張大源, 李 博, 高 強, 李中山
(天津大學(xué) 內(nèi)燃機燃燒學(xué)國家重點實驗室, 天津 300072)
在燃燒領(lǐng)域,對燃燒診斷技術(shù)的開發(fā)及優(yōu)化是非常重要的部分。燃燒場的診斷不同于一般的流場診斷,它屬于高溫流場并具有多相復(fù)雜流動的特點[1]。傳統(tǒng)的燃燒場實驗診斷技術(shù)包括傳感器測壓、皮托管測速、熱電偶測溫等[2],但這些技術(shù)均屬于侵入式診斷技術(shù),對于燃燒反應(yīng)的干擾較大。隨著現(xiàn)代科學(xué)技術(shù)的發(fā)展,這些傳統(tǒng)診斷技術(shù)已不能滿足對于燃燒場測試和燃燒過程可視化的要求,特別是涉及湍流燃燒的場合。激光光譜技術(shù)的出現(xiàn)極大地促進了燃燒診斷技術(shù)的發(fā)展,為進一步深入研究燃燒現(xiàn)象及其規(guī)律提供了新的、精確可靠的技術(shù)支持。激光診斷技術(shù)在燃燒場特性分析中起著關(guān)鍵作用,不僅能為燃燒化學(xué)反應(yīng)數(shù)值模擬提供驗證數(shù)據(jù),也能為提高燃燒效率,降低燃燒排放提供技術(shù)支持。相對于侵入式診斷技術(shù),激光診斷技術(shù)可以有效減少或者避免測量過程中對于燃燒反應(yīng)的干擾,并且能在惡劣的條件下工作,具有非侵入、靈敏度高、時空分辨高、實時在線測量、多參數(shù)同時測量等優(yōu)點。前國際燃燒學(xué)會主席Kohse-H?inghaus認(rèn)為,“激光診斷技術(shù)是獲取燃燒中高化學(xué)活性的火焰鋒面內(nèi)部信息的唯一方法”[3];前國際燃燒學(xué)會副主席Aldén同樣指出,“最近幾十年,燃燒激光診斷實驗技術(shù)的發(fā)展,是推動燃燒研究前進的最大動因之一”[4];這足以說明激光診斷技術(shù)在燃燒研究領(lǐng)域的支撐性地位。
基于納秒激光的燃燒診斷技術(shù)出現(xiàn)于20世紀(jì)80年代,目前已在測量火焰結(jié)構(gòu)[5]、燃燒中間產(chǎn)物濃度[6]、溫度[7]、速度[8]以及炭黑特性[9]等方面獲得了諸多成果[10]。但是,納秒激光的自身特性也限制了其在燃燒領(lǐng)域的進一步發(fā)展,例如,針對燃燒場中某些只能通過多光子共振激發(fā)的關(guān)鍵中間產(chǎn)物,納秒激光技術(shù)難以處理多光子測量所要求的高激光功率密度和避免光解干擾所要求的低激光脈沖能量這一矛盾。
飛秒激光的問世,為解決上述問題提供了新的契機[11]。與納秒激光相比,飛秒激光具有脈寬窄、峰值功率高和線寬寬等特點,這些特點使得飛秒激光在透明介質(zhì)傳播過程中具有非常豐富的物理效應(yīng),如頻譜展寬[12]、錐狀輻射[13]、布局反轉(zhuǎn)[14]等。結(jié)合這些效應(yīng),飛秒激光在與物質(zhì)相互作用時會產(chǎn)生一些獨特的現(xiàn)象,例如,飛秒激光成絲現(xiàn)象[15]。這些物理效應(yīng)或者現(xiàn)象能夠使飛秒激光在燃燒診斷過程中顯示出獨特的優(yōu)勢,基于飛秒激光的燃燒激光診斷技術(shù)可以為燃燒過程可視化以及燃燒場參數(shù)的測量提供新的工具。
飛秒激光在燃燒診斷領(lǐng)域的應(yīng)用可主要分為以下3個方面:
首先,利用飛秒激光的特殊性質(zhì)對傳統(tǒng)的納秒激光診斷技術(shù)進行優(yōu)化。這方面主要包括飛秒四波混頻技術(shù)(Femtosecond Degenerate Four-Wave Mixing,簡稱fs-DFWM)[16-21]、飛秒相干反斯托克斯拉曼散射技術(shù)(Femtosecond Coherent Anti-Stokes Raman spectroscopy,簡稱fs-CARS)[22-32]以及飛秒多光子激光誘導(dǎo)熒光技術(shù)(Femtosecond Multiphoton Laser-Induced Fluorescence,簡稱fs-MPLIF)。其次,飛秒激光在燃燒領(lǐng)域的另一方面應(yīng)用是基于飛秒激光成絲現(xiàn)象開發(fā)的新型診斷技術(shù),這方面主要以飛秒激光成絲誘導(dǎo)非線性光譜技術(shù)(Filament-Induced Nonlinear Spectroscopy,簡稱FINS)為代表。第三,是基于飛秒激光開發(fā)的示蹤測速技術(shù),主要以飛秒激光電子激發(fā)示蹤測速技術(shù)(Femtosecond Laser Electronic Excitation Tagging,簡稱FLEET)為代表。
DFWM技術(shù)以及CARS技術(shù)是燃燒診斷領(lǐng)域非常常用的非線性光譜技術(shù)。以CARS技術(shù)為例,它是一種具有靈敏度高、光譜分辨率高等優(yōu)點的技術(shù),很容易從入射光及強散射背景光中分離出能反映待測流場組分濃度或者溫度的信號光。納秒CARS技術(shù)已在燃燒領(lǐng)域取得了廣泛的應(yīng)用[33-35]。相比于傳統(tǒng)的納秒CARS技術(shù),基于飛秒激光的CARS技術(shù)可以獲得處于飛秒時域的超快過程的有關(guān)信息,在測量精度和測量范圍等方面較傳統(tǒng)納秒激光有很大的提高[36-37]。此外,fs-CARS可以很好地消除測量過程中的非共振背景噪聲,同時,千赫茲的高重頻飛秒激光能夠大幅度提高測量的采樣率[38]。
鑒于作者的研究背景,本文只對CARS等非線性光譜技術(shù)做上述簡單介紹。對于相關(guān)技術(shù)更深層次的了解,讀者可參考綜述類文獻[39]。結(jié)合作者所在課題組開展的相關(guān)工作,本文主要對目前在燃燒領(lǐng)域應(yīng)用最為廣泛的fs-MPLIF、FINS、FLEET技術(shù)進行詳細(xì)介紹,對飛秒激光診斷技術(shù)在燃燒領(lǐng)域中的研究進展進行詳細(xì)綜述。對它們目前存在的問題和發(fā)展前景進行分析討論。文章旨在說明此類技術(shù)的特點并引發(fā)燃燒領(lǐng)域相關(guān)研究者對此類技術(shù)的重視。
