠕變變形量明顯增大,從而證明了木材單根纖維具有機械吸濕蠕變效應(yīng)。由此可認(rèn)為,單根纖維是否存在機械吸濕蠕變現(xiàn)象取決于纖維的分離方式。Roszyk等(2010)在7%~25%含水率范圍內(nèi)研究了微纖絲角對木材組織切片軸向機械吸濕蠕變的影響,結(jié)果發(fā)現(xiàn): 當(dāng)微纖絲角為12°~18°時,機械吸濕蠕變變形量差異很??; 當(dāng)微纖絲角超過18°時,機械吸濕蠕變變形量隨微纖絲角的增大明顯增加。此外,隨著微纖絲角增大,細(xì)胞壁的彈性變形稍有降低,而塑性變形顯著增加,這說明微纖絲角的變化主要影響木材機械吸濕蠕變的塑性變形部分。
木材細(xì)胞壁的纖維素、半纖維素、木質(zhì)素以及抽提物的性質(zhì)及其在細(xì)胞壁中的作用均存在較大差異,分別研究其在細(xì)胞壁中的相對含量、分布方式、結(jié)構(gòu)特點與木材細(xì)胞壁黏彈性之間的關(guān)系,有利于從本質(zhì)上認(rèn)識木材黏彈性的發(fā)生和演變機制。
木材單根纖維受縱向拉伸時,細(xì)胞壁中的纖維素為主要承載物質(zhì),其在細(xì)胞各壁層的取向與結(jié)晶度對細(xì)胞壁的彈性有顯著影響(Berganderetal., 2003)。Gierlinger等(2006)利用拉曼光譜技術(shù)分析了縱向拉伸過程中單根纖維細(xì)胞壁內(nèi)部分子鍵的變形情況,發(fā)現(xiàn)纖維素的特征峰發(fā)生了明顯偏移,而木質(zhì)素的特征峰未發(fā)生明顯變化,從而證實了纖維素是木材單根纖維縱向拉伸時的主要承載物質(zhì),對細(xì)胞壁的縱向剛度起決定作用。類似地,Salmén等(2004)通過動態(tài)傅里葉紅外光譜技術(shù)揭示了細(xì)胞壁主要通過纖維素的C—O—C骨架震動來承載和抵抗縱向變形。此外,纖維素結(jié)晶區(qū)的寬度對細(xì)胞壁的阻尼性質(zhì)有較大影響(Horietal., 2002)。有研究指出,半纖維素和木質(zhì)素也可以增加細(xì)胞壁的剛性,但貢獻(xiàn)度低于纖維素(Schelleretal., 2010; Salménetal., 2016)。
木材細(xì)胞壁的黏性主要由木質(zhì)素和半纖維素共同決定,尤其是細(xì)胞壁的橫向性能(Berganderetal., 2003; Salmén, 2004; Sharmaetal., 2015)。木質(zhì)素含量、類型或性質(zhì)的不同會引起木材細(xì)胞壁黏彈性的差異,例如,與正常材相比,應(yīng)壓木具有較高的縮合型木質(zhì)素含量,因此后者的阻尼僅為前者的66%(Brémaudetal., 2013)。Sharma等(2015)研究指出,木質(zhì)素和木聚糖的含量對應(yīng)壓木的阻尼性質(zhì)有顯著影響。在有水分參與的情況下,由于木質(zhì)素和半纖維素的吸濕能力不同,二者對木材細(xì)胞壁黏彈性的影響存在差異: 木質(zhì)素的吸濕性弱,受水分影響小,隨著脫木質(zhì)素程度的增加,細(xì)胞壁中的吸著點增加,吸濕能力增強,使得機械吸濕蠕變明顯增大(Zhangetal., 2006a; 2006b; 2007; Olssonetal., 2014); 半纖維素的吸濕性強,木聚糖和葡甘露聚糖的部分脫除對木材單根纖維機械吸濕蠕變的影響不顯著(Olssonetal., 2014),但完全脫除半纖維素會引起木材單根纖維機械吸濕蠕變顯著降低(Fioravantietal., 2006; Navietal., 2009)。
此外,近年來的一些研究指出,細(xì)胞壁中的抽提物會影響其黏彈性,引起細(xì)胞壁的剛性增加、黏滯性降低,對于細(xì)胞壁的濕熱軟化是不利因素(Bagetal., 2011; Songetal., 2014)。
動態(tài)力學(xué)分析技術(shù)(DMA)和納米壓痕技術(shù)(nanoindentation)的發(fā)展,為從組織切片、單根纖維和細(xì)胞壁原位測定等不同層次上研究木材結(jié)構(gòu)與黏彈性之間的關(guān)系提供了新的技術(shù)手段。
