• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transitional Area of Ce4+ to Ce3+ in SmxCayCe1-x-yO2-δ with Various Doping and Oxygen Vacancy Concentrations: A GGA + U Study①

    2018-03-12 08:40:50WUTongWeiJIAGuiXioWANGXioXiLILeiANShengLi
    結(jié)構(gòu)化學 2018年2期

    WU Tong-Wei JIA Gui-Xio, b WANG Xio-Xi LI Lei AN Sheng-Li, b

    ?

    Transitional Area of Ce4+to Ce3+in SmCaCe1-x-yO2-δwith Various Doping and Oxygen Vacancy Concentrations: A GGA +Study①

    WU Tong-WeiaJIA Gui-Xiaoa, b②WANG Xiao-XiaaLI LeiaAN Sheng-Lia, b

    a(,014010)b(014010)

    In this work, we perform DFT + U periodic calculations to study geometrical and electronic structures and oxygen vacancy formation energies of SmCaCe1-x-yO2-δsystems (= 0.0312, 0.0625, 0.125 and 0.250;= 0.0312, 0.0625, 0.125 and 0.250;= 0.0312, 0.0625, 0.125, 0.250 and 0.50) with different oxygen vacancy and doping concentrations. The calculated results show that the V1-Sm3+-V2structures where there is a position relationship of the face diagonal between V1and V2both nearest to Sm3+have the lowest energy configurations. The study on electronic structures of the SmCaCe1-x-yO2-δsystems finds that excess electrons arise from oxygen vacancies and are localized on-level traps of their neighbor Ce, and Ca2+and Sm3+co-doping effectively restrains the reduction of Ce4+. In order to avoid the existence of Ce3+,andmust be both larger than 0.0625 as= 0.125 ormust be smaller than 0.125 as== 0.0625.The Ce3+/Ce4+change ratiohas an obvious monotonous increase with increasing the vacancy oxygen concentration. The introduction of Sm3+decreases.In addition, the doped Sm3+can restrain the reduction of Ce4+when the V1-Sm3+-V2structure with a face diagonal position relationship in lower reduced atmosphere exists. It need be pointed out that the Sm0.25Ce0.75O1.5system should be thought of as a Sm-doped Ce2O3one.

    cerium oxide, oxygen vacancies, doping, electronic structures, GGA+;

    1 INTRODUCTION

    Theoretically, the distributions of oxygen vacan- cies and dopants[23], their formation energies[24], geometric and electronic structures[25]and oxygen ionic migration energies of CeO2systems[15, 25, 26]have been investigated at the atomic level. CeO2systems with Sm3+among rare earth metals and Ca2+among alkaline earth metals have the smallest oxygen ionic migration energies[25, 27]and their doping can effectively restrain the electronic con- ductivity. Theoretical[9]and experimental[28, 29]studies showed that Ca2+and Sm3+co-doping could better improve the ionic conductivity. Effects of different oxygen vacancy and doping concentrations on the distributions of oxygen vacancies, dopants and Ce3+of the CeO2systems are investigated.Murgida’s study[30]showed that the oxygen vacancy concen- tration affected the distribution of Ce3+and excess electrons preferred to be localized in the cation sites such that the mean Ce3+coordination number was maximized, and two vacancies were inclined to be second-neighboring. For doped CeO2-δ, our and other studies found that dopants preferred to occupy the nearest neighbor (NN) and next-nearest neighbor (NNN) positions relative to the oxygen vacancy[20, 25]. Independent with oxygen vacancy and doping concentrations, Ce3+is distributed around the nearest neighbor oxygen vacancy[30-32].

    However, a systematically theoretical study on Ce3+/Ce4+electronic properties of CeO2with dif- ferent oxygen vacancy and doping concentrations is absent. As is well known, Ca and Sm doping can effectively restrain the reduction of Ce4+to Ce3+and the doped CeO2has the largest ionic conductivity. Hence, in order to better understand the effects of different oxygen vacancy and Ca-, Sm-doping concentrations on the electronic structures (Ce3+/Ce4+) of CeO2systems, in the work, we select various numbers of oxygen vacancies or Ca and Sm dopants in the same supercell to obtain a series of vacancy and doping concentrations. Ultimately, this work would plot transitional area of Ce4+to Ce3+and the Ce3+/Ce4+change ratiounder different oxygen vacancy and doping concentration conditions.

    2 Models and computational details

    2. 1 Models

    CeO2has a fluorite-type structure (3space group) with one formula unit per primitive unite cell[25]. In this work, we considered a number of oxygen vacancies or dopants of Ca2+and Sm3+to produce various oxygen vacancy and doping con- centrations in a 2×2×2 supercell, namely, SmCaCe1-x-yO2-δsystems with various,and(= 0.0312, 0.0625, 0.125 and 0.250;= 0.0312, 0.0625, 0.125 and 0.250;= 0.0312, 0.0625, 0.125, 0.250 and 0.50) were considered, see Table 1. When the doping concentration is larger than 0.30, SmCaCe1-x-yO2-δsystems were not doping but alloying ones. However, for convenience with description in the work, we would unify them to name as doping ones.

    Doped atoms are uniformly distributed in a 2×2×2 supercell to obtain systems with various doping concentrations. Hooper’s study[33]on Sm-doped CeO2systems found that the dopant-vacancy interac- tion was a hybrid NN/NNN mixture distribution as the Sm3+concentrations increased and more NN distributions were the most favored. Our previous studies found that the first oxygen vacancy (V1) was the nearest to the dopant (NN)[20, 25]. Here, the same structure model is used. For the CeO2systems where the number of the oxygen vacancy nearest to one Sm3+is more than one, these vacancies are chosen according to the rule of the NN distribution, namely, the second oxygen vacancy nearest to one Sm3+is introduced and named as V2. Thus, V1and V2would have three distinct position relationships in the cube of eight coordinated O2-for one Sm3+, namely, the side one in Fig. 1a, the face diagonal one in Fig. 1b and the body diagonal one in Fig. 1c. Calculation results show that the structures with the face diagonal relationship between V1and V2are the most stable, consistent with the case of pure CeO2systems with double oxygen vacancies[8]. For Ca-doped CeO2systems, the models where Ca2+has a NN or NNN distribution relationship with one oxygen vacancy are considered.

