• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于環(huán)境策略的免疫克隆約束多目標(biāo)進(jìn)化算法

      2018-02-01 10:50:40徐志平許峰
      軟件導(dǎo)刊 2018年1期

      徐志平+許峰

      摘要:在常規(guī)免疫克隆約束多目標(biāo)進(jìn)化算法中,優(yōu)秀不可行解易被淘汰,且無(wú)法直接學(xué)習(xí)進(jìn)化經(jīng)驗(yàn)。針對(duì)該問(wèn)題,提出了基于環(huán)境策略的免疫克隆約束多目標(biāo)進(jìn)化算法。其基本思想是,在約束處理前,通過(guò)環(huán)境策略用Pareto支配形成初始抗體群,利用一個(gè)精英種群對(duì)初始抗體群進(jìn)行存儲(chǔ);約束處理后,用環(huán)境策略變異替換克隆變異。數(shù)值實(shí)驗(yàn)結(jié)果表明,新算法不僅可以有效地處理約束條件,而且解的多樣性和均勻性均得到一定程度改進(jìn)。

      關(guān)鍵詞:多目標(biāo)進(jìn)化算法;環(huán)境策略;免疫克??;約束處理

      DOIDOI:10.11907/rjdk.172197

      中圖分類(lèi)號(hào):TP312

      文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào)文章編號(hào):16727800(2018)001005604

      Abstract:Constrained multiobjective optimization, the excellent infeasible solution was easy to be eliminated, the classic algorithm didn′t directly learn evolutionary experience. In this paper, Immune clonal constrained multiobjective optimization algorithm based on environmental strategy is proposed. The basic idea of method is that environmental strategy is introduced, on one hand through the environmental strategy Pareto domination to form initial antibody group and to store the initial antibody group by an elite population before constraint handling, on the other hand thought environmental strategy Mutation instead of clonal Mutation after constraint handling. According to numerical experiments, the results show that the new algorithm not only has perfect diversity and uniformity, but also convergence has been improved comparing with the classical algorithm.

      Key Words:constrained multipleobjective; environmental strategy; immune clone; constraint handling

      0引言

      多目標(biāo)優(yōu)化約束處理技術(shù)有:懲罰函數(shù)法,通過(guò)罰因子對(duì)違反約束的個(gè)體施以懲罰,但罰因子難以選取;區(qū)分可行解與不可行解法,通過(guò)可行與不可行準(zhǔn)則進(jìn)行優(yōu)劣判斷,不利于保留不可行精英解;多目標(biāo)法,將約束條件轉(zhuǎn)換成目標(biāo)函數(shù),但該方法加大了計(jì)算量[1]。

      免疫算法已成功應(yīng)用于數(shù)據(jù)挖掘、計(jì)算機(jī)安全、異常檢測(cè)、優(yōu)化等領(lǐng)域。將免疫算法用于求解約束多目標(biāo)優(yōu)化成為近年來(lái)的研究熱點(diǎn),一些經(jīng)典算法相繼被提出。如Coello Coello等[2]提出MultiObjective Immune System Algorithm(MISA);Cutello等[3]基于免疫操作對(duì)PAES進(jìn)行改進(jìn),提出IPAES算法;Freschi等[4]提出Vector Artificial Immune Systems(VAIS);Jiao和Gong等[56]提出免疫優(yōu)勢(shì)克隆多目標(biāo)算法和非支配鄰域免疫算法(NNIA)。免疫克隆算法也存在不足,如不可行精英解不宜保留,無(wú)法直接學(xué)習(xí)進(jìn)化經(jīng)驗(yàn)等[78]。針對(duì)上述不足,本文引入環(huán)境策略,對(duì)免疫克隆多目標(biāo)優(yōu)化算法(Immune Clone Multiobjective Optimization Algorithm,ICMOA)進(jìn)行改進(jìn),使新算法能夠充分利用不可行精英解,學(xué)習(xí)進(jìn)化經(jīng)驗(yàn)。

      1約束多目標(biāo)優(yōu)化相關(guān)概念

      1.1約束多目標(biāo)優(yōu)化問(wèn)題

      約束多目標(biāo)優(yōu)化問(wèn)題可表述為:

      5結(jié)語(yǔ)