激光誘導(dǎo)熒光技術(shù)(Laser-Induced Fluorescence,簡稱LIF)是最常用的燃燒激光診斷技術(shù)。它采用激光對燃燒場中待測中間產(chǎn)物共振激發(fā)進而產(chǎn)生熒光,通過對熒光光譜的分析實現(xiàn)燃燒中間產(chǎn)物的測量;或者使用激光片光源實現(xiàn)燃燒組分的二維成像進而實現(xiàn)燃燒結(jié)構(gòu)的可視化。
在設(shè)計診斷策略時,激光誘導(dǎo)熒光技術(shù)的核心問題是激發(fā)激光頻率需要與待測中間產(chǎn)物躍遷能級的能級差共振。然而,對于燃燒場中的一些關(guān)鍵組分,例如H[40]、O[41]和CO[42]等,與其共振的單光子電子能級躍遷的激發(fā)頻率落在真空紫外區(qū),因此在對其進行LIF測量時,只能采用多光子激發(fā)的診斷策略。例如,對于H和CO的測量一般采用波長分別為205和230nm的紫外激光進行雙光子共振激發(fā)。雙光子激發(fā)的吸收截面很小,導(dǎo)致診斷效率下降,因此在實際測量中需要高能量的紫外激光進行激發(fā)。然而,高能量的紫外激光入射到燃燒場中,同樣會帶來很多問題,例如光解。
基于上述分析,在優(yōu)化多光子激光誘導(dǎo)熒光的診斷策略時,我們關(guān)注的焦點是降低測量過程中的光解干擾。然而,由于納秒激光的固有屬性,使得從原理上無法在降低光解干擾的同時保證多光子熒光效率。但飛秒激光在解決這一問題時具有天然優(yōu)勢。
飛秒激光的脈寬與納秒激光相比,要低5個數(shù)量級,因此,即使將飛秒激光的脈沖積分能量控制為納秒激光的百分之一,我們?nèi)匀荒軌颢@得極高峰值功率密度的飛秒激光輸出。這樣,通過飛秒激光取代傳統(tǒng)的納秒激光進行多光子激發(fā),可以實現(xiàn)在保證多光子激發(fā)效率的同時降低或者避免單光子光解帶來的干擾。
對于飛秒多光子激光誘導(dǎo)熒光技術(shù)的開發(fā),美國空軍實驗室及其合作者做出了突出的貢獻。他們使用飛秒激光作為激光誘導(dǎo)熒光的光源,先后實現(xiàn)了火焰中自由基OH、原子H、O、分子CO的測量,如表1所示。在此基礎(chǔ)上,他們將激光聚焦成激光片,實現(xiàn)了火焰中H原子的二維成像[49],并且結(jié)合熒光猝滅分析實現(xiàn)了火焰中H原子的定量測量[48]。此外,他們以Kr作為示蹤分子,通過對混合氣中Kr進行飛秒雙光子激光誘導(dǎo)熒光成像,實現(xiàn)了混合氣中混合分?jǐn)?shù)的測量[57]。這項工作為實現(xiàn)燃燒過程中燃料與助燃劑混合過程的可視化提供了新的方法。
表1 飛秒多光子激光誘導(dǎo)熒光在燃燒領(lǐng)域中的應(yīng)用Table 1 Application of femtosecond multi-photon laser-induced fluorescence technology in combustion field
國內(nèi)對于飛秒多光子激光誘導(dǎo)熒光技術(shù)在燃燒領(lǐng)域的研究起步較晚,據(jù)作者所知只有本課題組開展了部分相關(guān)工作,開發(fā)了雙色三光子飛秒激光誘導(dǎo)熒光無干擾測量火焰H原子的診斷技術(shù)[51]。如圖1所示,不同于美國空軍實驗室開發(fā)的使用205nm激光雙光子激發(fā)的診斷策略(圖1中的紅色能級躍遷),本課題組所開發(fā)的診斷策略是使用243nm波長的激光將處于基態(tài)的H原子激發(fā)到n=2能級,同時使用486nm波長的激光將H原子進一步激發(fā)到n=4能級。n=4能級的氫原子會由于弛豫效應(yīng)躍遷到n=3能級,通過觀測由n=3能級向n=2能級躍遷的656nm的熒光信號,實現(xiàn)火焰中H原子的測量,如圖1中的藍色能級躍遷。此外,本課題組基于此診斷策略實現(xiàn)了甲烷/空氣預(yù)混燃燒火焰中H原子的二維成像,并且能夠給出一個簡潔的判定方法來評估測量過程中是否存在光解干擾。如圖2所示,當(dāng)僅有243nm或者僅有486nm的激光入射到燃燒場中時,成像圖片中沒有任何信號。只有當(dāng)243和486nm這2束激光同時入射時才能在成像圖片中看到火焰中H原子清晰的二維分布。這說明成像圖片中的所有信號均來自于火焰中本生的H原子,測量過程并不存在光解干擾。
雖然飛秒多光子激光誘導(dǎo)熒光技術(shù)已在燃燒診斷領(lǐng)域獲得了初步發(fā)展,但是對于此項技術(shù)的研究缺乏系統(tǒng)性,并且,需要開展相關(guān)工作對現(xiàn)有技術(shù)的適用性進行詳細(xì)評估,特別是在涉及發(fā)動機缸內(nèi)燃燒等實際工況的場合。此外,在基礎(chǔ)研究方面,尚需開展針對飛秒多光子(雙光子以上)激光誘導(dǎo)熒光診斷策略可行性問題的研究。
圖1 氫原子能級圖
圖2 甲烷/空氣預(yù)混火焰中氫原子二維成像
Fig.22D-fluorescenceimagingofHatomsintheflame
飛秒多光子激光誘導(dǎo)熒光的潛力并不僅限于測量燃燒中間產(chǎn)物。在本課題組進行的飛秒雙色三光子激光誘導(dǎo)熒光測量燃燒場CO的實驗中[55],發(fā)現(xiàn)使用飛秒激光作為激發(fā)光源獲得的CO熒光譜中,在450~650nm波段,除了一系列已知的CO熒光譜外,我們還首次觀察到另一套“伴線”,如圖3所示。這是由于飛秒激光的線寬能夠覆蓋CO電子能級中的振動能級,從而同時實現(xiàn)了如下CO電子躍遷激發(fā):B1Σ+←X1Σ+(0-0) 和 (1-1)。這與傳統(tǒng)的納秒多光子激光誘導(dǎo)熒光有顯著區(qū)別。這一特點使得我們能夠通過飛秒激光激發(fā),同時獲得CO熒光的2套振轉(zhuǎn)能帶。而通過這2套振轉(zhuǎn)能帶,有望精確反演出火焰的溫度。