    Fig. 1. Geometric structures of Sm0.25Ca0.25Ce0.5O2-δor Sm0.5Ce0.5O2-δsystems with V1and V2. Red spheres note O, white ones note Ce, and the pink ones note one Sm3+. There is a similar notation in the following figures

    2. 2 Computational details

    All calculations were performed by a Viennasimulation package (VASP)[34]. Ce55645, O22, Ca334and Sm55645were treated as valence electrons. Structures were relaxed until forces on each ion were below 0.02 eV/? and the total energy was converged within 1×10-4eV. A plane-wave cut off energy of 400 eV, a 3×3×3 Monkhorst-Pack k point mesh and a Gaussian smearing parameter of 0.20 eV were used.

    The standard DFT formulation usually fails to describe strongly the correlated electrons due to a deficient treatment of electron correlation. This limitation can be corrected by using a DFT + U method, where the introduction of a Hubbard parametermodifies the self-interaction error and enhances the description of the correlation effects[35]. This methodology has been widely used in reduced CeO2systems[6, 8, 32, 35]. Theoretical work showed that thevalue for Ce should be larger than 5.0 eV[25, 26, 34]. In this work, we used thevalue of 6.0 eV for Ce and-value of 8.0 eV and-value of 0.65 eV for Sm, consistent with the other work[35-47]. The exchange-correlation effects were described with the Perdew Burke Ernzerhof (PBE) functional within the generalized gradient approximation (GGA)[36].The calculated crystal lattice constant from the GGA +method is 5.48 ?, in agreement with the experiment value of 5.41 ?[48].

    The formation energies of oxygen vacanciesVofor CeO2-δsystems,Vo-Smfor SmCeO2-δsystems andVo-CaSmfor SmCaCeO2-δsystems can be defined as

    where[] and[] are total energies of pure or doped CeO2systems with and without oxygen vacancies, respectively.[O2] is the energy of one O2molecule set in a 10? × 10? × 10? supercell, andis the number of oxygen vacancies.

    3 RESULTS AND DISCUSSION

    3. 1 Geometric structures

    Model structures with the lowest energies are obtained.The V1-Sm3+-V2structures where there is a diagonal position relationship of the face between V1and V2both nearest to Sm3+have the lowest energy configurations, consistent with the case of pure CeO2systems with double oxygen vacancies[8]. The introduction of Sm3+, Ca2+and oxygen vacancies into CeO2can produce obvious geometric distortions, consistent with the other work[25]. Geometric struc- tures of CeO1.9688, Sm0.0312Ce0.9688O1.9688, Sm0.0312Ce0.9688O1.9375, Sm0.0312Ca0.0312Ce0.9376O1.9688and Sm0.0312Ca0.0312Ce0.9376O1.9375systems as examples are displayed in Fig. 2. Geometric struc- tures of SmCaCe1-x-yO2-δwith other oxygen vacancy and doping concentrations have a similar geometric distortion.

    It is well known that the oxygen vacancy is an area of effective positive potential, hence, the neighboring O2-move toward the vacancy, and the neighboring Ce4+move away from the vacancy. From Fig. 2a of the CeO1.9688system, we can see that three of four O2-near the oxygen vacancy move toward it and another O2-moves away from it. From the following electronic structures (see detail discussion on electronic structures), it is known that this O2-is bridged by two Ce3+which have larger negative potential than that of Ce4+. From Fig. 2b of the Sm0.0312Ce0.9688O1.9688system, it is similar to the CeO1.9688system in Fig. 2a and the difference is that one of two Ce3+is Sm3+, namely, the neighboring O2-move toward the vacancy, and the neighboring Ce4+and Sm3+move away from the vacancy. From Fig. 2c of the Sm0.0312Ce0.9688O1.9375system, we can see that the movements of four O2-toward two vacancies and two O2-toward Sm3+resulted from the common attraction of V1and V2to O2-, namely, an O2-bridged by Sm3+and Ce3+is not repelled, different from the systems with one oxygen vacancy. From Fig. 2d of the Sm0.0312Ca0.0312Ce0.9376O1.9688system, four O2-near the oxygen vacancies can be driven toward the vacancy and the neighboring Ce4+move away from the vacancy. The Sm0.0312Ca0.0312Ce0.9376O1.9375system in Fig. 2e is similar to the Sm0.0312Ce0.9688O1.9375system in Fig. 2c.

    Fig. 2. Optimized geometric structures of the CeO1.9688(a), Sm0.0312Ce0.9688O1.9688(b), Sm0.0312Ce0.9688O1.9375(c), Sm0.0312Ca0.0312Ce0.9376O1.9688(d) and Sm0.0312Ca0.0312Ce0.9376O1.9375(e) systems. Arrow directions indicate moving ones of ions

    3. 2 Oxygen vacancy formation energies

    Oxygen vacancy formation energies ofVofor CeO2-δsystems,Vo-Smfor SmCe1-xO2-δsystems andVo-CaSmfor SmCaCe1-x-yO2-δsystems are listed in Table 1.Vomonotonously increases with increasing, see Table 1 and Fig. 3. For SmCe1-xO2-δand SmCaCe1-x-yO2-δsystems, we can find thatVo-Smwith a certainandVo-CaSmwith certainandare large asislarge, and bothwith a certainare small asorand y are large, see Table 1 and Fig. 3. It need point out that the introduction of Ca and Sm makes the oxygen vacancy spontaneously form, similar to Fergus’s study on the Sm-doped CeO2systems[49].

    Table 1. Oxygen Vacancy Formation Energies (Unit: eV) of EVo for CeO2-δ, EVo-Sm for SmxCe1-xO2-δ andEVo-CaSm for SmxCayCe1-x-yO2-δ

    Fig. 3. Variation ofVo,Vo-Sm, andVo-CaSmasof corresponding CeO2-δSmCe1-xO2-δandSmCaCe1-x-yO2-δsystems

    3. 3 Electronic structures

    When oxygen vacancies in CeO2are formed, the Ce4state is split into two states: an empty Ce4emptystate and an occupied defect Ce3+4fullstate at the range of O2and Ce4empty, consistent with our previous[25]and the other work[32], see Fig. 4. Total electronic densities of states (DOS), partial electronic densities of states (PDOS) and localization electronic densities of states (LDOS) from the defect state of Ce3+for various SmCaCe1-x-yO2-δsystems with different,andare calculated, as shown in Figs. 4 and 5.

