宋會(huì)杰董紹武4姜萌王燕平漆溢屈俐俐
(1中國(guó)科學(xué)院國(guó)家授時(shí)中心西安710600)
(2中國(guó)科學(xué)院時(shí)間頻率基準(zhǔn)重點(diǎn)實(shí)驗(yàn)室西安710600)
(3中國(guó)科學(xué)院大學(xué)北京100049)
(4中國(guó)科學(xué)院大學(xué)天文與空間科學(xué)學(xué)院北京100049)
氫原子鐘和銫原子鐘是守時(shí)中最常用的高精度頻率標(biāo)準(zhǔn),不同類型的原子鐘在時(shí)間保持中有各自的優(yōu)勢(shì)[1].眾所周知,氫原子鐘的優(yōu)勢(shì)在于其短期穩(wěn)定度高,銫原子鐘的優(yōu)勢(shì)在于其長(zhǎng)期穩(wěn)定度高,文獻(xiàn)[1]利用氫原子鐘具有高短期穩(wěn)定度的特點(diǎn),用做測(cè)量銫原子鐘噪聲的參考,通過(guò)數(shù)學(xué)方法濾波銫原子鐘的噪聲建立時(shí)間尺度,并且指出氫原子鐘需扣除速率和頻率漂移后參加原子時(shí)尺度計(jì)算.文獻(xiàn)[2]利用銫原子鐘建立的參考時(shí)間尺度修正某臺(tái)氫原子鐘的速率和頻率漂移,并將其用于守時(shí).文獻(xiàn)[3]通過(guò)氫原子鐘扣除速率和頻率漂移,銫原子鐘扣除頻率,然后通過(guò)加權(quán)平均計(jì)算時(shí)間尺度用于駕馭氫鐘.分析以上研究成果,氫原子鐘為參考測(cè)量銫原子鐘的噪聲主要是相位白噪聲,濾波后時(shí)間尺度的短期穩(wěn)定度很大程度還是受銫原子鐘噪聲的影響.通過(guò)銫原子鐘建立參考時(shí)間尺度修正某臺(tái)氫原子鐘,當(dāng)氫原子鐘出現(xiàn)異常時(shí),將不能產(chǎn)生可靠的時(shí)間尺度.鑒于此,本文根據(jù)原子鐘的可預(yù)測(cè)性算法[4],利用銫原子鐘建立的參考時(shí)間尺度扣除氫原子鐘的速率和頻率漂移,然后通過(guò)氫原子鐘建立原子時(shí)尺度,目的是充分利用銫原子鐘的長(zhǎng)期穩(wěn)定度和氫原子鐘的短期穩(wěn)定度,其中文獻(xiàn)[5–7]對(duì)參與計(jì)算的氫原子鐘的性能進(jìn)行過(guò)分析.對(duì)于時(shí)間尺度算法的鐘差測(cè)量部分,文中通過(guò)小波變換進(jìn)行多尺度分析,計(jì)算小波方差并進(jìn)行多尺度加權(quán),此方法同時(shí)降低了鐘差部分多種噪聲的影響,進(jìn)一步提高了時(shí)間尺度的穩(wěn)定度[8?10].對(duì)于算法中氫原子鐘的取權(quán),文獻(xiàn)[11–13]采用了Kalman增益矩陣加權(quán)方法,考慮了原子鐘的短期穩(wěn)定度,文中兼顧原子鐘的長(zhǎng)期穩(wěn)定度同時(shí)考慮了濾波取權(quán)方法[14].
原子鐘可預(yù)測(cè)性算法是基于鐘的可預(yù)測(cè)性,一臺(tái)好的鐘是一臺(tái)可預(yù)測(cè)的鐘[15?16].可預(yù)測(cè)性算法表明:如果可以很好地預(yù)測(cè)原子鐘的穩(wěn)定性特征,比如頻率漂移和老化率,這樣既不會(huì)影響時(shí)間尺度的長(zhǎng)期穩(wěn)定性,同時(shí)又能夠充分發(fā)揮中短期穩(wěn)定性好的鐘的性能,對(duì)于時(shí)間區(qū)間Ik(tk,tk+1),原子鐘預(yù)測(cè)項(xiàng)描述為二次項(xiàng)形式:
其中,i表示鐘,ai,Ik(tk)為tk時(shí)刻原子鐘的時(shí)差,Bip,Ik(t)為[tk,t]時(shí)間段原子鐘的速率,Cip,Ik為[tk,t]時(shí)間段原子鐘的頻率漂移,(1)式的估計(jì)式可表示為[4]
根據(jù)區(qū)間Ik(tk,tk+1)的鐘差數(shù)據(jù)計(jì)算得到鐘i相對(duì)于時(shí)間尺度的差xi(t),根據(jù)公式計(jì)算得到.表示Ik時(shí)間區(qū)間的速率預(yù)報(bào)值,計(jì)算公式為,其中通過(guò)(2)式計(jì)算得到.