圖3 甲烷/空氣預(yù)混燃燒火焰中CO光譜圖
除了利用飛秒激光的性質(zhì)對納秒激光技術(shù)進行優(yōu)化之外,飛秒激光在燃燒診斷領(lǐng)域的另一項應(yīng)用是利用飛秒激光成絲現(xiàn)象開發(fā)新型診斷技術(shù)。
飛秒激光成絲現(xiàn)象是高功率超短脈沖激光所具備的獨特現(xiàn)象。1995年,美國密歇根大學(xué)的Braun等人[58]首次觀測到超強飛秒激光脈沖在空氣中傳播形成的穩(wěn)定等離子體,并對這一現(xiàn)象提出了合理解釋:當(dāng)飛秒激光在空氣中傳播時,由于非線性克爾效應(yīng),激光出現(xiàn)自聚焦現(xiàn)象。當(dāng)自聚焦的激光功率密度達到臨界值時,空氣發(fā)生多光子電離,形成具有散焦作用的等離子體。當(dāng)克爾效應(yīng)引起的自聚焦與等離子體導(dǎo)致的散焦達到動態(tài)平衡時,即出現(xiàn)飛秒激光成絲現(xiàn)象[59]。加拿大拉瓦爾大學(xué)的陳瑞良教授建議將飛秒激光成絲定義為:“飛秒激光在透明介質(zhì)傳輸過程中,形成的存在功率密度鉗制且其長度至少超出瑞利長度數(shù)倍的區(qū)域”[15]。
自飛秒激光成絲現(xiàn)象發(fā)現(xiàn)以來,研究人員基于中心波長800nm的鈦藍寶石飛秒激光展開了大量研究,飛秒激光成絲已在諸多領(lǐng)域得到應(yīng)用[60-64]。但目前飛秒激光成絲應(yīng)用于燃燒診斷領(lǐng)域的研究比較少,主要以吉林大學(xué)的徐淮良教授及其團隊提出的飛秒激光成絲誘導(dǎo)非線性光譜技術(shù)為主[65]。
2013年,徐淮良等人[66]將飛秒激光成絲應(yīng)用于燃燒火焰中,提出了飛秒激光成絲誘導(dǎo)非線性光譜技術(shù)(Filament-Induced Nonlinear Spectroscopy,簡稱FINS)的概念,并闡述了此技術(shù)在燃燒中間產(chǎn)物測量的可行性。在此基礎(chǔ)上,徐淮良等人[67]將火焰中FINS光譜與納秒激光誘導(dǎo)擊穿光譜(Nanosecond Laser-Induced Breakdown Spectroscopy,簡稱ns-LIBS)以及火焰自發(fā)輻射光譜三者進行比較,如圖4所示,進一步討論了FINS技術(shù)在燃燒中間產(chǎn)物測量的適用性,并對FINS光譜信息進行討論,發(fā)現(xiàn):光譜中CN信號主要來自于飛秒激光成絲誘導(dǎo)光化學(xué)反應(yīng)C2+N2→2CN;C2信號主要來自飛秒激光多光子激發(fā)火焰中本生的C2;CH信號主要來自于多光子激發(fā)火焰中本生的CH,少部分來自于飛秒激光光解CH的前驅(qū)物。基于上述工作,徐淮良等人[68]利用FINS技術(shù)對乙醇/空氣火焰以及不同烷醇/空氣火焰進行了研究。此外,徐淮良等人[69]進一步測量了飛秒激光成絲在燃燒場中的臨界能量和鉗制功率。實驗發(fā)現(xiàn)在乙醇/空氣火焰中,飛秒激光成絲的臨界能量是空氣中臨界能量的4~5倍,鉗制功率是空氣中鉗制功率的1/2左右。這些數(shù)據(jù)為飛秒激光成絲在燃燒領(lǐng)域的進一步應(yīng)用提供了數(shù)據(jù)支持。
通過對上述工作進行總結(jié),并結(jié)合本課題組開展的一系列相關(guān)工作,可以將FINS技術(shù)的特點歸納如下:
圖4 乙醇/空氣火焰中飛秒激光成絲誘導(dǎo)非線性光譜、納秒激光誘導(dǎo)擊穿光譜和火焰自發(fā)輻射光譜對比
(1) FINS技術(shù)相比于LIF技術(shù),診斷過程是非共振過程,不需要特定頻率的激光光源與待測分子共振,一束激光可以同時實現(xiàn)流場中多組分的同時測量;
(2) FINS技術(shù)相比于ns-LIBS技術(shù),F(xiàn)INS光譜中不僅包括原子譜線還包括分子譜線,因此FINS技術(shù)能夠更真實地反應(yīng)待測流場的組分;
(3) 通常飛秒激光重頻(1 kHz)高于傳統(tǒng)納秒激光重頻(10 Hz),因此FINS技術(shù)可實現(xiàn)快速檢測,采樣頻率更高,測量速度更快。
由此可見,基于飛秒激光成絲開發(fā)的FINS技術(shù)在燃燒領(lǐng)域具有非常誘人的應(yīng)用前景。然而目前對于此項技術(shù)的開發(fā)尚不夠完善。例如,F(xiàn)INS技術(shù)目前只在酒精燈以及酒精燈陣列中進行了相關(guān)實驗。如圖5所示,酒精燈并非燃燒領(lǐng)域的標(biāo)準(zhǔn)燃燒器,缺乏溫度和組分濃度等基礎(chǔ)數(shù)據(jù)支持,不適用于燃燒激光診斷技術(shù)的開發(fā)。為了更好地研究FINS技術(shù)在燃燒診斷中的適用性,需要在標(biāo)準(zhǔn)燃燒器中進一步開展相關(guān)基礎(chǔ)研究。
圖5 飛秒激光在酒精燈陣列火焰中成絲照片
燃燒場中的速度測量是飛秒激光診斷技術(shù)在燃燒領(lǐng)域的另一項重要應(yīng)用。燃燒場的速度信息一直以來都是燃燒領(lǐng)域研究者關(guān)注的重要參數(shù)之一。燃燒場速度診斷技術(shù)包括以皮托管和熱線風(fēng)速儀等為代表的侵入式診斷技術(shù)以及以粒子成像測速[70]、激光多普勒測速[71]和分子示蹤測速[72]等為代表的非侵入式診斷技術(shù)。各種測速技術(shù)的分類如圖6所示。其中,分子示蹤測速技術(shù)(Molecular Tagging Velocimetry,簡稱MTV)作為當(dāng)前流場速度測量的最前沿技術(shù)在近幾十年來發(fā)展迅速,并且在燃燒場的速度測量中得到了廣泛應(yīng)用。