    3. 3. 1 Excess electron distribution

    From the PDOS of Ce4state for CeO1.9688, CeO1.9375, CeO1.875and CeO1.75systems in Fig. 4a, we can see that a new peak appears at the range of –1.2~0 eV for CeO1.9688, CeO1.9375, CeO1.875systems and –0.80~0.60 eV for the CeO1.75system, respectively, which are fully occupied by Ce3+electrons. Compared to the PDOS of Ce4state for the CeO1.75system, the Fermi level of the other systems approximately shift up by 0.50 eV, due to the decrease of oxygen vacancy concentration. Excess electrons arise from the oxygen vacancy and are localized on the-level traps of its neighbor Ce, which can be visually recognized from the corresponding LDOS of the defect Ce3+state in Fig. 4b-e. These are consistent with theoretical studies for CeO1.9843, CeO1.9687, CeO1.9375and CeO1.875[43]and CeO2(111), (110) and (100) surfaces[50].

    Fig. 4. DOS of the CeO2systems and PDOS of Ce4state for CeO1.9688, CeO1.9375, CeO1.875and CeO1.75systems (a) and the corresponding LDOS (b)-(e) of the defect peaks. The isosurface is shown in green and is set to 0.05 e/?. Here, one primitive cell of various CeO2-δsystems with a 2 × 2 × 2 supercell is shown

    From the PDOS of Ce4state for SmCe1-xO2-δ(0.0312≤≤0.25, 0.0312≤≤0.5) systems, see Fig. 5a, similar to CeO2-δsystems mentioned above, a new peak appears in the range of O2~Ce4empty. From the corresponding LDOS of the defect Ce3+state, see Fig. 5c-j, we can see that excess electrons arise from oxygen vacancies and are localized on-level traps of their neighbor Ce, like the case of CeO2-δsystems[5, 26, 30, 32]. For the Sm0.0312Ce0.9688O1.9375system, see Fig. 5j, there are two oxygen vacancies in the 2×2×2 supercell, so they should induce four charge-compensation cations. However, the calculated result finds that there are three, maybe due to the existence of V1-Sm3+-V2structure with a face diagonal position relationship in lower reduced atmosphere and then doped Sm3+can restrain the reduction of Ce4+.

    In order to better restrain excess electrons, SmCaCe1-x-yO2-δ(0.0312≤≤0.25, 0.0312≤≤0.25, 0.0312≤≤0.5 ) systems with various,andare explored. From the DOS of Fig. 5b of SmCaCe1-x-yO2-δsystems, we can see that, except for the Sm0.0625Ca0.0625Ce0.875O1.875system, SmCaCe1-x-yO2-δsystems have no Ce3+. In other words, in order to avoid the existence of Ce3+,andmust be respectively larger than 0.0625 as= 0.125 ormust be smaller than 0.125 as== 0.0625. For a series of SmCaCe1-x-yO2-δsystems, from their corresponding LDOS of the defect Ce3+state in Fig. 5c-k, we can see that excess electrons arise from oxygen vacancies and are localized on-level traps of their neighbor Ce, like the case of CeO2-δ[5, 26, 30, 32].

    Fig. 5. PDOS of Ce4states for the SmCe1-xO2-δ(0.0312≤≤0.25, 0.0312≤≤0.5) systems (a) and DOS of SmCaCe1-x-yO2-δ(0.0312≤≤0.25, 0.0312≤≤0.25, 0.0312≤≤0.5) systems (b) and the corresponding LDOS (c)~(k) of the defect peaks. Oxygen vacancies are represented by V1and V2. The isosurface is shown in green and set to 0.05 e/?

    3. 3. 2 Transitional area of Ce4+to Ce3+and Ce3+/Ce4+change ratio k forSmCaCe1-x-yO2-δsystems with different oxygen vacancy and doping concentrations

    In order to visually understand transitional area of Ce4+to Ce3+for the SmCaCe1-x-yO2-δsystems with various oxygen vacancy and doping concentrations, their transitional areas of Ce4+to Ce3+for the SmCe1-xO2-δ(Fig. 6a) and the SmCaCe1-x-yO2-δsystems (Fig. 6b) are plotted.

    Fig. 6. Transitional area of Ce4+to Ce3+and Ce3+/Ce4+change ratiofor SmCe1-xO2-δand SmCaCe1-x-yO2-δsystems with different oxygen vacancy and doping concentrations

    From Fig. 6a, we can see that no Ce3+exists for the SmCe1-xO2-δsystems with≥ 0.167 and≤0.0833 and Ce3+exists for the SmCe1-xO2-δsystems with≤ 0.0312 and≥ 0.0312,≤ 0.0625 and≥ 0.0625,≤ 0.125 and≥ 0.125,≤ 0.167 and≥ 0.166, and≤ 0.250 and≥ 0.250. For the SmCaCe1-x-yO2-δsystem as y ≠ 0, the substitution of Ce4+by Ca2+makes two excess electrons and the substitution of Ce4+by Sm3+makes one excess electron. Based on the case, for convenience of totally reflecting the effect of the doping concentration on the transition ratio of Ce4+to Ce3+, the doping effect of one Ca2+is transformed to that of two Sm3+, in which the ionic radius of doping Ca2+andSm3+is omitted, and its corres- ponding transitional area of Ce4+to Ce3+is plotted in Fig. 6b. From Fig. 6b, we can see that no Ce3+exists for the SmCaCe1-x-yO2-δsystems with≥0.0936 and≤ 0.0625,≥0.334 and≤ 0.166,≥0.375 and≤ 0.250, and≥0.750 and≤ 0.50 and Ce3+exists for the SmCaCe1-x-yO2-δsystems with≤ 0.187 and≥ 0.125.

    The Ce3+/Ce4+change ratioin SmCe1-xO2-δsystems with various oxygen vacancy and doping concentrations are studied, as shown in Fig. 6c. From Fig. 6c, we can see thathas obvious monotonous increase with increasing the vacancy concentration, and the introduction of Sm3+reduces,such as Sm0.0312Ce0.9688O1.9375, Sm0.0625Ce0.9375O1.875, Sm0.125Ce0.875O1.75, Sm0.166Ce0.834O1.668and Sm0.25Ce0.75O1.5systems, namely, the introduction of Sm3+restrains the reduction of Ce4+to Ce3+It need be pointed out that Sm0.25Ce0.75O1.5system can be thought of as Sm-doped Ce2O3, because of no unoccupied defect states between the occupied Ce3+states and the unoccupied Ce4empty, see Fig. 5a, in accordance with other theoretical work[51-53].