利用動態(tài)力學(xué)分析技術(shù)可以實現(xiàn)組織切片或單根纖維的軸向拉伸,獲得動態(tài)或靜態(tài)黏彈性參數(shù)。當(dāng)單根纖維受到拉伸作用時,基于細(xì)胞壁S2層中的微纖絲沿細(xì)胞軸呈“Z螺旋型”取向(Meylanetal.,1978),微纖絲往往會沿軸向發(fā)生旋轉(zhuǎn),引起細(xì)胞壁中的分子變形(Salménetal., 2004; Gierlingeretal., 2006)。具體表現(xiàn)(圖2)為: 在拉伸應(yīng)力作用下,細(xì)胞壁S2層的微纖絲角變小(MFA1< MFA0),同時,纖維素分子鏈中2個葡萄糖分子之間的“C—O—C”鍵被拉長(L1>L0)。聯(lián)合利用單根纖維拉伸技術(shù)和光譜分析技術(shù)(偏光顯微鏡、激光共聚焦顯微鏡、X-射線散射/衍射技術(shù)等),可以從微纖絲角、晶格和分子鍵的變化等方面揭示細(xì)胞壁在軸向拉伸過程中黏彈性變形的演變機制和分子機制(Kamiyamaetal., 2005; K?llnetal., 2005; Marjanetal., 2007; Peuraetal., 2007; Thygesenetal., 2007)。
圖2 拉伸應(yīng)力下細(xì)胞壁S2層微纖絲C—O—C鍵的分子變形示意 (Salmén et al., 2009)Fig.1 Schematic illustration of molecular deformation of C—O—C bridge in microfibril in S2 layer of cell wall under tensile stress
近年來,利用納米壓痕技術(shù)可以實現(xiàn)在亞微米水平下直接測量木材細(xì)胞壁的黏彈性質(zhì)(Zhangetal., 2012; Mengetal., 2015),主要內(nèi)容包括靜態(tài)恒定應(yīng)力作用下的蠕變現(xiàn)象及動態(tài)交變應(yīng)力作用下的滯后現(xiàn)象和力學(xué)損耗。Zhang等(2012)利用納米壓痕技術(shù)測定了苦油楝(Carapaprocera)木材細(xì)胞壁蠕變?nèi)崃颗c時間的關(guān)系曲線、貯存模量和損耗因子與載荷頻率的關(guān)系曲線,揭示了木材細(xì)胞壁的蠕變速率與應(yīng)力水平呈正相關(guān),壓痕深度與載荷頻率對木材細(xì)胞壁的貯存模量和損耗因子有顯著影響。Meng等(2015)采用配備環(huán)境濕度控制裝置的納米壓痕儀測定了火炬松(Pinustaeda)木材細(xì)胞壁在不同平衡含水率(0%、6%、18%和110%)下的蠕變行為,并分別利用Burgers模型和Maxwell模型對蠕變曲線進(jìn)行擬合分析,揭示了木材細(xì)胞壁的蠕變?nèi)崃侩S著平衡含水率的增加而增大,闡明了水分所引起的細(xì)胞壁結(jié)構(gòu)變化對其蠕變性能的影響。
隨著微觀力學(xué)表征技術(shù)的不斷發(fā)展,有關(guān)木材細(xì)胞壁結(jié)構(gòu)與黏彈性關(guān)系的研究也在逐漸深化。然而總體來看,目前國內(nèi)圍繞木材細(xì)胞壁流變學(xué)的研究尚未系統(tǒng)開展; 國際上近20年在該領(lǐng)域取得的最突出進(jìn)展僅為: 微纖絲角對木材細(xì)胞壁黏彈性影響的顯著性不斷被研究者所證實(Salménetal., 2009)。根據(jù)上述關(guān)于木材細(xì)胞壁結(jié)構(gòu)及其流變學(xué)的研究現(xiàn)狀分析,綜合學(xué)科發(fā)展和研究趨勢,本文提出一些亟待解決的科學(xué)問題和深化研究的建議。