考慮到近期的測(cè)量相對(duì)于過(guò)去的測(cè)量具有更可靠的統(tǒng)計(jì)特性,單臺(tái)原子鐘的頻率穩(wěn)定度表示為[11]
其中,j表示計(jì)算區(qū)間,M是區(qū)間的數(shù)目.j=1表示當(dāng)前計(jì)算區(qū)間,j=2表示前一計(jì)算區(qū)間,依次類推,j=M表示最前計(jì)算區(qū)間.相應(yīng)的單臺(tái)原子鐘的權(quán)重表示為
實(shí)際計(jì)算中需要考慮原子鐘的異常行為和權(quán)重的上限取值.
鐘差是一個(gè)非平穩(wěn)的隨機(jī)過(guò)程,為了能夠合理地降低鐘差包含的多種噪聲,提高時(shí)間尺度的穩(wěn)定度,利用小波變換算法降低鐘差噪聲的影響.每一個(gè)頻率范圍內(nèi),各臺(tái)原子鐘信號(hào)的幅度都不同,文中利用多分辨率加權(quán)的方法,對(duì)鐘差做小波分解,提取出各個(gè)頻率范圍內(nèi)的分量,用小波方差表征其頻率穩(wěn)定度,在不同的尺度加權(quán)平均,再重構(gòu)信號(hào).假設(shè)測(cè)量得到的第i個(gè)原子鐘與主鐘MC的鐘差記為Di,MC(t),做小波分解得:
其中,N表示小波系數(shù)個(gè)數(shù),表示鐘i在小波分解尺度l的小波系數(shù)均值.因此在l尺度下,鐘i的加權(quán)可以表示為
式中L表示原子鐘的數(shù)目.
通過(guò)銫原子鐘建立的參考時(shí)間尺度估計(jì)氫原子鐘的速率與頻率漂移.假設(shè)由ALGOS算法得到的參考時(shí)間尺度記為TACs,根據(jù)TACs可估計(jì)氫原子鐘的速率與頻率漂移.對(duì)于區(qū)間Ik(tk,tk+1)上t時(shí)刻的第i臺(tái)氫原子鐘Hi與時(shí)間尺度TACs的時(shí)差表示為
tk時(shí)刻第i臺(tái)氫原子鐘Hi相對(duì)于TACs的時(shí)間改正估計(jì)表示為
區(qū)間Ik(tk,tk+1)上第i臺(tái)氫原子鐘Hi的速率估計(jì)表示為
對(duì)于氫原子鐘的頻率漂移估計(jì),為了降低頻率白噪聲的影響,需要對(duì)氫原子鐘速率數(shù)據(jù)進(jìn)行平滑處理,氫原子鐘的頻率漂移估計(jì)表示為
考慮時(shí)間尺度計(jì)算區(qū)間Ik(tk,tk+1),設(shè)參加計(jì)算的氫原子鐘數(shù)為L(zhǎng),在某一時(shí)刻,第i臺(tái)氫原子鐘在時(shí)刻t的鐘面讀數(shù)為T(i,t),修正后的鐘面讀數(shù)可表示為
假設(shè)根據(jù)可預(yù)測(cè)性算法得到鐘i在時(shí)刻t的權(quán)重為p(i),則小波分解原子時(shí)算法求得的小波時(shí)間尺度WDAT表示為
定義鐘i與WDAT的差為
測(cè)量第i臺(tái)與第m臺(tái)原子鐘的鐘差為
鐘差Di,m(t)可以由原子鐘間的比對(duì)測(cè)量得到,選取原子鐘性能比較好的為主鐘,不妨設(shè)其為第L臺(tái)原子鐘.DWL(t)表示主鐘相對(duì)于WDAT的時(shí)差.