    4 CONCLUSION

    In this work, the influence of Sm3+single-doping or Ca2+and Sm3+co-doping, oxygen vacancies and their concentrations on the geometric and electronic structures of SmCaCe1-x-yO2-δsystems are studied. Results for the geometric structures show that the V1-Sm3+-V2structures where there is a position relationship of diagonal of the face between V1and V2both nearest to Sm3+are easily obtained, in agreement with the case of pure CeO2systems. Study for electronic structures finds that the oxygen vacancies are contributed to excess electrons and these electrons are localized on-level traps of its neighbor Ce for the SmCaCe1-x-yO2-δsystems. The Ce3+/Ce4+change ratiois related with the dopant and oxygen vacancy concentrationsIn addition, the existence of V1-Sm3+-V2structure with face diagonal position relationship in lower reduced atmosphere maybe makes the doped Sm3+restrain the reduction of Ce4+. It need be pointed out that Sm0.25Ce0.75O1.5system can be thought of as Sm-doped Ce2O3.

    (1) Brett, D. J. L.; Atkinson, A.; Brandon, N. P.; Skinner, S. J. Intermediate temperature solid oxide fuel cells.2008, 37, 1568–1578.

    (2) Ruiz, T. E.; Sirman, J. D.; Baikov, Y. M.; Kilner, J. A. Oxygen ion diffusivity, surface exchange and ionic conductivity in single crystal Gadolinia doped Ceria.1998,113, 565–569.

    (3) Park, S.; Vohs, J. M.; Gorte, R. J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell.()2000, 404, 265–267.

    (4) Molinari, M.; Parker, S. C.; Sayle, D. C.; Islam, M. S. Water adsorption and its effect on the stability of low index stoichiometric and reduced surfaces of ceria.2012, 116, 7073–7082.

    (5) Kullgren, J.; Hermansson, K.; Castleton, C. Many competing ceria(110) oxygen vacancy structures: from small to large supercells.2012, 137, 044705.

    (6) Allen, J. P.; Watson, G. W. Occupation matrix control of- and-electron localisations using DFT +.2014, 16, 21016–21031.

    (7) Steele, B. C. H. Appraisal of Ce1-yGdO2-y/2electrolytes for IT-SOFC operation at 500 ℃.2000, 129, 95–110.

    (8) Ismail, A.; Hooper, J.; Giorgi, J. B. A DFT + U study of defect association and oxygen migration in samarium-doped ceria.2011, 13, 6116–6120.

    (9) Suparna, B.; Parukuttyamma, S. D.; Dinesh, T. S. M.; Krishnakumar, M. Enhanced ionic conductivity in Ce0.8Sm0.2O1.9: unique effect of calcium Co-doping.2007, 17, 2847–2854.

    (10) Wang, F. Y.; Cheng, S.Gd3+and Sm3+co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells.2004, 6, 743–746.

    (11) Kim, N.; Kim, B. H.; Lee, D. Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte.2000, 90, 139–143.

    (12) Mori, T.; Yamamura, H. Preparation of an alkali-element or alkali-earth-element-doped CeO2-Sm2O3system and its operation properties as the electrolyte in planar solid oxide fuel cells.1998, 6, 175–179.

    (13) Van, H. J.; Horita, T.; Kawada, T.; Sakai, N.; Yokokawa, H.Low temperature fabrication of (Y, Gd, Sm)-doped ceria electrolyte.1996, 86, 1255–1258.

    (14) Yang, N.; Belianinov, A.; Strelcov, E. Effect of doping on surface reactivity and conduction mechanism in samarium-doped ceria thin films.2014, 8, 12494–12501.

    (15) Ruiz-Trejo, E.; Sirman, J. D.; Baikov, Y. M.; Kilner, J. A. Nanoparticles and nanoceramics of Y-doped CeO2.1998, 113, 565–571.

    (16) Yoshida, H.; Deguchi, H.; Miura, K. Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement.2001,140, 191–199.

    (17) Andersson, D. A.; Simak, S. I.; Skorodumova, N. V.Optimization of ionic conductivity in doped ceria.2006, 103, 3518–3521.

    (18) Yin, Y. H.; Li, S. Y.; Zhu, W.; Xia, C. R. Research on calcium-doped ceria used in intermediate-temperature SOFCs anodes.2005, 03, 317–322.

    (19) Mogensen, M.; Lindegaard, T.; Hansen, U. R. Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2.1994, 141, 2122–2126.

    (20) Wei, X.; Pan, W.; Cheng, L. Atomistic calculation of association energy in doped ceria.2009, 180, 13–17.

    (21) Frayret, C.; Villesuzanne, A.; Pouchard, M.; Matar, S.Density functional theory calculations on microscopic aspects of oxygen diffusion in ceria-based materials.2005, 101, 826–839.

    (22) Nakayama, M.; Martin, M. First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations.2009, 11, 3241–3249.

    (23) Grinter, D. C.; Ithnin, R.; Pang, C. L.; Thorton, G. Defect structure of ultrathin ceria films on Pt(111): atomic views from scanning tunneling microscopy.2010, 114, 17036–17041.

    (24) Nolan, M.; Fearon, J. E.; Watson, G. W. Oxygen vacancy formation and migration in ceria.2006, 177, 3069–3074.

    (25) Jia, G. X.; Hao, W. X.; Pan, F.; Yang, J. C.; Zhang, Y. F. Electronic structures and oxygen ion migration energies of metal doped CeO2systems: a DFT+study.2013, 71, 1668–1675.

    (26) Wu, T. W.; Jia, G. X.; Bao, J. X.; Liu, Y. Y.; An, S. L. Electronic structures and oxygen ion migrations of the CaO or BaO and Sm2O3co-doped CeO2System: A DFT + U Study.2016, 32, 1363–1369.

    (27) Yahiro, H.; Eguchi, K.; Arai, H. Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell.1989, 36, 71–75.

    (28) Kumar, A.; Devi, P. S.; Maiti, H. S.A novel approach to develop dense lanthanum calcium chromite sintered ceramics with very high conductivity.2004, 16, 5562–5563.

    (29) Banerjee, S. P.; Devi, S. Sinter-active nanocrystalline CeO2powder prepared by a mixed fuel process: effect of fuel on particle agglomeration.2007, 9, 1097–1107.

    (30) Murgida, G. E.; Ferrari, V.; Ganduglia, P. M. V. Ordering of oxygen vacancies and excess charge localization in bulk ceria: a DFT + U study.2014, 90, 115120/1–10.