木材細(xì)胞壁黏彈性宏觀性能是細(xì)胞壁微觀分子結(jié)構(gòu)的反映,準(zhǔn)確認(rèn)識和掌握木材細(xì)胞壁結(jié)構(gòu)才能對其黏彈行為的發(fā)生和演變機制做出合理解釋。因此,圍繞木材細(xì)胞壁結(jié)構(gòu)的深化研究,應(yīng)集中在: 1) 釋明木材細(xì)胞生長過程中的微纖絲取向、纖維素結(jié)晶區(qū)與非結(jié)晶區(qū)比例的分子控制機制; 2) 闡明木材細(xì)胞壁次生壁Matrix的空間組織排列方式、纖維素聚合體與Matrix之間相互作用的力學(xué)行為表達(dá); 3) 揭示木材細(xì)胞壁中半纖維素的含量、種類以及木質(zhì)素類型對細(xì)胞壁黏彈性的影響機制。在此基礎(chǔ)上,將環(huán)境外因(溫度、濕度)和載荷類型(靜態(tài)/動態(tài)、拉/壓/彎)納入研究體系,系統(tǒng)揭示“濕-熱-力”協(xié)同作用下木材細(xì)胞壁的機械吸濕蠕變行為規(guī)律和響應(yīng)機制。另外,多種測試技術(shù)手段的聯(lián)合運用,相關(guān)學(xué)科研究方法及理論模型的引入,如有限元法和復(fù)合材料的研究方法的應(yīng)用,構(gòu)建可以解釋木材細(xì)胞壁黏彈特性的物理和數(shù)學(xué)模型,也勢在必行。
?kerholm M, Salmén L. 2001. Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer, 42(3): 963-969.
?kerholm M, Salmén L. 2003. The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung, 57(5): 459-465.
Andersson S, Wang Y, P?nni R,etal. 2015. Cellulose structure and lignin distribution in normal and compression wood of the maidenhair tree (GinkgobilobaL.). Journal of Integrative Plant Biology, 57(4): 388-395.
Atalla R H, VanderHart D L. 1984. Native cellulose: a composite of two distinct crystalline forms. Science, 223(4633): 283-285.
Bag R, Beaugrand J, Dole P,etal. 2011. Viscoelastic properties of woody hemp core. Holzforschung, 65(2): 239-247.
Bardage S, Donaldson L, Tokoh C,etal. 2004. Ultrastructure of the cell wall of unbeaten norway spruce pulp fibre surfaces. Nordic Pulp and Paper Research Journal, 19(4): 448-482.
Bergander A, Salmén L. 2003. Cell wall properties and their effects on the mechanical properties of fibers. Radiation Protection Dosimetry, 103(2): 103-109.
Boyd J D. 1982. An anatomical explanation for visco-elastic and mechano-sorptive creep in wood, and effects of loading rate on strength∥New perspectives in wood anatomy. Springer Netherlands, 171-222.
Brémaud I, Ruelle J, Thibaut A,etal. 2013. Changes in viscoelastic vibrational properties between compression and normal wood: role of microfibril angle and of lignin. Holzforschung, 67(1): 75-85.