圖6 速度測量技術(shù)分類
MTV技術(shù)是利用納秒激光對標(biāo)記分子進行“寫”和“讀”2個過程進而實現(xiàn)速度測量。依據(jù)是否需要散布示蹤分子,MTV技術(shù)可分為2類:散布示蹤分子的MTV技術(shù)和非散布示蹤分子的MTV技術(shù)。前者可根據(jù)不同流場環(huán)境選用不同示蹤分子,因此技術(shù)利用范圍廣、準(zhǔn)確性高,但是散布示蹤分子增加了系統(tǒng)的成本,且需要考慮示蹤分子的毒性、腐蝕性以及是否會對燃燒反應(yīng)造成干擾等問題。后者依據(jù)所利用的示蹤分子的不同分為:以O(shè)2作為示蹤分子的RELIEF技術(shù);以NO作為示蹤分子的APART技術(shù);以O(shè)3作為示蹤分子的OTV技術(shù)和以O(shè)H作為示蹤分子的HTV技術(shù)。關(guān)于MTV技術(shù)的詳細(xì)研究進展,讀者可參考西北核技術(shù)研究所葉景峰等人的綜述文章[73]。本文僅對這些技術(shù)的特點進行簡要總結(jié),如表2所示。
上述這些分子示蹤測速技術(shù)均以納秒激光作為光源,美國普林斯頓大學(xué)的Miles等人[105]首次將飛秒激光應(yīng)用于流場速度測量,開發(fā)了飛秒激光電子激發(fā)示蹤測速技術(shù)(Femtosecond Laser Electronic Excitation Tagging,簡稱FLEET),為流場速度測量提供了新的方法。FLEET技術(shù)是利用波長為800nm的基頻飛秒激光光解N2產(chǎn)生N原子,N原子在重組的過程中生成長壽命激發(fā)態(tài)的N2,達到標(biāo)記示蹤分子的目的。通過在不同延遲下對N2熒光成像,實現(xiàn)流場速度的測量。但FLEET技術(shù)的測速過程為非共振過程,如圖7氮氣能級圖中的紅色躍遷所示,基態(tài)N2光解至少需要吸收8個800nm的光子,激發(fā)效率較低。基于FLEET技術(shù),Jiang等人[106]開發(fā)了通過共振激發(fā)-光解過程實現(xiàn)分子標(biāo)記的STARFLEET技術(shù)(Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging)。如圖7氮氣能級圖中的藍色躍遷所示,STARFLEET技術(shù)以波長為202.5nm的飛秒激光作為光源,多光子共振激發(fā)基態(tài)的N2躍遷到激發(fā)態(tài)之后進一步光解N2,進而完成分子標(biāo)記,這在很大程度上提高了技術(shù)的激發(fā)效率。
表2 分子示蹤測速技術(shù)分類及特點Table 2 Classification and characteristics of molecular tagging velocimetry
FLEET測速技術(shù)具有以下優(yōu)勢:僅需要一束飛秒激光就能實現(xiàn)速度測量,實驗系統(tǒng)相對簡單;以飛秒激光作為光源,提高了多光子光解效率;以氮氣分子作為示蹤分子,對燃燒反應(yīng)的影響可降到最小;結(jié)合光譜測溫技術(shù),此技術(shù)可實現(xiàn)流場溫度和速度的同時測量[107]。
由此可見,飛秒激光在流場速度測量中具有廣闊的應(yīng)用前景。然而,目前缺乏飛秒測速技術(shù)在燃燒場中的深入研究。Miles等人[108]僅在文章中表明FLEET技術(shù)能夠在燃燒場中應(yīng)用,如圖8所示,但并沒有給出所測燃燒場的詳細(xì)信息,也未開展相關(guān)系統(tǒng)研究。本課題組針對這一問題進行了初步研究,通過前期實驗,我們發(fā)現(xiàn):當(dāng)FLEET技術(shù)應(yīng)用于燃燒場中時,流場中存在大量碳?xì)浠衔?,此時示蹤分子將不僅僅是N2,還有飛秒激光誘導(dǎo)光化學(xué)反應(yīng)產(chǎn)生的大量CN。由此可見,我們對于基于飛秒激光的測速技術(shù)的研究還存在很多不足,相關(guān)實驗需要進一步開展。
圖7 氮氣能級圖
圖8 甲烷/空氣燃燒場中FLEET測速成像圖片
本文中,通過列舉飛秒多光子激光誘導(dǎo)熒光技術(shù)、飛秒激光成絲誘導(dǎo)光譜技術(shù)、飛秒激光電子激發(fā)示蹤測速技術(shù)等飛秒激光光譜技術(shù)在燃燒領(lǐng)域的應(yīng)用實例,對飛秒燃燒激光診斷技術(shù)的發(fā)展現(xiàn)狀進行了總結(jié)。雖然飛秒激光燃燒診斷技術(shù)的發(fā)展歷史不長,然而進展卻很快。目前,飛秒激光已經(jīng)在燃燒場中速度、溫度以及燃燒中間產(chǎn)物測量中得到了廣泛應(yīng)用,但飛秒激光光譜技術(shù)的發(fā)展依然面臨許多挑戰(zhàn)。
首先,飛秒激光器成本較高,這在很大程度上限制了飛秒激光光譜技術(shù)的普及。但隨著對高功率超短脈沖激光研究的不斷深入,這方面的問題會得到改善。其次,目前對于飛秒激光與燃燒場相互作用的內(nèi)在機理研究不夠深入,這在一定程度上限制了相關(guān)科研人員對于飛秒激光光譜技術(shù)的理解。例如在FINS診斷過程中,信號是來自于飛秒激光誘導(dǎo)光化學(xué)反應(yīng)還是來自于飛秒多光子激發(fā)火焰中本生的中間產(chǎn)物,這些基礎(chǔ)問題尚需解決。
可以預(yù)見,隨著研究的不斷深入以及技術(shù)的不斷進步,飛秒激光光譜技術(shù)將會在燃燒領(lǐng)域發(fā)揮越來越大的作用。
致謝:感謝國家自然科學(xué)基金項目(91541119,91541203)的資助。
[1]汪亮. 燃燒實驗診斷學(xué)[M]. 北京: 國防工業(yè)出版社, 2011.
