蔡澤利+譚振江
摘 要: 在物聯(lián)網環(huán)境下進行無線節(jié)點自動監(jiān)控數(shù)據采集,提高數(shù)據檢測和診斷分析能力,提出基于動態(tài)增益控制和DSP高速信號處理的物聯(lián)網智能無線節(jié)點自動監(jiān)控數(shù)據采集系統(tǒng)設計方法?;谖C總線技術進行無線節(jié)點自動監(jiān)控數(shù)據采集系統(tǒng)的總體設計,系統(tǒng)主要包括DSP處理器和PCI總線兩大功能模塊設計,數(shù)據采集的傳感器基陣由多傳感信息融合的無線監(jiān)測節(jié)點組成,設計收發(fā)轉換電路和功率放大電路實現(xiàn)采集數(shù)據的信號放大和數(shù)/模轉換。采用動態(tài)增益控制方法實現(xiàn)采集數(shù)據的放大和濾波處理,基于DSP信號處理器進行自動監(jiān)控數(shù)據采集系統(tǒng)的集成設計。測試結果表明,采用該系統(tǒng)進行物聯(lián)網智能無線節(jié)點自動監(jiān)控數(shù)據采集,能實現(xiàn)持續(xù)的大于15 MB/s的實時數(shù)據采集和記錄,總線持續(xù)數(shù)據傳輸速率超過20 MB/s,峰值傳輸速率也可超過33 MB/s,滿足實時記錄無線節(jié)點自動監(jiān)控數(shù)據的需求。
關鍵詞: 物聯(lián)網; 無線節(jié)點; 監(jiān)控數(shù)據; 采集系統(tǒng); DSP; 數(shù)模轉換
中圖分類號: TN915?34; TN911 文獻標識碼: A 文章編號: 1004?373X(2018)04?0183?04
Abstract: The automatic monitoring data acquisition of wireless nodes under the environment of Internet of Things (IoT) can improve the capability of data detection and diagnosis analysis. Therefore, a dynamic gain control and DSP high?speed signal processing based design method of automatic monitoring data acquisition system for IoT intelligent wireless nodes is proposed. During the overall design of automatic monitoring data acquisition system for wireless nodes based on the computer bus technology, two functional modules of DSP processor and PCI bus are designed. The sensor array of data acquisition is composed of multi?sensor information fused wireless monitoring nodes. The transceiver circuit and power amplifier circuit are designed to realize signal amplification and digital?to?analogue conversion (DAC) for data acquisition. The dynamic gain control method is used to achieve the amplification and filtering of data acquisition. The integrated design of automatic monitoring data acquisition system based on DSP signal processor is performed. The test results show that the system for automatic monitoring data acquisition of IoT intelligent wireless nodes can realize over 15 MB/s continuous real?time data acquisition and recording, with the continuous data transmission rate of the bus higher than 20 MB/s, and the peak transmission rate higher than 33MB/s, which can meet the requirement of real?time recording of automatic monitoring data for wireless nodes.
Keywords: IoT; wireless node; monitoring data; acquisition system; DSP; DAC