    (31) Zhang, C.; Michaelides, A.; King, D. A.; Jenkins, S. J. Oxygen vacancy clusters on ceria: decisive role of ceriumelectrons.2009, 79, 075433/1–11.

    (32) Graciani, J.; Antonio, M.; Márquez, J. J.; Plata, Y. O.; Norge, C.; Meyer, H. A.; Claudio, M.; Zicovich, W.; Javier, F. S. Comparative study on the performance of hybrid DFT functionals in highly correlated oxides: the case of CeO2and Ce2O3.2011, 7, 56–65.

    (33) Hooper, J.; Ismail, A.; Giorgi, J. B. Computational insights into the nature of increased ionic conductivity in concentrated samarium-doped ceria: a genetic algorithm study.2010, 12, 12969–12972.

    (34) Kresse, G.; Furthmüller, J. Efficiency oftotal energy calculations for metals and semiconductors using a plane-wave basis set.. 1996, 6, 15–50.

    (35) Delfina, G. P.; Alfredo, J.; Beatriz, I. Mn-doped CeO2: DFT + U study of a catalyst for oxidation reactions.2013, 117, 18063–18073.

    (36) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple.1996, 77, 3865–3867.

    (37) Castleton, C. W.; Kullgren, J.; Hermansson, K. Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria.2007, 127, 244704/1–11.

    (38) Loschen, C.; Carrasco, J.; Neyman, K. M. Illas, F. First-principles LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter.2007, 75, 035115/1–8.

    (39) Nolan, M.; Parker, S. C.; Watson, G. W. Reduction of NO2 on ceria surfaces.2006, 110, 2256–2262.

    (40) Nolan, M.; Watson, G. W. The surface dependence of CO adsorption on ceria.2006, 110, 16600–16606.

    (41) Nolan, M.; Parker, S. C.; Watson, G. W. CeO2catalysed conversion of CO, NO2and NO from first principles energetics.2006, 8, 216–218.

    (42) Scanlon, D. O.; Galea, N. M.; Morgan, B. J.; Watson, G. W. Reactivity on the (110) surface of ceria: a GGA+study of surface reduction and the adsorption of CO and NO2.2009, 113, 11095–11103.

    (43) Keating, P. R. L.; Scanlon, D. O.; Watson, G. W. Intrinsic ferromagnetism in CeO2: dispelling the myth of vacancy site localization mediated superexchange.2009, 21, 405502/1–6.

    (44) Dudarev, S. L.;Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Surface proton hopping and fast-kinetics pathway of water oxidation on Co3O4(001) surface.1998, 57, 1505–1517.

    (45) Larson, P. W.; Lambrecht, R. L.; Chantis, A. N.; Schilfgaarde, V. M. Electronic structure of rare-earth nitrides using the LSDA+approach: importance of allowing 4orbitals to break the cubic crystal symmetry.2007, 75, 045114/1–14.

    (46) Dorado, B.; Jomard, G.; Freyss, M.; Bertolus, M. Stability of oxygen point defects in UO2by first-principles DFT + U calculations: occupation matrix control and Jahn-Teller distortion.2010, 82, 035114/1–11.

    (47) Feng, J.; Xiao, B.; Wan, C. L.Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7(Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore.2011, 59, 1742–1760.

    (48) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations.1976, 13, 5188–5192.

    (49) Fergus, J. W. Recent developments in cathode materials for lithium ion batteries.2006, 189, 30–36.

    (50) Nolan, M.; Parker, S. C.; Watson, G. W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria.2005, 595, 223–232.

    (51) Silva, D. G. L. F.; Ganduglia, P. M. V.; Sauer, J.; Bayer, V.; Kresse, G. Hybrid functionals applied to rare-earth oxides: the example of ceria.2007, 75, 045121/1–10.

    (52) Skorodumova, N. V.; Ahuja, R.; Simak, S. I.; Abrikosov, A.; Johansson, B.; Lundqvist, B. I. Electronic, bonding, and optical properties of CeO2and Ce2O3from first principles.2001, 64, 115108/1–9.

    (53) Andersson, D. A.; Simak, S. I.; Johansson, B.; Abrikosov, I. A.; Skorodumova, N. V. Modeling of CeO2, Ce2O3, and CeO2-xin the LDA+formalism.2007, 75, 035109/1–6.

    9 May 2017;

    8 August 2017

    10.14102/j.cnki.0254-5861.2011-1715

    ①the National Natural Science Foundation of China (No. 51474133) and Inner Mongolia Natural Science Foundation (No. 2016MS0513)