Wang L. Combustion experimental diagnostics[M]. Beijing: National Defense Industry Press, 2011.
[2]熊姹, 范瑋. 應(yīng)用燃燒診斷學(xué)[M]. 西安: 西北工業(yè)大學(xué)出版社, 2005.
Xiong C, Fan W. Applied combustion diagnostics[M]. Xi’an: Northwestern Polytechnical University Press, 2005.
[3]Kohse-H?inghaus K, Barlow R S, Aldén M, et al. Combustion at the focus: laser diagnostics and control[J]. Proceedings of the Combustion Institute, 2005, 30(1): 89-123.
[4]Aldén M, Bood J, Li Z, et al. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques[J]. Proceedings of the Combustion Institute, 2011, 33(1): 69-97.
[5] Hanson R K, Seitzman J M, Paul P H. Planar laser-fluorescence imaging of combustion gases[J]. Applied Physics B, 1990, 50(1): 441-454.
[6] Crosley D R, Smith G P. Laser-Induced fluorescence spectroscopy for combustion diagnostics[J]. Optical Engineering, 1983, 22(5): 545-553.
[7]Aldén M, Omrane A, Richter M, et al. Thermographic phosphors for thermometry: A survey of combustion applications[J]. Progress in Energy & Combustion Science, 2011, 37(4): 422-461.
[8] Chan V SS, Turner J T. Velocity measurement inside a motored internal combustion engine using three-component laser Doppler anemometry[J]. Optics & Laser Technology, 2000, 32(7-8): 557-566.
[9]Shaddix C R, Smyth K C. Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames[J]. Combustion & Flame, 1996, 107(4): 418-452.
[10]胡志云, 劉晶儒, 張振榮, 等. 激光燃燒診斷技術(shù)及應(yīng)用研究進展[J]. 中國工程科學(xué), 2009, 11(11): 45-50.
Hu Z Y, Liu J R, Zhang Z R, et al. The research progress of laser combustion diagnostics techniques and applications[J]. Engineering Sciences, 2009, 11(11): 45-50.
[11] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser[J]. Optics Letters, 1991, 16(1): 42-44.
[12] Brodeur A, Chin S L. Ultrafast white-light continuum generation and self-focusing in transparent condensed media[J]. Journal of the Optical Society of America B, 1999, 16(4): 637-650.
[13] Brodeur A, Chien C Y, Kosareva O G, et al. Conical emission from laser-plasma interactions in the filamentation of powerful ultrashort laser pulses in air[J]. Optics Letters, 1997, 22(17): 1332-1334.
[14] Luo Q, Liu W, Chin S L. Lasing action in air induced by ultra-fast laser filamentation[J]. Applied Physics B: Lasers and Optics, 2003, 76(3): 337-340.
[15] Chin S L. Femtosecond laser filamentation[Z]. New York, NY: Springer, 2010, 55: 137.
[16] Hornung T, Skenderovi H, Kompa K, et al. Prospect of temperature determination using degenerate four-wave mixing with sub-20 fs pulses[J]. Journal of Raman Spectroscopy, 2004, 35(11): 934-938.
[17] He P, Fan R, Chen D, et al. Ultrafast time-resolved coherent degenerate four-wave-mixing spectroscopy for investigating molecular dynamics in different states[J]. Optics & Laser Technology, 2011, 43(8): 1458-1461.
[18] Sun Z W, Li Z S, Li B, et al. Flame temperature diagnostics with water lines using mid-infrared degenerate four-wave mixing[J]. Journal of Raman Spectroscopy, 2011, 42(10): 1828-1835.
[19]Knopp G, Radi P P, Sych Y, et al. Dissection of dispersed off-resonant femtosecond degenerate four-wave mixing of O2[J]. Journal of Raman Spectroscopy, 2011, 42(10): 1848-1853.
[20]Matylitsky V V, Jarz Ba W, Riehn C, et al. Femtosecond degenerate four-wave mixing study of benzene in the gas phase[J]. Journal of Raman Spectroscopy, 2002, 33(11-12): 877-883.
[21]Riehn C, Matylitsky V V, Gelin M F. Time domain fingerprints of a ‘perpendicular’ rotational Raman band: formic acid studied by femtosecond degenerate four-wave mixing[J]. Journal of Raman Spectroscopy, 2003, 34(12): 1045-1050.
[22] Bohlin A, Mann M, Patterson B D, et al. Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy: Time-resolved probing of flame wall interactions[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3723-3730.
