(上海理工大學(xué)制冷與低溫工程研究所 上海 200093)
自動(dòng)復(fù)疊制冷系統(tǒng)在小型制冷裝置、天然氣液化中具有較強(qiáng)的優(yōu)勢(shì),能制取氮?dú)庖夯瘻囟?7 K到常規(guī)單機(jī)壓縮制冷溫度230 K,常被用于氣體液化、半導(dǎo)體加工、低溫醫(yī)學(xué)和低溫生物等領(lǐng)域。國(guó)內(nèi)外對(duì)自復(fù)疊節(jié)流制冷系統(tǒng)的研究較多,從兩級(jí)到五級(jí),從二元混合制冷劑到五元混合制冷劑。一般而言,200~230 K采用兩級(jí)自復(fù)疊制冷系統(tǒng),160~200 K采用三級(jí)自復(fù)疊制冷系統(tǒng),120~160 K采用四級(jí)自復(fù)疊系統(tǒng),70~120 K采用采用五級(jí)自復(fù)疊系統(tǒng)[1]。M. Ruhemann[2]將氟利昂制冷劑應(yīng)用于自動(dòng)復(fù)疊制冷系統(tǒng),采用R13/R22混合制冷劑取得了200 K的低溫。A. P. Kleemenko[3]采用摩爾比為65%/20%/15%的甲烷、乙烷和正丁烷的混合制冷劑通過(guò)單級(jí)壓縮兩級(jí)分離獲得的低溫成功液化了天然氣,該制冷循環(huán)具有很高的熱力學(xué)效率和運(yùn)行可靠性,因此成為單流混合工質(zhì)復(fù)疊循環(huán)(mixed refrigerant cascade cycle,MRC)。A. Fuderer[4]采用質(zhì)量分?jǐn)?shù)為20%/80%的R50/R12混合制冷劑成功獲取了117 K的低溫。此后,眾多研究者不斷改進(jìn)自復(fù)疊系統(tǒng),不斷提高制冷效率,能獲取的溫度也越來(lái)越低[5-8]。李文林等[9-10]展開(kāi)了對(duì)自動(dòng)復(fù)疊制冷系統(tǒng)的研究,以R12/R13作為混合制冷劑,在70 L的低溫箱中得到了218 K的溫度,熱力學(xué)效率為11.4%。Luo Ercang等[11-14]對(duì)混合制冷劑做了大量的研究工作,包括混合制冷劑熱物性計(jì)算、系統(tǒng)優(yōu)化和氣液相平衡等方面。王國(guó)棟等[15-16]采用以R22/R23為混合制冷劑、單級(jí)壓縮、單級(jí)分凝的自動(dòng)復(fù)疊制冷系統(tǒng),在4 h內(nèi)成功將150 L的低溫箱內(nèi)溫度降低到213 K以下,此后又以R134a/R23/R14為混合制冷劑,將冷箱溫度降低到173 K,制冷量為38 W。此外,還對(duì)R600a/R23[17]、R600a/R23/R14/R740[18]、R245fa/R600a/R508B/R14[19]等混合制冷劑的自復(fù)疊系統(tǒng)做了相關(guān)實(shí)驗(yàn)研究,并對(duì)系統(tǒng)進(jìn)行了改進(jìn),分析了系統(tǒng)降溫特性、混合物分離匯合特性以及混合物的優(yōu)化配比等多方面內(nèi)容。隨著人們對(duì)全球變暖、溫室效應(yīng)、臭氧層破壞等世界性環(huán)境問(wèn)題的日益關(guān)注,制冷行業(yè)使用的制冷工質(zhì)也加快了更新?lián)Q代的步伐。自復(fù)疊系統(tǒng)中使用的制冷劑大多為氯氟烴(CFCs)和氫氯氟烴(HCFCs)類制冷工質(zhì),它們或?qū)Υ髿獬粞鯇佑衅茐淖饔?,或具有很?qiáng)的溫室效應(yīng),或兩者兼有。具有高全球變暖潛能值(GWP)和消耗臭氧潛能值(ODP)的制冷劑都將被逐步淘汰,新型環(huán)保制冷劑將逐步出現(xiàn)。