Burgert I, Eder M, Frühmann K,etal. 2005. Properties of chemically and mechanically isolated fibres of spruce (Piceaabies[L.] Karst.). Part 3: Mechanical characterisation. Holzforschung, 59(3): 354-357.
Dong F, Olsson A M, Salmén L. 2010. Fibre morphological effects on mechano-sorptive creep. Wood Science and Technology, 44(3): 475-483.
Duchesne I, Daniel G. 2000. Changes in surface ultrastructure of Norway spruce fibres during kraft pulping-visualization by field emission-SEM. Nordic Pulp and Paper Research Journal, 15(1): 54-61.
Eder M, Burgert I, Stanzl-Tschegg S. 2006.Relaxation experiments on wood fibres and tissues.Proceedings of the Third International Conference of the European Society of Wood Mechanics, 141-147.
Emons A M C, Mulder B M. 1998. The making of the architecture of the plant cell wall: how cells exploit geometry. Proceedings of the National Academy of Sciences, 95(12): 7215-7219.
Emons A M, Mulder B M. 2000. How the deposition of cellulose microfibrils builds cell wall architecture. Trends in Plant Science, 5(1): 35-40.
Engelund E T, Svensson S. 2011. Modelling time-dependent mechanical behaviour of softwood using deformation kinetics. Holzforschung, 65(2): 231-237.
Engelund E T, Salmén L. 2012. Tensile creep and recovery of norway spruce influenced by temperature and moisture. Holzforschung, 66(8): 959-965.
Fahlén J, Salmén L. 2003. Cross-sectional structure of the secondary wall of wood fibers as affected by processing. Journal of Materials Science, 38(1): 119-126.
Fahlén J, Salmén L. 2005. Pore and matrix distribution in the fibre wall revealed by atomic force microscopy and image analysis. Biomacromolecules, 6(1): 433-438.
Fioravanti M, Sodini N, Navi P. 2006. Investigation of the influence of hemicelluloses on time dependent behaviour of wood. Proceedings of the International Conference on Integrated Approach to Wood Structure, Behaviour and Application, 190-195.
Gierlinger N, Schwanninger M, Reinecke A,etal. 2006. Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules, 7(7): 2077-2081.
Hori R, Müller M, Watanabe U,etal. 2002. The importance of seasonal differences in the cellulose microfibril angle in softwoods in determining acoustic properties. Journal of Materials Science, 37(20): 4279-4284.
Hult E L, Larsson P T, Iversen T. 2001. Cellulose fibril aggregation-an inherent property of kraft pulps. Polymer, 42(8): 3309-3314.
Joseleau J P, Ruel K. 2005. Deposition of hemicelluloses and lignins during secondary wood cell wall assembly. New Knowledge in Wood Quality, 103-113.
Joseleau J P. 2007. Micro-scale approaches for wood cell wall analysis and structure∥Entwistle K, Harris P, Walker J. The compromised wood workshop Univ. Canterbury, ISBN 0-473-12768-8, 113-124.
Jungnikl K, Paris O, Fratzl P,etal. 2007. The implication of chemical extraction treatments on the cell wall nanostructure of softwood. Cellulose, 15(3): 407-418.
Kamiyama T, Suzuki H, Sugiyama J. 2005. Studies of the structural change during deformation inCryptomeriajaponicaby time-resolved synchrotron small-angle X-ray scattering. Journal of Structural Biology, 151(1): 1-11.
Kojima Y, Yamamoto H. 2004. Effect of microfibril angle on the longitudinal tensile creep behavior of wood. Journal of Wood Science, 50(4): 301-306.
Kojima Y, Yamamoto H. 2005. Effect of moisture content on the longitudinal tensile creep behavior of wood. Journal of Wood Science, 51(5): 462-467.
K?lln K, Grotkopp I, Burghammer M,etal. 2005. Mechanical properties of cellulose fibres and wood. Orientational aspects in situ investigated with synchrotron radiation. Journal of Synchrotron Radiation, 12(6): 739-744.