      本文針對(duì)經(jīng)典免疫克隆約束多目標(biāo)進(jìn)化算法的不足,引入環(huán)境策略,提出基于環(huán)境策略的免疫克隆約束多目標(biāo)進(jìn)化算法。實(shí)施環(huán)境策略Pareto支配選擇,不僅可以選擇可行非支配解,而且可以充分利用不可行精英解。實(shí)施環(huán)境策略變異,使新算法具備學(xué)習(xí)進(jìn)化經(jīng)驗(yàn)的能力。通過(guò)數(shù)值實(shí)驗(yàn)和量化度量準(zhǔn)則,對(duì)比結(jié)果表明,新算法解集的質(zhì)量得到明顯改進(jìn)。然而,在約束多目標(biāo)進(jìn)化算法中,約束處理技術(shù)和可行支配解及非可行非支配解的選取等仍是亟待解決的問(wèn)題。根據(jù)不同問(wèn)題選取不同策略,或根據(jù)不同問(wèn)題自適應(yīng)選取不同約束處理技術(shù),可能是今后的重點(diǎn)研究方向。

      參考文獻(xiàn):

      [1]王勇,蔡自興,周育人,等.約束優(yōu)化進(jìn)化算法[J].軟件學(xué)報(bào),2009,20(1):1129.

      [2]COELLO COELLO CA, CORTES NC. Solving multiobjective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines,2005,6(2):163190.endprint

      [3]CUTELLO V,NARZISI G,NICOSIA G.A class of Pareto archived evolution strategy algorithms using immune inspired operators for abinitio protein structure prediction[C].Proc.of the 3`d European Workshop on Evolutionary Computation and Bioinformatics, EvoWorkshops 2005.Berlin: SpringerVerlag,2005:5463.

      [4]RESCHI F, REPETTO M.An artificial immune network for multiobjective optimization[J]. Engineering Optimization,2006,38(8):975996.

      [5]JIAO LC, GONG MG, SHANG RH, et al.Clonal selection with immune dominance and energy based muftiobjective optimization[C].Proc. of the 3rd Int1 Conf. on Evolutionary MuftiCriterion Optimization, Berlin: SpringerVerlag,2005:474489.

      [6]GONG MG, JIAO LC, DU HF, et al.Multi objective immune nondominated neighborbased selected algorithm[J].Evolutionary Computation,2008,16(2):225255.

      [7]劉若辰,杜海峰,焦李成.基于柯西變異的免疫單克隆策略[J].西安電子科技大學(xué)學(xué)報(bào),2004,31(4):551556.

      [8]VINCENZO CUTELLO. An immune algorithm for protein structure prediction on lattice models[J]. IEEE Transactions on Evolutionary Computation,2007,11(1):101117.

      [9]尚榮華,焦李成,馬文萍.免疫克隆多目標(biāo)優(yōu)化算法求解約束優(yōu)化問(wèn)題[J].軟件學(xué)報(bào),2008,19(11):29432956.

      [10]楊虎,許峰.基于聚集密度的粒子群多目標(biāo)優(yōu)化算法[J].計(jì)算機(jī)工程與應(yīng)用,2013,49(17):190194.

      [11]尚榮華,焦李成,馬文萍.免疫克隆算法求解動(dòng)態(tài)多目標(biāo)優(yōu)化問(wèn)題[J].軟件學(xué)報(bào),2007,18(11):27002711.

      [12]徐海黎,朱志送,王恒,等.環(huán)境變異免疫克隆算法解決有約束優(yōu)化問(wèn)題[J].系統(tǒng)仿真報(bào),2011,23(11):24122416.

      [13]VAN VELDHUIZEN DA, LAMONT GB. On measuring multiobjective evolutionary algorithm performance [C].Proc. of the Congress on Evolutionary Computation.Piscataway: IEEE Press,2000:204211.

      [14]GOH CK, TAN KC. An investigation on noisy environments in evolutionary multiobjective optimization[J]. IEEE Trans. on Evolutionary Computation,2007,11(3):354381.

      [15]XIAO HS, ZU JW. A new constrained multiobjective optimization algorithm based on artificial immune systems[C].Proc.of the 2007 IEEE Intl Conf.on Mechatronics and Automation,2007:31223127.

      (責(zé)任編輯:黃健)endprint

      卢龙县| 抚宁县| 玉树县| 济南市| 绩溪县| 陆河县| 托克托县| 西畴县| 旬邑县| 曲阳县| 许昌县| 湄潭县| 象州县| 来宾市| 宁陕县| 阳高县| 乌恰县| 宁波市| 都安| 富顺县| 浑源县| 泰宁县| 八宿县| 肇州县| 全州县| 蒙山县| 灌云县| 合水县| 江山市| 南溪县| 张家川| 博客| 惠州市| 公安县| 犍为县| 虹口区| 安化县| 杭州市| 盱眙县| 二连浩特市| 镇赉县|