根據(jù)上面的定義,我們有方程組:
通過(guò)測(cè)量,可以得到Di,L,表示主鐘與各臺(tái)原子鐘的鐘差值,根據(jù)方程(17)式可求得
(19)式給出了主鐘與WDAT的差,把(19)式分為兩項(xiàng),第1項(xiàng)為L(zhǎng)臺(tái)原子鐘時(shí)間修正值的加權(quán)平均,記為
(19)式的第2項(xiàng)表示為
利用NTSC(National Time Service Center)的多臺(tái)原子鐘與主鐘的比對(duì)鐘差數(shù)據(jù),參與計(jì)算的原子鐘編號(hào)分別為:HM226、HM227、HM296、HM297、Cs2959、Cs2962、Cs1011、Cs1016、Cs2964、Cs1018、Cs2573、 Cs3089、Cs2976、Cs3091、Cs3102、Cs2921和Cs2922.測(cè)量間隔為1 h,數(shù)據(jù)取樣時(shí)間段為MJD 57388–MJD 57631,算法實(shí)施如下:
(1)根據(jù)銫原子鐘與主鐘的比對(duì)數(shù)據(jù),采用ALGOS算法計(jì)算銫原子鐘產(chǎn)生的時(shí)間尺度,計(jì)算周期為30 d.
(2)通過(guò)步驟(1)中產(chǎn)生的TACs,根據(jù)(11)–(13)式分別計(jì)算區(qū)間Ik(tk,tk+1)上的氫原子鐘相對(duì)于TACs的時(shí)間改正估計(jì),氫原子鐘的速率估計(jì)和氫原子鐘的頻率漂移估計(jì).
(3)利用小波變換對(duì)主鐘與氫鐘的鐘差做多尺度分解,根據(jù)不同尺度的小波系數(shù)計(jì)算相應(yīng)的小波方差,用小波方差表征其頻率穩(wěn)定度,確定相應(yīng)尺度的權(quán)重,通過(guò)不同尺度的權(quán)重重構(gòu)信號(hào),計(jì)算鐘差的加權(quán)平均.
(4)計(jì)算氫原子鐘的權(quán)重,根據(jù)(3)–(5)式計(jì)算氫原子鐘的權(quán)重,根據(jù)方程(19)式求解氫原子鐘時(shí)間尺度DWL(t).
根據(jù)5.1節(jié)所用的銫原子鐘,采用ALGOS計(jì)算方法建立時(shí)間尺度TACs估計(jì)各臺(tái)氫原子鐘的速率與頻率漂移,計(jì)算周期為30 d,估計(jì)結(jié)果如表1和表2所示,從表1可以看出:HM226、HM296和HM297的速率有一定的趨勢(shì),可預(yù)測(cè)性較好,HM227的速率趨勢(shì)不是很明顯.通過(guò)表2可以看出:HM226與HM227漂移不是很穩(wěn)定,估計(jì)帶來(lái)的不確定性大,這是由于這兩臺(tái)氫原子鐘的運(yùn)行年限較長(zhǎng),部件老化.HM296與HM297的漂移相對(duì)穩(wěn)定,并且HM296的漂移較小.說(shuō)明HM296是可預(yù)測(cè)性較好的鐘,并且更易駕馭控制.表3為時(shí)間尺度計(jì)算過(guò)程中氫鐘鐘差不同尺度的小波取權(quán),文中采用了“db6”小波函數(shù)進(jìn)行4尺度分解,MC-HM296在不同尺度取權(quán)最高,MC-HM297除尺度1外,僅次于MC-HM296,表明MC-HM297的高頻噪聲相比于MC-HM296與MC-HM226較大.
表1 氫原子鐘的速率估計(jì)Table 1 The rate estimations of hydrogen masers
表2 氫原子鐘的漂移估計(jì)Table 2 The drift estimations of hydrogen masers
表3 鐘差不同小波尺度的權(quán)重Table 3 The weights of different wavelet-scales of clock differences
根據(jù)5.1節(jié)算法的實(shí)施步驟,計(jì)算時(shí)間段MJD 57538–MJD 57626的時(shí)間尺度,計(jì)算周期為30 d,計(jì)算方法分別采用氫銫聯(lián)合守時(shí)算法和基于鐘差小波變換的氫銫聯(lián)合守時(shí)算法,計(jì)算結(jié)果如圖1與圖2所示.從圖中可以看出基于小波變換的氫銫聯(lián)合守時(shí)算法計(jì)算得到的時(shí)間尺度噪聲明顯降低,為了具體比較兩種算法計(jì)算得到的時(shí)間尺度的穩(wěn)定度,文中采用TA(NTSC)為參考計(jì)算兩種算法時(shí)間尺度的Allan偏差,計(jì)算結(jié)果如圖3與表4所示.基于小波變換的氫銫聯(lián)合守時(shí)算法計(jì)算得到的時(shí)間尺度短期穩(wěn)定度明顯優(yōu)于氫銫聯(lián)合守時(shí)算法,長(zhǎng)期穩(wěn)定度相比于氫銫聯(lián)合守時(shí)算法提高不明顯,原因在于基于小波變換的氫銫聯(lián)合守時(shí)算法的鐘差部分根據(jù)不同尺度的小波變換系數(shù)取權(quán),降低了不同尺度下原子鐘噪聲的影響,提高了時(shí)間尺度的短期穩(wěn)定度.對(duì)于原子鐘長(zhǎng)期趨勢(shì)項(xiàng)取權(quán),基于小波變換的氫銫聯(lián)合守時(shí)算法與聯(lián)合守時(shí)算法都是根據(jù)原子鐘的可預(yù)測(cè)性.