    ②E-mail: guixiao.jia@163.com

    亚洲av国产av综合av卡| 在线观看一区二区三区激情| 999精品在线视频| 免费少妇av软件| 欧美最新免费一区二区三区| 国产 一区精品| 在线观看三级黄色| 午夜福利视频精品| 亚洲国产色片| 亚洲图色成人| 夫妻性生交免费视频一级片| 极品人妻少妇av视频| 亚洲,一卡二卡三卡| 男人爽女人下面视频在线观看| 国产日韩欧美亚洲二区| 国产白丝娇喘喷水9色精品| 午夜日本视频在线| 国产精品免费大片| 精品一区二区三区视频在线| 一区二区日韩欧美中文字幕 | 波多野结衣一区麻豆| 亚洲欧洲精品一区二区精品久久久 | 久久精品国产鲁丝片午夜精品| 久久精品国产亚洲av涩爱| 纵有疾风起免费观看全集完整版| 精品久久蜜臀av无| 日韩免费高清中文字幕av| 欧美成人午夜免费资源| 五月开心婷婷网| 欧美精品一区二区免费开放| xxxhd国产人妻xxx| 久久精品久久久久久久性| 欧美变态另类bdsm刘玥| 国产永久视频网站| 精品久久国产蜜桃| a级毛片黄视频| 国产高清三级在线| 香蕉丝袜av| 亚洲伊人久久精品综合| 亚洲成人手机| 午夜福利视频在线观看免费| 亚洲第一区二区三区不卡| 国产一区二区在线观看av| 一区二区三区四区激情视频| 韩国精品一区二区三区 | 黄色毛片三级朝国网站| 三级国产精品片| 日韩一区二区视频免费看| 久久人妻熟女aⅴ| 国产成人91sexporn| 国产成人a∨麻豆精品| 九色亚洲精品在线播放| 日韩欧美一区视频在线观看| 欧美精品一区二区大全| 国产激情久久老熟女| 免费日韩欧美在线观看| 少妇精品久久久久久久| 国产精品久久久久久久电影| 各种免费的搞黄视频| 亚洲国产最新在线播放| 欧美成人午夜免费资源| 看十八女毛片水多多多| 国产欧美日韩综合在线一区二区| 毛片一级片免费看久久久久| 少妇精品久久久久久久| 国产有黄有色有爽视频| 我的女老师完整版在线观看| 日本欧美国产在线视频| 午夜福利视频在线观看免费| 交换朋友夫妻互换小说| 国产亚洲午夜精品一区二区久久| 亚洲欧美日韩另类电影网站| 亚洲精品美女久久久久99蜜臀 | 欧美 日韩 精品 国产| 高清视频免费观看一区二区| 蜜臀久久99精品久久宅男| 亚洲欧洲精品一区二区精品久久久 | 国产精品国产三级专区第一集| www.熟女人妻精品国产 | 91午夜精品亚洲一区二区三区| 亚洲av电影在线进入| 啦啦啦啦在线视频资源| 中文字幕精品免费在线观看视频 | 97人妻天天添夜夜摸| 美女福利国产在线| 咕卡用的链子| 国产亚洲精品久久久com| 最近2019中文字幕mv第一页| 日韩一区二区三区影片| 秋霞在线观看毛片| 18禁动态无遮挡网站| 久久国产精品男人的天堂亚洲 | 在线观看三级黄色| 国产高清国产精品国产三级| 丰满少妇做爰视频| 侵犯人妻中文字幕一二三四区| 狠狠精品人妻久久久久久综合| 国产伦理片在线播放av一区| 欧美人与性动交α欧美精品济南到 | 亚洲av男天堂| a级毛片黄视频| 国产淫语在线视频| 1024视频免费在线观看| 搡老乐熟女国产| 麻豆乱淫一区二区| 亚洲久久久国产精品| 日本av免费视频播放| 两个人看的免费小视频| 妹子高潮喷水视频| 亚洲在久久综合| 99香蕉大伊视频| 日日爽夜夜爽网站| 久久精品国产a三级三级三级| 国产精品99久久99久久久不卡 | 观看美女的网站| 国产精品国产三级国产专区5o| 宅男免费午夜| 一区在线观看完整版| 一二三四中文在线观看免费高清| 国产日韩欧美在线精品| 男的添女的下面高潮视频| 国产亚洲午夜精品一区二区久久| 秋霞在线观看毛片| 91精品三级在线观看| av福利片在线| 国产成人免费无遮挡视频| 久久人人97超碰香蕉20202| 亚洲av电影在线进入| 亚洲一级一片aⅴ在线观看| videossex国产| 久久精品国产亚洲av天美| 国产男女超爽视频在线观看| 日韩av免费高清视频| 最近的中文字幕免费完整| 蜜桃在线观看..| 国产精品无大码| 亚洲,一卡二卡三卡| 高清毛片免费看| 日本免费在线观看一区| 精品久久国产蜜桃| 欧美丝袜亚洲另类| 成年人免费黄色播放视频| 亚洲欧美成人综合另类久久久| 亚洲婷婷狠狠爱综合网| 久久狼人影院| 91国产中文字幕| 国产av国产精品国产| 亚洲精品一区蜜桃| 天天操日日干夜夜撸| 久久久久人妻精品一区果冻| 伊人久久国产一区二区| av网站免费在线观看视频| 欧美性感艳星| 熟妇人妻不卡中文字幕| 国产免费福利视频在线观看| 日韩成人av中文字幕在线观看| 内地一区二区视频在线| 亚洲av日韩在线播放| 精品一区在线观看国产| 久久久久久久国产电影| 亚洲一码二码三码区别大吗| 最近中文字幕高清免费大全6| 亚洲av在线观看美女高潮| 精品熟女少妇av免费看| 亚洲精品国产色婷婷电影| 香蕉精品网在线| 黑丝袜美女国产一区| 少妇的逼好多水| 国产亚洲一区二区精品| 99视频精品全部免费 在线| 九色成人免费人妻av| 激情视频va一区二区三区| 女人久久www免费人成看片| 十分钟在线观看高清视频www| av女优亚洲男人天堂| 欧美激情 高清一区二区三区| 国产国语露脸激情在线看| 欧美人与性动交α欧美软件 | av在线播放精品| av在线老鸭窝| 波多野结衣一区麻豆| videossex国产| 美女中出高潮动态图| 国产精品成人在线| 亚洲国产最新在线播放| 考比视频在线观看| 成人国产麻豆网| 国产亚洲精品久久久com| 人妻 亚洲 视频| 超色免费av| 99久久综合免费| 在线观看免费视频网站a站| 中文欧美无线码| 精品久久久精品久久久| 国产不卡av网站在线观看| 一区二区av电影网| 亚洲五月色婷婷综合| 国产免费现黄频在线看| 黑人猛操日本美女一级片| 免费黄网站久久成人精品| 成人毛片60女人毛片免费| 在线观看美女被高潮喷水网站| 精品亚洲成a人片在线观看| 国产极品天堂在线| 午夜91福利影院| 97超碰精品成人国产| 亚洲国产av影院在线观看| 熟女人妻精品中文字幕| 成人亚洲欧美一区二区av| 久久人人爽人人爽人人片va| 欧美精品亚洲一区二区| 久久毛片免费看一区二区三区| 国产白丝娇喘喷水9色精品| 大香蕉久久成人网| www.