0 引 言
研究物聯(lián)網智能無線節(jié)點自動監(jiān)控數(shù)據采集系統(tǒng)的優(yōu)化設計方法,在信號檢測、計量、測控等領域具有廣闊的應用前景。傳統(tǒng)方法設計物聯(lián)網監(jiān)控數(shù)據數(shù)據采集系統(tǒng)存在數(shù)據采集實時性不好,不適用于外場測試、現(xiàn)場檢測等應用需求,需要進行系統(tǒng)改進設計[1]。對此,提出基于動態(tài)增益控制和DSP高速信號處理的智能無線節(jié)點自動監(jiān)控數(shù)據采集系統(tǒng)設計方法,并進行系統(tǒng)測試分析,得出有效性結論。
1 數(shù)據采集系統(tǒng)總體設計
1.1 原理分析及系統(tǒng)總體構架
本文設計的數(shù)據采集系統(tǒng)是采用多節(jié)點分布的傳感器網絡進行監(jiān)控數(shù)據采集,數(shù)據采集系統(tǒng)建立在物聯(lián)網體系結構基礎上,首先采用物聯(lián)網環(huán)境下的無線傳感通信組網技術進行節(jié)點分布式設計,構建數(shù)據感知層,實現(xiàn)對原始監(jiān)控數(shù)據的實時讀取[2],采用時鐘控制電路進行數(shù)據采集過程中的中斷控制和增益放大控制,對采集原始數(shù)據輸入到匹配濾波器中進行噪聲和干擾的濾波檢測,進行匹配放大。確定動態(tài)增益范圍,將放大輸出的采集數(shù)據和原始信號進行增益放大和多??刂?,以高速DSP信號處理芯片為內核,進行采集數(shù)據分析加工和信號處理[3],并經過PCI總線及橋接電路實現(xiàn)系統(tǒng)的觸發(fā)控制。系統(tǒng)的電源設計采用I/O電源、實時電源和時鐘電源三種模式,設計掉電復位電路,防止電源中斷導致信息數(shù)據丟失[4]?;嚱邮盏臒o線節(jié)點自動監(jiān)控數(shù)據一般都是幾微伏到幾百毫伏不等,因此在進行數(shù)據采集過程中必須通過模擬信號預處理機進行放大,因此選擇合適的放大器即可,用動態(tài)增益控制方法實現(xiàn)采集數(shù)據的放大和濾波處理,采用微機總線技術進行無線節(jié)點自動監(jiān)控數(shù)據采集系統(tǒng)的總體設計。根據上述設計分析,構造物聯(lián)網智能無線節(jié)點自動監(jiān)控數(shù)據采集系統(tǒng)的總體設計框圖如圖1所示。endprint
根據圖1分析得知,本文設計的數(shù)據采集系統(tǒng)的核心控制模塊部分主要包括了DSP信號處理器、模擬信號預處理機、外部I/O設備、數(shù)據存儲器等,物聯(lián)網無線傳感器基陣接收的監(jiān)控數(shù)據通過模擬信號預處理機放大、濾波后,進行數(shù)字FIR濾波,接收信號處理、頻譜分析、自動增益控制等信息處理方法,實現(xiàn)監(jiān)控數(shù)據的自動增益放大、數(shù)/模轉換和數(shù)據存儲等[5]。
1.2 系統(tǒng)的技術指標分析
物聯(lián)網環(huán)境下無線節(jié)點自動監(jiān)控數(shù)據采集系統(tǒng)采用高速A/D芯片AD9225進行采樣信息調制,其采樣頻率為12 MHz,采用32位VME總線擴展技術構建無線節(jié)點自動監(jiān)控數(shù)據的采集系統(tǒng)的可編程專用集成總線,設計的無線節(jié)點自動監(jiān)控數(shù)據系統(tǒng)具有12通道DMA,0.8~1.2 V的核心電壓,3.3 V的I/O電壓,采用2線制接口作為輸出接口電路,在ARM Cortex?M3內核中進行控制系統(tǒng)的嵌入式開發(fā),本文設計的數(shù)據采集系統(tǒng)的技術指標描述如下:
1) 自動監(jiān)控數(shù)據的調幅動態(tài)范圍為-40~40 dB,寬帶基陣阻抗匹配濾波的放大量為80 dB,輸出采集數(shù)據的頻譜幅度為[±10 V];
2) 監(jiān)控數(shù)據的采樣通道:12通道同步、異步輸入;
3) 讀取監(jiān)控數(shù)據A/D采樣值采樣率:大于100 MHz;
4) D/A轉換器的頻譜控制分辨率:12位(至少);
5) PCI總線接收自動監(jiān)控數(shù)據的D/A分辨率:12位(至少);
6) D/A轉換器進行數(shù)/模轉換速率:大于100 kHz。
2 系統(tǒng)硬件開發(fā)設計
2.1 器件選擇
本文采用模塊化的硬件電路設計方法進行數(shù)據采集系統(tǒng)開發(fā)設計。在物聯(lián)網自動監(jiān)控數(shù)據采集硬件實現(xiàn)中,需要借助于專用的高速信號硬件,如DSP、現(xiàn)場可編程門邏輯陣列FPGA等實現(xiàn)信號集成處理系統(tǒng)主要包括了DSP處理器和PCI總線兩大功能模塊設計,根據數(shù)據采集運算量的要求,DSP的最低速度應大于[25×20=500 MHz],整機功耗不大于12 W,應選擇低壓低功耗DSP芯片,因此在數(shù)據采集系統(tǒng)DSP設計中,選用高速STC89C52芯片進行無線監(jiān)控數(shù)據采集的基線漂移控制,選擇ADI公司的ADSP21160處理器系統(tǒng)作為核心處理器件,該芯片具有16位定點DSP內核,具備40位移位器,支持片外同步或異步存儲器,暫存數(shù)據的輸出模式為SRAM。外圍器件主要是對A/D轉換器和D/A轉換器的選擇,本文選擇ADI公司的高速A/D芯片作為外圍器件進行自動監(jiān)控數(shù)據的A/D采集,其采樣頻率為12 MHz, 晶體電路ADI的串行D/A轉換選擇AD5545作為外圍器件,通過晶體電路設計,使輸出時鐘頻率精確、穩(wěn)定[6]。