Lawoko M, Henriksson G, Gellerstedt G. 2005. Structural differences between the lignin-carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules, 6(6): 3467-3473.
Marjan S G, Navi P. 2007. Experimental observations and micromechanical modeling of successive-damaging phenomenon in wood cells’ tensile behavior. Wood Science and Technology, 41(1): 69-85.
Meylan B A, Butterfield B G. 1978. Helical orientation of the microfibrils in tracheids, fibres and vessels. Wood Science and Technology, 12(3): 219-222.
Meylan B. 2006. Characterization and modeling of the thermo-hydro-mechanical behavior of isolated wood fibres. Master thesis in Material and Science and Engineering, Ecole Poly-technique Fédérale de Lausanne, Lausanne, Switzerland.
Meng Y, Xia Y, Young T M,etal. 2015. Viscoelasticity of wood cell walls with different moisture content as measured by nanoindentation. RSC Advances, 5: 47538-47547.
Navi P, Pittet V, Plummer C J G. 2002. Transient moisture effects on wood creep. Wood Science and Technology, 36(6): 447-462.
Navi P, Meylan B, Plummer C J G. 2006. Role of hydrogen bonding in wood stress relaxation under humidity variation. In International Conference on Integrated Approach to Wood Structure, Behavior and Application, Joint Meeting of ESWM and COST Action E35.
Navi P, Stefanie S T. 2009. Micromechanics of creep and relaxation of wood. A review cost action E35 2004—2008: wood machining-micromechanics and fracture. Holzforschung, 63(2): 186-195.
Nishino T, Takano K, Nakamae K. 1995. Elastic modulus of the crystalline regions of cellulose polymorphs. Journal of Polymer Science Part B: Polymer Physics, 33(11): 1647-1651.
Olsson A M, Salmén L, Eder M,etal. 2007. Mechano-sorptive creep in wood fibres. Wood Science and Technology, 41(1): 59-67.
Olsson A M, Salmén L. 2014. Mechano-sorptive creep in pulp fibres and paper. Wood Science and Technology, 48(3): 569-580.
Peura M, K?lln K, Grotkopp I,etal. 2007. The effect of axial strain on crystalline cellulose in Norway spruce. Wood Science and Technology, 41(7): 565-583.
Placet V, Passard J, Perré P. 2007. Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0-95 C: hardwood vs. softwood and normal wood vs. reaction wood. Holzforschung, 61(5): 548-557.
Roszyk E, Moliński W, Jasińska M. 2010. The effect of microfibril angle on hygromechanic creep of wood under tensile stress along the grains. Wood Research, 55(3): 13-24.
Roszyk E, Mania P, Moliński W. 2012. The influence of microfibril angle on creep of scotch pine wood under tensile stress along the grains. Wood Research, 57(3): 347-358.
Roszyk E, Kwiatkowski T, Moliński W. 2013. Mechanical parameters of pine wood in individual annual rings under tensile stress along the grains in dry and wet state. Wood Research, 58(4): 571-580.
Salmén L, Olsson A M. 1998. Interaction between hemicelluloses,lignin and cellulose:structure-property relationships. Journal of Pulp and Paper Science, 24(3): 99-103.
Salmén L. 2004. Micromechanical understanding of the cell-wall structure. Comptes Rendus Biologies, 327(9): 873-880.
Salmén L, ?kerholm M, Hinterstoisser B. 2004. Two-dimensional Fourier transform infrared spectroscopy applied to cellulose and paper. Polysaccharides: Structural Diversity and Functional Versatility, 159-187.
Salmén L. 2006. Ultra-structural arrangement and rearrangement of the cellulose aggregates within the secondary cell wall. Proceedings of the Fifth Plant Biomechanics Conference, STFI-Packforsk, Stockholm, 215-220.