熟女人妻精品国产 | 一级片免费观看大全| 男女边吃奶边做爰视频| 老司机影院成人| h视频一区二区三区| 久久久亚洲精品成人影院| 免费av中文字幕在线| 97人妻天天添夜夜摸| 少妇的逼水好多| 国产极品天堂在线| 久久人人爽av亚洲精品天堂| 久久99热6这里只有精品| 亚洲精华国产精华液的使用体验| 大香蕉久久成人网| 亚洲av电影在线观看一区二区三区| 国产精品一二三区在线看| 久久人人爽人人片av| 99视频精品全部免费 在线| 精品久久蜜臀av无| 9热在线视频观看99| 亚洲中文av在线| 日本午夜av视频| 精品少妇内射三级| 免费少妇av软件| 精品人妻偷拍中文字幕| 亚洲,一卡二卡三卡| 亚洲伊人色综图| 精品熟女少妇av免费看| 成人漫画全彩无遮挡| 熟妇人妻不卡中文字幕| 日本-黄色视频高清免费观看| 又粗又硬又长又爽又黄的视频| 国产精品蜜桃在线观看| 肉色欧美久久久久久久蜜桃| 免费av中文字幕在线| 久久精品国产鲁丝片午夜精品| 制服丝袜香蕉在线| 国产精品一区二区在线不卡| 男人添女人高潮全过程视频| 黄片无遮挡物在线观看| 亚洲婷婷狠狠爱综合网| 成人毛片a级毛片在线播放| 蜜臀久久99精品久久宅男| 高清不卡的av网站| 韩国高清视频一区二区三区| 欧美激情极品国产一区二区三区 | 久久久亚洲精品成人影院| 欧美性感艳星| 成年av动漫网址| 男女啪啪激烈高潮av片| 亚洲色图综合在线观看| 国产一区有黄有色的免费视频| 亚洲精品乱码久久久久久按摩| 夫妻午夜视频| 欧美成人精品欧美一级黄| 最近中文字幕2019免费版| 国产亚洲欧美精品永久| 麻豆精品久久久久久蜜桃| 亚洲精品一二三| 一本色道久久久久久精品综合| 99久久精品国产国产毛片| 午夜免费男女啪啪视频观看| 精品一区二区三区四区五区乱码 | 免费日韩欧美在线观看| 美女中出高潮动态图| 在线天堂最新版资源| 欧美少妇被猛烈插入视频| 国产69精品久久久久777片| 人人妻人人澡人人爽人人夜夜| 久久人人爽av亚洲精品天堂| 在线观看一区二区三区激情| 少妇被粗大猛烈的视频| 人妻系列 视频| 精品酒店卫生间| 国产亚洲欧美精品永久| 免费看av在线观看网站| 女性生殖器流出的白浆| 成人18禁高潮啪啪吃奶动态图| 男人舔女人的私密视频| 亚洲美女黄色视频免费看| av卡一久久| 伦精品一区二区三区| 草草在线视频免费看| 国产成人欧美| 亚洲欧美精品自产自拍| 亚洲高清免费不卡视频| 国产又色又爽无遮挡免| 亚洲国产av影院在线观看| 飞空精品影院首页| 亚洲欧美一区二区三区黑人 | 高清不卡的av网站| 亚洲国产看品久久| 国产精品秋霞免费鲁丝片| 欧美xxxx性猛交bbbb| 看免费成人av毛片| 日本av手机在线免费观看| 亚洲少妇的诱惑av| a级毛片在线看网站| 欧美国产精品va在线观看不卡| 90打野战视频偷拍视频| 亚洲av电影在线观看一区二区三区| 日韩一区二区视频免费看| 日本av免费视频播放| 韩国av在线不卡| 亚洲av电影在线进入| 久久 成人 亚洲| 国产xxxxx性猛交| 日本vs欧美在线观看视频| 一二三四在线观看免费中文在 | 国产精品成人在线| 侵犯人妻中文字幕一二三四区| 国产成人精品在线电影| av天堂久久9| 久久精品熟女亚洲av麻豆精品| 哪个播放器可以免费观看大片| 中文字幕精品免费在线观看视频 | 国产视频首页在线观看| 国产乱人偷精品视频| 精品人妻偷拍中文字幕| 丰满迷人的少妇在线观看| 久久毛片免费看一区二区三区| 日本wwww免费看| 亚洲欧美日韩另类电影网站| av在线观看视频网站免费| 一区二区三区乱码不卡18| 久久久欧美国产精品| 久久人人爽人人爽人人片va| 伊人久久国产一区二区| 国产一区二区三区av在线| 99久国产av精品国产电影| 国产av精品麻豆| 国产高清国产精品国产三级| 久久国产精品男人的天堂亚洲 | 国产精品久久久久久精品古装| 亚洲第一av免费看| 人人妻人人澡人人爽人人夜夜| 亚洲精品自拍成人| 九色成人免费人妻av| 精品99又大又爽又粗少妇毛片| 伊人亚洲综合成人网| 天美传媒精品一区二区| 欧美日本中文国产一区发布| 少妇的逼好多水| 国产精品久久久久久久久免| 国产成人精品无人区| 亚洲,一卡二卡三卡| 日本黄色日本黄色录像| 一级a做视频免费观看| 熟妇人妻不卡中文字幕| 日韩av在线免费看完整版不卡| 欧美日韩av久久| 国产免费现黄频在线看| 在线观看美女被高潮喷水网站| 亚洲欧美成人精品一区二区| 少妇的丰满在线观看| 国产无遮挡羞羞视频在线观看| av.在线天堂| 2021少妇久久久久久久久久久| 不卡视频在线观看欧美| 有码 亚洲区| 日韩欧美一区视频在线观看| 日韩大片免费观看网站| 蜜桃国产av成人99| 天天躁夜夜躁狠狠久久av| 亚洲欧美一区二区三区国产| 狠狠婷婷综合久久久久久88av| 日韩欧美精品免费久久| 在线天堂中文资源库| 一二三四中文在线观看免费高清| 免费看不卡的av| 国产亚洲午夜精品一区二区久久| 日韩欧美一区视频在线观看| av又黄又爽大尺度在线免费看| 一个人免费看片子| 国产极品粉嫩免费观看在线| 亚洲图色成人| 国产国语露脸激情在线看| 老熟女久久久| 亚洲熟女精品中文字幕| 高清毛片免费看| 亚洲av国产av综合av卡| 妹子高潮喷水视频| freevideosex欧美| 夜夜骑夜夜射夜夜干| 日本黄大片高清| 嫩草影院入口| 免费大片黄手机在线观看| 91精品伊人久久大香线蕉| 亚洲国产精品999| 九色成人免费人妻av| 十八禁高潮呻吟视频| 国产日韩欧美亚洲二区| 日韩伦理黄色片| 国产乱来视频区| 永久网站在线| 国产精品一区www在线观看| 九九在线视频观看精品| 亚洲,一卡二卡三卡| 90打野战视频偷拍视频| 黑人欧美特级aaaaaa片| 久热久热在线精品观看| 一区二区三区精品91| 久久久久精品性色| 久久久久久久久久久免费av| 久久久久久久精品精品| 黄色配什么色好看| 视频中文字幕在线观看| 免费在线观看完整版高清| 免费观看性生交大片5| 18+在线观看网站| 2018国产大陆天天弄谢| 国产午夜精品一二区理论片| 精品久久国产蜜桃| 一个人免费看片子| www.