[23] Richardson D R, Lucht R P, Kulatilaka W D, et al. Chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering concentration measurements[J]. Journal of the Optical Society of America B, 2013, 30(1): 188-196.
[24] Dennis C N, Slabaugh C D, Boxx I G, et al. Chirped probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry at 5kHz in a Gas Turbine Model Combustor[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3731-3738.
[25] Kearney S P, Guildenbecher D R, Hoffmeister K N G, et al. Hybrid fs/ps rotational CARS temperature and oxygen measurements and soot LII measurements in a turbulent C2H4-fueled jet flame[C]. 54th AIAA Aerospace Sciences Meeting, San Diego, California, 2016.
[26] Zhao Y, Zhang S, Zhang Z, et al. Molecular vibrational dynamics in ethanol studied by femtosecond CARS[J]. Optics Communications, 2015, 334: 319-322.
[27] Xia Y, Zhao Y, Wang Z, et al. Investigation of vibrational characteristics in BBO crystals by femtosecond CARS[J]. Optics & Laser Technology, 2012, 44(7): 2049-2052.
[28]Kozai T, Kayano Y, Aoi T, et al. Coherent molecular vibrational dynamics of CH2stretching modes in polyethylene studied by femtosecond-CARS[J]. Journal of Raman Spectroscopy, 2015, 46(4): 384-387.
[29]Pestov D, Zhi M, Sariyanni Z, et al. Femtosecond CARS of methanol-water mixtures[J]. Journal of Raman Spectroscopy, 2006, 37(1-3): 392-396.
[30] Kiefer J, Namboodiri M, Kazemi M M, et al. Time-resolved femtosecond CARS of the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate[J]. Journal of Raman Spectroscopy, 2015, 46(8): 722-726.
[31] Zhao Y, Zhang S, Zhou B, et al. Molecular vibrational dynamics of rhodamine B dye in solution studied by femtosecond CARS[J]. Vibrational Spectroscopy, 2014, 73: 24-27.
[32] Zhao Y, Zhang S, Zhou B, et al. Spectrally dispersed femtosecond CARS investigation of vibrational characteristics in ethanol[J]. Journal of Raman Spectroscopy, 2014, 45(9): 826-829.
[33]張立榮, 胡志云, 葉景峰, 等. 移動式CARS系統(tǒng)測量超聲速燃燒室出口溫度[J]. 中國激光, 2013, 40(4): 201-205.
Zhang L R, Hu Z Y, Ye J F, et al. Mobile CARS temperature measurements at exhaust of supersonic combustor[J]. Chinese Journal of Lasers, 2013, 40(4): 201-205.
[34]胡志云, 張振榮, 劉晶儒, 等. 寬帶相干反斯托克斯拉曼散射法診斷固體燃劑燃燒場[J]. 強激光與粒子束, 2004, 16(1): 19-22.
Hu Z Y, Zhang Z R, Liu J R, et al. Broad-band CARS diagnostics of solid propellant combustion[J]. High Power Laser and Particle Beams, 2004, 16(1): 19-22.
[35]陶波, 王晟, 胡志云, 等. TDLAS與CARS共線測量發(fā)動機溫度[J]. 工程熱物理學(xué)報, 2015, 36(10): 2282-2286.
Tao B, Wang S, Hu Z Y, et al. Measurements of engine combustion temperature by using coaxial TDLAS and CARS technique[J]. Journal of Engineering Thermophysics, 2015, 36(10): 2282-2286.
[36] 張?zhí)焯? 飛秒時間分辨CARS光譜在超快動力學(xué)及燃燒測溫應(yīng)用研究[D]. 哈爾濱工業(yè)大學(xué), 2010.
Zhang T T. Femtosecond time-resolved CARS spectroscopy for the study of ultra-fast dynamics and temperature measurement[D]. Harbin: Harbin Institute of Technology, 2010.
[37]李金釗. 飛秒CARS在燃燒測溫中的應(yīng)用研究[D]. 哈爾濱工業(yè)大學(xué), 2013.
Li J Z. Femtosecond CARS for the study of temperature measurement[D]. Harbin: Harbin Institute of Technology, 2013.
[38]趙陽. 飛秒CARS在分子超快動力學(xué)與氣體燃燒測溫中的應(yīng)用研究[D]. 哈爾濱工業(yè)大學(xué), 2015.
Zhao Y. Femtosecond CARS applications in molecular ultrafast dynamics and flame temperature measurements[D]. Harbin Institute of Technology, 2013.
[39]Zheltikov A M. Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations[J]. Journal of Raman Spectroscopy, 2000, 31(8-9): 653-667.
[40] Lucht R P, Salmon J T, King G B, et al. Two-photon-excited fluorescence measurement of hydrogen atoms in flames[J]. Optics Letters, 1983, 8(7): 365-367.
[41]Gathen V S V D, Niemi K. Absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence spectroscopy in an RF-excited atmospheric pressure plasma jet[J]. Plasma Sources Science & Technology, 2005, 14(2): 375-386.
[42]Rosell J, Sj?holm J, Richter M, et al. Comparison of three schemes of two-photon laser-induced fluorescence for CO detection in flames[J]. Applied Spectroscopy, 2013, 67(3): 314-320.
[43] Li B, Zhang D, Yao M, et al. Strategy for single-shot CH3imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4487-4495.
[44]Kulatilaka W D, Frank J H, Patterson B D, et al. Analysis of 205-nm photolytic production of atomic hydrogen in methane flames[J]. Applied Physics B, 2009, 97(1): 227-242.
[45]Brackmann C, Sj?holm J, Rosell J, et al. Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3541-3548.
[46] Stauffer H U, Kulatilaka W D, Gord J R, et al. Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation[J]. Optics Letters, 2011, 36(10): 1776-1778.
[47]Kulatilaka W D, Gord J R, Katta V R, et al. Photolytic-interference-free, femtosecond two-photon fluorescence imaging of atomic hydrogen[J]. Optics Letters, 2012, 37(15): 3051-3053.
[48] Hall C A, Kulatilaka W D, Gord J R, et al. Quantitative atomic hydrogen measurements in premixed hydrogen tubular flames[J]. Combustion and Flame, 2014, 161(11): 2924-2932.