2.2 硬件電路的模塊化設計
根據對系統(tǒng)總體構架與技術指標分析,在進行器件優(yōu)選的基礎上,進行物聯(lián)網環(huán)境下無線節(jié)點自動監(jiān)控數(shù)據采集系統(tǒng)的硬件模塊化設計。其采用32位VME總線擴展技術構建無線節(jié)點自動監(jiān)控數(shù)據的采集系統(tǒng)的可編程專用集成總線,用16位DSP和32位DSP進行系統(tǒng)硬件電路的模塊化開發(fā),本文設計的數(shù)據采集系統(tǒng)主要包括物聯(lián)網無線節(jié)點數(shù)據A/D模塊、模擬信號預處理模塊、時鐘控制模塊、收發(fā)轉換模塊、自動增益控制模塊以及功率放大模塊等[7],對各個模塊的電路設計描述如下:
1) A/D模塊。A/D模塊是實現(xiàn)對物聯(lián)網無線節(jié)點數(shù)據的A/D采樣和數(shù)/模轉換控制,A/D電路采用2片AD5545芯片組成D/A收發(fā)裝置,采集系統(tǒng)的AD5545采用單5 V供電。為了減少數(shù)字電路和模擬電路之間的相互干擾,在數(shù)據采集系統(tǒng)的I/O輸出終端設計功率放大器,完成無線終端智能通信信號的數(shù)/模轉換;為了減少噪聲,采用10[μF,]0.1[μF]和0.001[μF]的電容進行濾波處理,輸出的VAA為5 V電壓。A/D電路設計見圖2。
2) 模擬信號預處理模塊。模擬信號預處理是實現(xiàn)對無線節(jié)點監(jiān)控數(shù)據采集后的濾波、放大和檢波等預處理的功能,該模塊由一款16位分辨率的可編程邏輯芯片組成[8],輸出接口為同步多片AD5545,電路設計如圖3所示。
3) 時鐘控制模塊。時鐘控制模塊是實現(xiàn)監(jiān)控數(shù)據采集的時鐘控制和周期采樣控制功能,采用通用PPI模式構造時鐘控制模塊[9],實現(xiàn)多樣化的數(shù)據捕捉和信號獲取,設置DMA參數(shù)實現(xiàn)最高65 MHz的監(jiān)控數(shù)據時鐘采樣,時鐘控制模塊電路設計如圖4所示。
4) 自動增益控制模塊和功率放大模塊的集成設計。利用同步多片AD5545進行自動增益控制設計,放大模塊采用DSP進行信號處理和核心控制設計,設計收發(fā)轉換電路和功率放大電路實現(xiàn)采集數(shù)據的信號放大和數(shù)/模轉換[10]。結合CPLD編程技術將DSP發(fā)送的物聯(lián)網環(huán)境下無線終端智能通信并行數(shù)據進行模塊化并行處理,在D/A輸出端加濾波器,采用動態(tài)增益控制方法實現(xiàn)采集數(shù)據的放大和濾波處理,最后得到自動監(jiān)控數(shù)據采集系統(tǒng)的集成電路。
3 實驗測試分析
為了測試本文設計的物聯(lián)網智能無線節(jié)點自動監(jiān)控數(shù)據采集系統(tǒng)在實現(xiàn)數(shù)據采集和無線節(jié)點自動監(jiān)控信息實時記錄中的性能,進行系統(tǒng)測試和仿真實驗分析,實驗平臺搭建在軟件仿真器(Simulator)、硬件仿真器(Emulator)基礎上,使用Matlab Simulator是軟件仿真分析數(shù)據采集輸出性能,并執(zhí)行信號處理程序的初期調試和仿真,設定信號采集系統(tǒng)的工作頻率為250 MHz,DSP工作到600 MHz產生中斷信號,鎖相環(huán)輸出頻率為400 MHz,倍頻數(shù)為10,配置串口0發(fā)送數(shù)據的時鐘頻率,設定SPORT0_TCLKDIV為4,根據上述測試環(huán)境設定,得到自動監(jiān)控數(shù)據采集輸出如圖5所示。
分析圖5結果得知,采用本文方法設計自動監(jiān)控數(shù)據采集系統(tǒng),能實現(xiàn)持續(xù)大于15 MB/s的實時數(shù)據采集和記錄,總線持續(xù)數(shù)據傳輸速率超過20 MB/s,峰值傳輸速率也可超過33 MB/s,滿足實時記錄無線節(jié)點自動監(jiān)控數(shù)據的需求。endprint
4 結 論
本文提出基于動態(tài)增益控制和DSP高速信號處理的物聯(lián)網智能無線節(jié)點自動監(jiān)控數(shù)據采集系統(tǒng)設計方法。研究結果表明,采用改進物聯(lián)網智能無線節(jié)點自動監(jiān)控數(shù)據采集,數(shù)據的實時數(shù)據采集性能較好,能實現(xiàn)數(shù)據的正確采樣,滿足實時記錄無線節(jié)點自動監(jiān)控數(shù)據的需求。
參考文獻
[1] 鄧昀,李朝慶,程小輝.基于物聯(lián)網的智能家居遠程無線監(jiān)控系統(tǒng)設計[J].計算機應用,2017,37(1):159?165.