圖1 基于氫銫聯(lián)合守時(shí)算法的時(shí)間尺度Fig.1 The time scale of joint algorithm based on hydrogen masers and cesium clocks
氫銫聯(lián)合守時(shí)是一種重要的時(shí)間保持方法.該方法主要根據(jù)氫原子鐘優(yōu)良的短期穩(wěn)定度和銫原子鐘優(yōu)良的長(zhǎng)期穩(wěn)定度的特性,結(jié)合不同的算法產(chǎn)生穩(wěn)定的時(shí)間尺度.本文主要研究了對(duì)鐘差進(jìn)行小波變換的氫銫聯(lián)合守時(shí)算法.
基于小波變換的氫銫聯(lián)合守時(shí)算法可以認(rèn)為是在保證原子鐘的長(zhǎng)期穩(wěn)定度的前提下,通過(guò)對(duì)鐘差的小波分解、多尺度取權(quán),降低了多種噪聲的影響,提高了時(shí)間尺度的穩(wěn)定度,初步結(jié)果表明:特別是短期穩(wěn)定度提高明顯,長(zhǎng)期穩(wěn)定度基本與氫銫聯(lián)合守時(shí)算法一致.
同時(shí),我們發(fā)現(xiàn)氫原子鐘HM296和HM297的速率估計(jì)和頻漂估計(jì)相比于HM226和HM227更具有可預(yù)測(cè)性,HM226與HM227的頻漂不是很穩(wěn)定,原因是這兩臺(tái)氫原子鐘已經(jīng)運(yùn)行超過(guò)10 yr,鐘性能可能有所變化.
圖2 基于小波變換的氫銫聯(lián)合守時(shí)算法的時(shí)間尺度Fig.2 The time scale of joint algorithm of hydrogen masers and cesium clocks based on wavelet transforms
圖3 兩種算法相對(duì)于TA(NTSC)的Allan偏差Fig.3 The Allan deviation of two algorithms relative to TA(NTSC)
表4 兩種算法Allan偏差的比較Table 4 Comparison of Allan deviations between these two algorithms
[1]Yuan H B,Qu L L,Dong S W,et al.Proceedings of IEEE Frequency Control Symposium,2009:639
[2]Shinn Y L,Hsin M P.Proceedings of IEEE Frequency Control Symposium,2007:893
[3]Suman S,Pascale D.Proceedings of Conference on Precision Electromagnetic Measurements,2010:454
[4]Gianna P,Aurelie H,Laurent T.Metro,2012,49:49
[5]宋會(huì)杰,董紹武,王正明,等.天文學(xué)報(bào),2015,56:628
[6]Song H J,Dong S W,Wang Z M,et al.ChA&A,2016,40:569
[7]宋會(huì)杰,董紹武,李瑋,等.天文學(xué)報(bào),2017,58:19
[8]李孝輝,柯熙政,焦李成.陜西天文臺(tái)臺(tái)刊,2000,23:26
[9]李建勛,柯熙政,郭華.西安理工大學(xué)學(xué)報(bào),2007,23:365
[10]Don P.Proceedings of Precise Time and Time Interval Meeting,2003:211
[11]Galleani L,Tavella P.Metro,2003,40:326
[12]Charles A G.Proceedings of Precise Time and Time Interval Meeting,2001:445
[13]Charles A G.Metro,2003,40:335
[14]Panfilo G,Harmegnies A,Tisserand L.Metro,2014,51:285
[15]Weiss M A,Allan D W,Peppler T K.ITIM,1989,38:631
[16]Levine J.RScI,1999,70:67