[49]Kulatilaka W D, Gord J R, Roy S. Femtosecond two-photon LIF imaging of atomic species using a frequency-quadrupled Ti: sapphire laser[J]. Applied Physics B, 2014, 116(1): 7-13.
[50]Kulatilaka W, Roy S, Gord J. Multi-photon fluorescence imaging of flame species using femtosecond excitation[C]. 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference, New Orleans, Louisiana, 2012.
[51] Li B, Zhang D, Li X, et al. Strategy of interference-free atomic hydrogen detection in flames using femtosecond multi-photon laser-induced fluorescence[J]. International Journal of Hydrogen Energy, 2017, 42(6): 3876-3880.
[52]Kulatilaka W D, Roy S, Jiang N, et al. Photolytic-interference-free, femtosecond, two-photon laser-induced fluorescence imaging of atomic oxygen in flames[J]. Applied Physics B, 2016, 122(2): 1-7.
[53] Schmidt J B, Sands B L, Kulatilaka W D, et al. Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet[J]. Plasma Sources Science & Technology, 2015, 24(3):1-6.
[54] Richardson D R, Roy S, Gord J R. Femtosecond, two-photon, planar laser-induced fluorescence of carbon monoxide in flames[J]. Optics Letters, 2017, 42(4): 875-878.
[55] Li B, Li X, Zhang D, et al. Comprehensive CO detection in flames using femtosecond two-photon laser-induced fluorescence[J]. Optics Express, 2017, 25(21): 25809-25818.
[56] Richardson D R, Jiang N, Stauffer H U, et al. Mixture-fraction imaging at 1kHz using femtosecond laser-induced fluorescence of krypton[J]. Optics Letters, 2017, 42(17): 3498-3501.
[57] Wang Y, Kulatilaka W D. Mixture fraction imaging using femtosecond TPLIF of Krypton[C]. 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2017.
[58] Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1): 73-75.
[59] Chin S L, Xu H. Tunnel ionization, population trapping, filamentation and applications[J]. Journal of Physics B: Atomic Molecular & Optical Physics, 2016, 49(22): 222003.
[60] Xu H, Cheng Y, Chin S, et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 2015, 9(3): 275-293.
[61] Kasparian J, Wolf J P. Physics and applications of atmospheric nonlinear optics and filamentation[J]. Optics Express, 2008, 16(1): 466-493.
[62]Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2-4): 47-189.
[63] Bruno A, Ossler F, de Lisio C, et al. Detection of fluorescent nanoparticles in flame with femtosecond laser-induced fluorescence anisotropy[J]. Optics Express, 2008, 16(8): 5623-5632.
[64]李玉同, 張杰, 陳黎明, 等. 對飛秒激光等離子體中成絲現(xiàn)象的研究[J]. 物理學(xué)報, 2001, 50(2): 204-208.
Li Y T, Zhang J, Chen L M, et al. Study on filamentation in femtosecond laser plasmas[J]. Acta Physica Sinica, 2001, 50(2): 204-208.
[65]李賀龍. 超快強場激光在燃燒場中的傳輸特性和非線性光譜研究[D]. 長春: 吉林大學(xué), 2016.
Li H L. Investigations on the propagation properties and nonlinear spectroscopy of ultrafast and ultrastrong laser in combustion fields[D]. Changchun: Jilin University, 2006.
[66] Li H L, Xu H L, Yang B S, et al. Sensing combustion intermediates by femtosecond filament excitation[J]. Optics Letters, 2013, 38(8): 1250-1252.
[67] Li H, Wei X, Xu H, et al. Femtosecond laser filamentation for sensing combustion intermediates: A comparative study[J]. Sensors and Actuators B: Chemical, 2014, 203: 887-890.
[68] Li H, Chu W, Xu H, et al. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing[J]. Scientific Reports, 2016, 6(1): 27340.
[69] Li H, Chu W, Zang H, et al. Critical power and clamping intensity inside a filament in a flame[J]. Optics Express, 2016, 24(4): 3424-3431.
[70] Boden F, Fl N L M. Particle Image Velocimetry[M]. John Wiley & Sons Ltd, 2010: 247-269.
[71] Allen M, Davis S, Kessler W, et al. Velocity field imaging in supersonic reacting flows near atmospheric pressure[J]. AIAA Journal, 1994, 32(8): 1676-1682.
[72] Chen F, Li H, Hu H. Molecular tagging techniques and their applications to the study of complex thermal flow phenomena[J]. Review Paper, 2015, 31(4): 425-445.
[73]葉景峰, 胡志云, 劉晶儒, 等. 分子標(biāo)記速度測量技術(shù)及應(yīng)用研究進展[J]. 實驗流體力學(xué), 2015, 29(3): 11-17.
Ye J F, Hu Z Y, Liu J R, et al. Development and application of molecular tagging velocity[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 11-17.
[74]Krüger S, Grünefeld G. Stereoscopic flow-tagging velocimetry[J]. Applied Physics B, 1999, 69(5): 509-512.
[75] Mittal M, Sadr R, Schock H J, et al. In-cylinder engine flow measurement using stereoscopic molecular tagging velocimetry (SMTV)[J]. Experiments in Fluids, 2009, 46(2): 277-284.
[76]Ismailov M M, Schock H J, Fedewa A M. Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry[J]. Experiments in Fluids, 2006, 41(1): 57-65.
[77] Stier B, Koochesfahani M M. Molecular tagging velocimetry (MTV) measurements in gas phase flows[J]. Experiments in Fluids, 1999, 26(4): 297-304.
[78] Hiller B, Booman R A, Hassa C, et al. Velocity visualization in gas flows using laser‐induced phosphorescence of biacetyl[J]. Review of Scientific Instruments, 1985, 55(12): 1964-1967.
[79]Lempert W R, Jiang N, Sethuram S, et al. Molecular tagging velocimetry measurements in supersonic microjets[J]. AIAA Journal, 2015, 40(40): 1065-1070.
[80]Lempert W R, Boehm M, Jiang N, et al. Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows[J]. Experiments in Fluids, 2003, 34(3): 403-411.
[81] Barker P, Thomas A, Rubinsztein-Dunlop H, et al. Velocity measurements by flow tagging employing laser enhanced ionisation and laser induced fluorescence[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 1995, 50(11): 1301-1310.