DENG Yun, LI Chaoqing, CHENG Xiaohui. Design of remote wireless monitoring system for smart home based on Internet of Things [J]. Journal of computer applications, 2017, 37(1): 159?165.
[2] 趙芳云,張明富.基于嵌入式的海洋運輸環(huán)境數(shù)據采集與動態(tài)監(jiān)控節(jié)點設計[J].艦船科學技術,2016,38(17):130?135.
ZHAO Fangyun, ZHANG Mingfu. Data acquisition and dynamic monitoring node design of marine transportation environment based embedded [J]. Ship science and technology, 2016, 38(17): 130?135.
[3] 代品宣,王青云,梁瑞宇.魯棒的物聯(lián)網智能農業(yè)控制系統(tǒng)設計與實現(xiàn)[J].電子器件,2015(1):178?183.
DAI Pinxuan, WANG Qingyun, LIANG Ruiyu. Design and implementation of robust smart agricultural control system [J]. Chinese journal of electron devices, 2015(1): 178?183.
[4] 秦琳琳,陸林箭,石春,等.基于物聯(lián)網的溫室智能監(jiān)控系統(tǒng)設計[J].農業(yè)機械學報,2015,46(3):261?267.
QIN Linlin, LU Linjian, SHI Chun, et al. Implementation of IOT?based greenhouse intelligent monitoring system [J]. Transactions of the Chinese society for agricultural machinery, 2015, 46(3): 261?267.
[5] 張開生,田開元,呂明,等.基于物聯(lián)網技術的農業(yè)大棚環(huán)境監(jiān)控系統(tǒng)設計[J].西安科技大學學報,2015,35(6):805?811.
ZHANG Kaisheng, TIAN Kaiyuan, L? Ming, et al. Design of agricultural greenhouse environment monitoring system based on Internet of Things technology [J]. Journal of Xian University of Science and Technology, 2015, 35(6): 805?811.
[6] 梁帆,董江磊,崔世鋼,等.基于物聯(lián)網智能植物生長柜的軟件系統(tǒng)設計[J].農業(yè)現(xiàn)代化研究,2015,36(4):716?720.
LIANG Fan, DONG Jianglei, CUI Shigang, et al. Software system design of intelligent plant growth cabinet based on Internet of Things [J]. Research of agricultural modernization, 2015, 36(4): 716?720.
[7] 賈偉.物聯(lián)網的數(shù)據采集與信息傳輸技術研究[J].現(xiàn)代電子技術,2016,39(5):33?37.
JIA Wei. Research on data acquisition and information transmission technology of Internet of Things [J]. Modern electronics technique, 2016, 39(5): 33?37.
[8] 苗鳳娟,高玉峰,陶佰睿,等.基于物聯(lián)網與太陽能光伏的智能溫室監(jiān)控系統(tǒng)設計[J].科技通報,2016,32(9):89?92.
MIAO Fengjuan, GAO Yufeng, TAO Bairui, et al. Design of modern agricultural greenhouse monitoring system based on the Internet of Things and the solar photovoltaic [J]. Bulletin of science and technology, 2016, 32(9): 89?92.
[9] 魏永強,宋子龍,王祥.基于物聯(lián)網模式的水庫大壩安全監(jiān)測智能機系統(tǒng)設計[J].水利水電技術,2015,46(10):38?42.
WEI Yongqiang, SONG Zilong, WANG Xiang. Design of Internet of Things based?intelligent machine system for dam safety monitoring [J]. Water resources and hydropower engineering, 2015, 46(10): 38?42.
[10] 汪嬋嬋.基于物聯(lián)網技術的船舶移動數(shù)據采集與分析系統(tǒng)設計[J].艦船科學技術,2017(16):148?150.
WANG Chanchan. Design of ship mobile data acquisition and analysis system based on Internet of Things technology [J]. Ship science and technology, 2017(16): 148?150.endprint