鄒德友+林文斌+唐晉生+闞國(guó)錦+鄭浩天
摘 要: 設(shè)計(jì)了一種新型的超寬帶介質(zhì)諧振器天線。該天線采用微帶?槽耦合饋電方式,通過(guò)在地板上開矩形槽,背面由50 Ω的微帶線中心饋電,從而展寬帶寬。采用類似T型層疊結(jié)構(gòu),產(chǎn)生兩種頻率相近的模式,從而顯著提高天線的阻抗帶寬。仿真結(jié)果顯示,該新型超寬帶介質(zhì)諧振器天線工作于X波段,天線的相對(duì)阻抗帶寬達(dá)到47.37%,頻段內(nèi)平均增益超過(guò)7.2 dBi,天線方向圖對(duì)稱性良好。天線的整體輻射特性良好,且結(jié)構(gòu)簡(jiǎn)單,易于實(shí)現(xiàn),可應(yīng)用在微波通信、雷達(dá)等領(lǐng)域。
關(guān)鍵詞: 介質(zhì)諧振器; 超寬帶; X波段; 微帶?槽耦合; 阻抗帶寬; 高增益
中圖分類號(hào): TN82?34 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2018)03?0027?03
Abstract: A novel ultra?wide band dielectric resonator antenna (DRA) is designed in this paper. The microstrip?slot coupling feeding mode is adopted in the DRA. The rectangular slot is grooved on the substrate of the antenna, and its reverse side is fed by the centre of microstrip line of 50 Ω to extend the band. The T?like stepped structure is adopted in DRA to generate two resonant modes with similar frequency, so as to improve the impedance bandwidth of the antenna. The simulation results show that, when the new ultra?wide band DRA works at X?band, the impedance bandwidth of the antenna can reach up to 47.37%, the average gain within the band is higher than 7.2 dBi, and the antenna pattern has perfect symmetry. The antenna has good overall radiation characteristic, simple structure and easy implementation, and can be applied to the microwave communication, radar and other fields.
Keywords: dielectric resonator; ultra?wide band; X?band; microstrip?slot coupling; impedance bandwidth; high gain
0 引 言
介質(zhì)諧振器天線(DRAs)具有很多優(yōu)點(diǎn),比如低損耗、小型化、高輻射效率。但介質(zhì)諧振器的帶寬較窄。介質(zhì)諧振器的品質(zhì)因數(shù)對(duì)天線的阻抗帶寬有重要影響,阻抗帶寬(BW)與品質(zhì)因數(shù)值的關(guān)系為:
式中:是DRA饋電端口的最大電壓駐波比VSWR。由該等式可知,在單一模式下,提高帶寬可以通過(guò)降低諧振器的值來(lái)實(shí)現(xiàn),即需具有更低介電常數(shù)的介質(zhì)材料。用空氣縫或鏤空的DRA[1?2]也具有寬帶特性,但體積會(huì)相應(yīng)增大。
除此之外,還有其他提高DRA帶寬的方法,如引入多模諧振[3?5],可以激勵(lì)多個(gè)諧振模,但也會(huì)影響輻射方向圖的對(duì)稱性。而方向圖的對(duì)稱性可以通過(guò)采用微帶?槽耦合饋電[6?10]來(lái)實(shí)現(xiàn)。
1 天線結(jié)構(gòu)設(shè)計(jì)
本文設(shè)計(jì)了一個(gè)X波段的寬帶介質(zhì)諧振器天線,天線的饋電形式是用微帶?槽耦合來(lái)實(shí)現(xiàn)的。微帶?槽耦合饋電的介質(zhì)諧振器天線的結(jié)構(gòu)如圖1所示。
介質(zhì)諧振器是一種T型疊層結(jié)構(gòu),這種結(jié)構(gòu)可以很好地增大帶寬。并且這個(gè)介質(zhì)諧振器位于矩形槽的中心,由50 Ω的微帶線中心饋電。天線10 dB阻抗帶寬范圍為7.74~12.544 GHz,相對(duì)阻抗帶寬可達(dá)47.37%,且頻段內(nèi)平均增益超過(guò)7.2 dBi,天線在10 GHz最大輻射方向圖的增益為8.54 dBi,天線模型由電磁仿真軟件仿真完成。天線結(jié)構(gòu)緊湊,實(shí)現(xiàn)了小型化。天線整體尺寸為15.5 mm×15.5 mm×4.4 mm。方形介質(zhì)諧振器的頂層長(zhǎng)度15.5 mm;中間層長(zhǎng)度6.7 mm;底下層長(zhǎng)度6 mm。每層諧振器厚度分別為:1.8 mm;1.3 mm;1.3 mm。介質(zhì)諧振器的介電常數(shù)為12。介質(zhì)基板上面為地板,刻出長(zhǎng)5.4 mm,寬0.5 mm的矩形槽縫隙,介質(zhì)諧振器放在縫隙上面,且開槽中心與輻射單元的中心重合。介質(zhì)基板尺寸為27 mm×17 mm×0.81 mm,采用介電常數(shù)為3.38的Neltec NH9338材料。饋電線路位于介質(zhì)板下部,其終端是開路微帶線,微帶線垂直于槽并通過(guò)槽的中心位置。微帶線寬度1.88 mm,微帶線末端枝節(jié)3.2 mm,用于調(diào)節(jié)阻抗匹配。通過(guò)調(diào)節(jié)矩形槽的尺寸和末端枝節(jié)從而改善天線的阻抗匹配特性。
2 天線結(jié)果及其討論