[82]Rubinsztein-Dunlop H, Littleton B, Barker P, et al. Ionic strontium fluorescence as a method for flow tagging velocimetry[J]. Experiments in Fluids, 2001, 30(1): 36-42.
[83] Sanchez-Gonzalez R, Bowersox R D, North S W. Simultaneous velocity and temperature measurements in gaseousflowfields using the vibrationally excited nitric oxide monitoring technique: a comprehensive study[J]. Applied Optics, 2012, 51(9): 1216-1228.
[84] Sanchez-Gonzalez R, Srinivasan R, Bowersox R D W, et al. Simultaneous velocity and temperaturemeasurements in gaseous flow fields using the VENOM technique[J]. Optics Letters, 2011, 36(2): 196-198.
[85]Orlemann C, Schulz C, Wolfrum J. NO-flow tagging by photodissociation of NO2-A new approach for measuring small-scale flow structures[J]. Chemical Physics Letters, 1999, 307: 15-20.
[86] Jiang N, Nishihara M, Lempert W R. Quantitative NO2molecular tagging velocimetry at 500 kHz frame rate[J]. Applied Physics Letters, 2010, 97(22): 221103.
[87] Hsu A G, Srinivasan R, Bowersox R D W, et al. Molecular tagging using vibrationally excited nitric oxide in anunderexpanded jet flowfield[J]. AIAA Journal, 2009, 47(11): 2597-2604.
[88] Pan F, Sanchez-Gonzalez R, Mcilvoy M H, et al. Simultaneous three-dimensional velocimetry and thermometry in gaseous flows using the stereoscopic vibrationally excited nitric oxide monitoring technique[J]. Optics Letters, 2016, 41(7): 1376-1379.
[89]Danehy P M. Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide[J]. AIAA Journal, 2003, 41(41): 263-271.
[90] Miles R, Cohen C, Connors J, et al. Velocity measurements by vibrational tagging and fluorescent probing of oxygen[J]. Optics Letters, 1987, 11(12): 861-863.
[91] Miles R B, Zhou D, Zhang B, et al. Fundamental turbulence measurements by relief flow tagging[J]. AIAA Journal, 1991, 29(3): 447-452.
[92] Miles R B, Grinstead J, Kohl R H, et al. The RELIEF flow tagging technique and its application in engine testing facilities and for helium-air mixing studies[J]. Measurement Science & Technology, 2000, 11(11): 1272-1281.
[93]施翔春, 王杰, 肖緒輝, 等. 拉曼激發(fā)激光誘導(dǎo)電子熒光流場測量系統(tǒng)中標(biāo)記過程的研究[J]. 光學(xué)學(xué)報, 2001, 21(2): 206-210.
Shi X C, Wang J, Xiao X H, et al. Tagging procedures of Raman excitation plus laser induced electronic fluorescence flow velocimetry[J]. Acta Optica Sinica, 2001, 21(2): 206-210.
[94]Laan W P N V, Tolboom R A L, Dam N J, et al. Molecular tagging velocimetry in the wake of an object in supersonic flow[J]. Experiments in Fluids, 2003, 34(4): 531-534.
[95] Dam N, Kleindouwel R J, Sijtsema N M, et al. Nitric oxide flow tagging in unseeded air[J]. Optics Letters, 2001, 26(1): 36-38.
[96]Sijtsema N M, Dam N J, Kleindouwel R J H, et al. Air photolysis and recombination tracking: a new molecular tagging velocimetry scheme[J]. AIAA Journal, 2002, 40(6): 1061-1064.
[97]Pitz R W, Brown T M, Nandula S P, et al. Unseeded velocity measurement by ozone tagging velocimetry[J]. Optics Letters, 1996, 21(10): 755-757.
[98]Pitz R W, Ribarov L A, Wehrmeyer J A, et al. Ozone tagging velocimetry using narrowband excimer lasers[J]. AIAA Journal, 1999, 37(37): 708-714.
[99] Lahr M D, Pitz R W, Douglas Z W, et al. Hydroxyl-tagging-velocimetry measurements of a supersonic flow over a cavity[J]. Journal of Propulsion & Power, 2010, 26(4): 790-797.
[100]Ribarov L A, Wehrmeyer J A, Hu S, et al. Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows[J]. Experiments in Fluids, 2004, 37(1): 65-74.
[101]Wehrmeyer J A, Ribarov L A, Oguss D A, et al. Flame flow tagging velocimetry with 193-nm H2O photodissociation[J]. Applied Optics, 1999, 38(33): 6912-6917.
[102]Ribarov L A, Wehrmeyer J A, Pitz R W, et al. Hydroxyl tagging velocimetry (HTV) in experimental air flows[J]. Applied Physics B: Lasers and Optics, 2002, 74(2): 175-183.
[103]Boedeker L R. Velocity measurement by H2O photolysis and laser-induced fluorescence of OH[J]. Optics Letters, 1989, 14(10): 473-475.
[104]葉景峰, 邵珺, 李國華, 等. 羥基分子標(biāo)記技術(shù)用于超音速流動速度測量[C]. 第十六屆全車激波與激波管學(xué)術(shù)會議, 河南 洛陽, 2014.
Ye J F, Shao J, Li G H, et al. Supersonic flow velocity measurements by hydroxyl tagging velocimetry[C]. 16th National Shock and Shock Tube Academic Conference, Luoyang Henan, 2014.
[105] Michael J B, Edwards M R, Dogariu A, et al. Femtosecond laser electronic excitation tagging for quantitative velocity imaging in air[J]. Applied Optics, 2011, 50(26): 5158-5162.
[106] Jiang N, Halls B R, Stauffer H U, et al. Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging (STARFLEET) velocimetry in flow and combustion diagnostics: 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference[Z]. Washington D C, 2016.
[107] Edwards M R, Dogariu A, Miles R B. Simultaneous temperature and velocity measurements in air with femtosecond laser tagging[J]. AIAA Journal, 2015, 53(3): 1-9.
[108] Edwards M R, Michael J B, Calvert N D, et al. Femtosecond laser electronic excitation tagging (FLEET) for imaging flow structure in unseeded hot or cold air or nitrogen[C]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, 2013.