色视频.com| 久久久久久人人人人人| 少妇人妻久久综合中文| 精品99又大又爽又粗少妇毛片| 黄片无遮挡物在线观看| 精品99又大又爽又粗少妇毛片| 欧美精品一区二区免费开放| 三级国产精品片| 日本午夜av视频| 性色av一级| 日韩人妻精品一区2区三区| 国产精品国产三级国产专区5o| 伊人亚洲综合成人网| 欧美日韩国产mv在线观看视频| 日本免费在线观看一区| 美国免费a级毛片| 一级毛片黄色毛片免费观看视频| 丰满少妇做爰视频| 国产高清不卡午夜福利| 9热在线视频观看99| 亚洲欧美精品自产自拍| 高清欧美精品videossex| 日本-黄色视频高清免费观看| videossex国产| 国产白丝娇喘喷水9色精品| 中文字幕精品免费在线观看视频 | 欧美亚洲 丝袜 人妻 在线| 妹子高潮喷水视频| 国产精品国产三级专区第一集| 卡戴珊不雅视频在线播放| 在线天堂最新版资源| 亚洲成人手机| 久久毛片免费看一区二区三区| 自线自在国产av| 一级毛片黄色毛片免费观看视频| 校园人妻丝袜中文字幕| 国产精品国产av在线观看| 久久99热这里只频精品6学生| 日韩成人伦理影院| 亚洲精品国产色婷婷电影| 久久鲁丝午夜福利片| 亚洲内射少妇av| 不卡视频在线观看欧美| 中文字幕最新亚洲高清| h视频一区二区三区| 国产精品秋霞免费鲁丝片| 国产xxxxx性猛交| 亚洲国产av影院在线观看| 夜夜爽夜夜爽视频| 国产极品粉嫩免费观看在线| 亚洲国产欧美日韩在线播放| www.色视频.com| 国产精品一二三区在线看| 久久99一区二区三区| 秋霞在线观看毛片| 最近最新中文字幕大全免费视频 | 亚洲欧美一区二区三区国产| 久久av网站| 久久国产亚洲av麻豆专区| 午夜老司机福利剧场| 夫妻性生交免费视频一级片| 色视频在线一区二区三区| 精品国产一区二区三区久久久樱花| av卡一久久| 亚洲成人av在线免费| 18禁在线无遮挡免费观看视频| 90打野战视频偷拍视频| 欧美精品亚洲一区二区| 男女边摸边吃奶| 99九九在线精品视频| 人妻 亚洲 视频| 亚洲,一卡二卡三卡| 亚洲欧美成人精品一区二区| 一级毛片 在线播放| 婷婷色av中文字幕| 婷婷色综合大香蕉| 久久99热6这里只有精品| 男女下面插进去视频免费观看 | 午夜福利在线观看免费完整高清在| 美女内射精品一级片tv| 五月开心婷婷网| 亚洲国产色片| 国产男女超爽视频在线观看| 国产成人欧美| 国产av精品麻豆| 精品久久国产蜜桃| 成年av动漫网址| 最近最新中文字幕大全免费视频 | 天堂中文最新版在线下载| 黄色怎么调成土黄色| 久久精品熟女亚洲av麻豆精品| 免费观看a级毛片全部| 99久国产av精品国产电影| 伦精品一区二区三区| 爱豆传媒免费全集在线观看| 最近的中文字幕免费完整| 欧美日韩综合久久久久久| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| 国产成人免费观看mmmm| 韩国av在线不卡| 交换朋友夫妻互换小说| 熟女人妻精品中文字幕| 汤姆久久久久久久影院中文字幕| 国产乱人偷精品视频| 亚洲av.av天堂| 亚洲少妇的诱惑av| 久久久久人妻精品一区果冻| 91精品三级在线观看| 青青草视频在线视频观看| 久久av网站| 人人澡人人妻人| 国产精品国产av在线观看| www.色视频.com| 国产日韩欧美在线精品| 色哟哟·www| 国产精品.久久久| 成人无遮挡网站| 成人亚洲精品一区在线观看| 精品少妇内射三级| 中文字幕人妻丝袜制服| 欧美3d第一页| 免费播放大片免费观看视频在线观看| 80岁老熟妇乱子伦牲交| 精品一区在线观看国产| 老女人水多毛片| 国产精品女同一区二区软件| 黄色配什么色好看| 国产黄色视频一区二区在线观看| 国产精品 国内视频| 久久精品久久久久久久性| 亚洲精品自拍成人| 国产一级毛片在线| www.色视频.com| 免费在线观看完整版高清| av电影中文网址| 国产福利在线免费观看视频| 欧美成人精品欧美一级黄| 一区二区av电影网| 日日啪夜夜爽| 国产精品一区二区在线不卡| 免费大片黄手机在线观看| 水蜜桃什么品种好| 亚洲伊人久久精品综合| 亚洲国产看品久久| 国产精品久久久久久av不卡| 国产熟女欧美一区二区| 婷婷成人精品国产| 久久这里只有精品19| 尾随美女入室| 欧美 亚洲 国产 日韩一| 91午夜精品亚洲一区二区三区| av黄色大香蕉| 各种免费的搞黄视频| 在线天堂中文资源库| 狂野欧美激情性bbbbbb| 成人黄色视频免费在线看| 在线观看免费视频网站a站| 丰满迷人的少妇在线观看| 男女免费视频国产| 亚洲欧美一区二区三区国产| 女人精品久久久久毛片| 97超碰精品成人国产| 啦啦啦视频在线资源免费观看| 亚洲精品自拍成人| 如何舔出高潮| av一本久久久久| 欧美人与善性xxx| 欧美日韩av久久| 亚洲一区二区三区欧美精品| 少妇精品久久久久久久| 成人国语在线视频| 久久久久久久亚洲中文字幕| www.熟女人妻精品国产 | 亚洲婷婷狠狠爱综合网| 免费观看av网站的网址| 如何舔出高潮| 精品久久久久久电影网| 亚洲,欧美精品.| 色哟哟·www| 香蕉丝袜av| 久久久久久久大尺度免费视频| 99久久中文字幕三级久久日本| 亚洲国产日韩一区二区| 午夜福利影视在线免费观看| 少妇被粗大猛烈的视频| 又黄又爽又刺激的免费视频.|