由于矩形槽縫隙對(duì)電流的微擾作用,在天線的主諧振頻率附近形成了兩個(gè)諧振點(diǎn)。通過(guò)調(diào)節(jié)縫隙尺寸以及微帶線尺寸可以使這兩個(gè)諧振點(diǎn)逐漸靠攏到一起并達(dá)到較為理想的匹配狀況,從而展寬天線的阻抗帶寬。由圖2可知,通過(guò)適當(dāng)?shù)卣{(diào)節(jié)末端枝節(jié)的長(zhǎng)度,可以提高天線的阻抗匹配,故微帶線末端枝節(jié)可作為一個(gè)重要的調(diào)諧因素。
圖3給出了DR的尺寸對(duì)回波損耗的影響。由圖3可知,隨著的增大,天線的阻抗特性提高,因此,適當(dāng)增大上層介質(zhì)的長(zhǎng)度,可以提高天線的阻抗帶寬。endprint
圖4給出了設(shè)計(jì)天線仿真的回波損耗和增益圖。DRA工作頻段為X波段,可以看出天線的仿真-10 dB的頻率變化范圍是7.74~12.54 GHz。仿真的增益均在7 dBi以上,最大增益可達(dá)8.5 dBi。因此,天線在X頻段內(nèi)工作穩(wěn)定。
圖5給出了DRA分別工作于8 GHz,9 GHz,10 GHz,11 GHz的E面和H面的二維輻射方向圖。由圖5可知,天線在H面的主射方向是對(duì)稱分布的。由于天線的輻射由微帶?槽耦合激勵(lì),微帶線和開路終端枝節(jié)使得E面輻射圖有輕微的不對(duì)稱。
3 結(jié) 語(yǔ)
本文設(shè)計(jì)了一個(gè)微帶?槽耦合激勵(lì)的T型結(jié)構(gòu)介質(zhì)諧振器天線。通過(guò)電磁仿真軟件得到,天線的相對(duì)阻抗帶寬達(dá)到47.37%,平均增益達(dá)到7.2 dBi。由于天線結(jié)構(gòu)、矩形槽縫隙、微帶線均對(duì)稱,使得天線的主要輻射波瓣圖滿足了X波段的需求,波瓣圖大體上呈對(duì)稱性。該天線在衛(wèi)星通信、氣象雷達(dá)等領(lǐng)域應(yīng)用前景廣泛。
參考文獻(xiàn)
[1] GUO Y X, RUAN Y F, SHI X Q. Wide?band stacked double annular?ring dielectric resonator antenna at the endfire mode operation [J]. IEEE transactions on antennas and propagation, 2005, 53(10): 3394?3397.
[2] CHAIR R, KISHK A A, LEE K F. Low profile wideband embedded dielectric resonator [J]. IET microwaves antennas and propagation, 2007, 1(2): 294?298.
[3] CHAIR R, KISHK A A, LEE K F. Wideband simple cylindrical dielectric resonator antennas [J]. IEEE microwave and wireless components letters, 2005, 15(4): 241?243.
[4] LI B, LEUNG K W. Strip?fed rectangular dielectric resonator antennas with/without a parasitic patch [J]. IEEE transactions on antennas and propagation, 2005, 53(7): 2200?2207.
[5] DE YOUNG C S, LONG S A. Wideband cylindrical and rectangular dielectric resonator antennas [J]. IEEE antennas and wireless propagation letters, 2006, 5(1): 426?429.
[6] ZEBIRI C, BENABELAZIZ F, LASHAB M. Aperture?coupled asymmetric dielectric resonator antenna with slotted microstrip line for enhanced ultra wideband [J]. Antennas and propagation, 2016(2): 1?3.
[7] 車仁信,程鑫,張坤武.一種抑制表面波損耗的口徑耦合微帶天線[J].現(xiàn)代電子技術(shù),2005,28(9):91?92.
CHE Renxin. CHENG Xin. ZHANG Kunwu. An aperture?coupled microstrip antenna with inhibition capability for consumption of surface wave [J]. Modern electronics technique, 2005, 28(9): 91?92.
[8] SAEED Fakhte, HOMAYOON Oraizi, LADISLAU Matekovits. High gain rectangular dielectric resonator antenna using uniaxial material at fundamental mode [J]. IEEE transactions on antennas and propagation, 2017, 65(1): 342?347.
[9] ZEBIRI C E, LASHAB M, SAYAD D, et al. Offset aperture?coupled double?cylinder dielectric resonator antenna with extended wideband [J]. IEEE transactions on antennas and propagation, 2017, 65(10): 5617?5622.
[10] MICHAL Mrnka, ZBYNEK Raida. Enhanced?gain dielectric resonator antenna based on the combination of higher?order modes [J]. IEEE antennas and wireless propagation letters, 2015, 15: 710?713.endprint