Salmén L, Fahlén J. 2006a. Reflections on the ultrastructure of softwood fibres. Cell Chem Technol, 40:181-185.
Salmén L, Olsson A M, Eder M,etal. 2006b. Role of hydrogen bonding in wood stress relaxation under humidity variation. Proceedings of International Conference on Integrated Approach to Wood Structure, Behaviour and Application, Joint Meeting of ESWM and COST Action E35, 87-91.
Salmén L, Burgert I. 2009. Cell wall features with regard to mechanical performance. A review COST Action E35 2004—2008: wood machining-micromechanics and fracture. Holzforschung, 63(2): 121-129.
Salmén L, Stevanic J S, Olsson A M. 2016. Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis (DMA).Holzforschung, 70(12): 1155-1163.
Scheller H V, Ulvskov P. 2010. Hemicelluloses. Annual Review of Plant Physiology, 61(1): 263-289.
Sedlachek K M, Ellis R L. 1994. The effect of cyclic humidity on the creep of single fibres of southern pine. Moisture-induced Creep Behaviour of Paper and Board, STFI USDA Stockholm, 22-49.
Sedlachek K M. 1995. The effect of hemicelluloses and cyclic humidity on the creep of single fibres. PhD thesis, Institute of Paper Science and Technology, Atlanta, University of Georgia Tech, Atlanta, GA, USA.
Sharma M, Brennan M, Chauhan S S,etal. 2015. Wood quality assessment ofPinusradiatasaplings by dynamic mechanical analysis. Wood Science and Technology, 49(6): 1239-1250.
Song K, Yin Y, Salmén L,etal. 2014. Change in the properties of wood cell walls during the transformation from sapwood to heartwood. Journal of Material Science, 49(4): 1734-1742.
Takeichi Y, Yoshida M, Kitano K,etal. 2013. In situ measurement of tensile elastic moduli of individual component polymers with a 3D assembly mode in wood cell walls. Journal of Wood Science, 59(2): 104-111.
Terashima N, Awano T, Takabe K,etal. 2004. Formation of macromolecular lignin in ginkgo xylem cell walls as observed by field emission scanning electron microscopy. Comptes Rendus Biologies, 327(9): 903-910.
Thygesen L G, Eder M, Burgert I. 2007. Dislocations in single hemp fibres—investigations into the relationship of structural distortions and tensile properties at the cell wall level. Journal of Materials Science, 42(2): 558-564.
Toba K, Yamamoto H. 2013. On the mechanical interaction between cellulose microfibrils and matrix substances in wood cell wall: effects of chemical pretreatment and subsequent repeated dry-and-wet treatment. Journal of Wood Science, 59(5): 359-366.
Violaine G-R, Cisse O, Placet V,etal. 2015. Creep behaviour of single hemp fibres. Part Ⅱ: Influence of loading level, moisture content and moisture variation. Journal of Materials Science, 50(5): 2061-2072.
Westbye P, K?hnke T, Glasser W,etal. 2007. The influence of lignin on the self-assembly behavior of xylan rich fractions from birch (Betulapendula). Cellulose, 14(6): 603-613.
Zhang W, Tokumoto M, Takeda T,etal. 2006a. Effects of delignifying treatments on mechano-sorptive creep of wood Ⅰ: instantaneous and total compliance of radial specimens. Journal of the Japan Wood Research Society, 52(1): 19-26.
Zhang W, Tokumoto M, Takeda T,etal. 2006b. Effects of delignifying treatments on mechano-sorptive creep of wood Ⅲ: MS creep of longitudinal specimens. Journal of the Japan Wood Research Society, 52(1): 206-214.
Zhang W, Tokumoto M, Takeda T. 2007. Effects of temperature on mechano-sorptive creep of delignified wood. Journal of Wood Science, 53(3): 187-191.
Zhang T, Bai S L, Zhang Y F,etal. 2012. Viscoelastic properties of wood materials characterized by nanoindentation experiments. Wood Science and Technology, 46(5): 1003-1016.