自復(fù)疊制冷系統(tǒng)結(jié)構(gòu)相對(duì)簡(jiǎn)單,但混合制冷劑的工作機(jī)理復(fù)雜,涉及到很多理論基礎(chǔ)知識(shí),例如工質(zhì)的分離與混合、混合工質(zhì)傳熱、氣液相平衡等。其中氣液相平衡的研究尤為重要,它是對(duì)混合物基本物性的研究,以確定最佳工作狀態(tài)、最佳配比等,影響整個(gè)系統(tǒng)的可靠性及運(yùn)行效率。已有許多學(xué)者對(duì)混合制冷劑的氣液相平衡進(jìn)行了實(shí)驗(yàn)和模擬研究,但多數(shù)集中在近共沸工質(zhì),針對(duì)適用于多級(jí)自復(fù)疊系統(tǒng)的強(qiáng)非共沸工質(zhì)的氣液相平衡研究較少。Hu Peng等[20-25]對(duì)多組混合工質(zhì)進(jìn)行了氣液相平衡研究并取得了一些相平衡數(shù)據(jù),包括R1234yf/R600a[20]、R1234yf/R152a[21],R1234yf/R161[22]、R134a/R600a/R1234yf[23]、R134a/R227ea和R143 a/R1234yf[24],并通過(guò)實(shí)驗(yàn)數(shù)據(jù)結(jié)合理論模型對(duì)相平衡計(jì)算中的重要參數(shù)——二元相互作用系數(shù)kij進(jìn)行了歸納總結(jié)[25]。J. Lia等[26]利用狀態(tài)方程法對(duì)R125/R134a/R143a系進(jìn)行了模擬研究,指出狀態(tài)方程法能很好的預(yù)測(cè)混合物相平衡特性。Gong Maoqiong等[27-31]針對(duì)含R290的混合物進(jìn)行了相關(guān)理論和實(shí)驗(yàn)研究。R. Budinsky等[32]采用Gibbs系綜Monto Carlo(GEMC)模擬方法對(duì)兩組混合物(R134a/R125和R134a/R32)進(jìn)行了計(jì)算,計(jì)算結(jié)果與文獻(xiàn)數(shù)據(jù)具有較好的一致性,并指出GEMC與以熱力學(xué)為基礎(chǔ)的Wilson和UNIFAC方法的預(yù)測(cè)精度相當(dāng)。Q. N. Ho等[33-34]搭建了相關(guān)實(shí)驗(yàn)臺(tái),對(duì)二元混合物R1270/R134a和碳?xì)涔べ|(zhì)對(duì)R1270/R290的氣液相平衡數(shù)據(jù)進(jìn)行了實(shí)驗(yàn),發(fā)現(xiàn)實(shí)驗(yàn)數(shù)據(jù)與采用Peng-Robinson狀態(tài)方程(PR-EoS)結(jié)合Wong-Sandler(WS)混合法則的模擬結(jié)果吻合較好。以上學(xué)者多以實(shí)驗(yàn)的方法對(duì)混合物的氣液相平衡進(jìn)行研究。雖然實(shí)驗(yàn)方法是獲取氣液相平衡數(shù)據(jù)的第一手段,但僅僅通過(guò)實(shí)驗(yàn)無(wú)法取得大量的相平衡數(shù)據(jù),因此通過(guò)有限的實(shí)驗(yàn)數(shù)據(jù)發(fā)展理論模型,提高預(yù)測(cè)精度,也是獲取相平衡數(shù)據(jù)的重要途徑[35]。
綜合考慮各種制冷劑的物性參數(shù),并結(jié)合三級(jí)自復(fù)疊制冷系統(tǒng)的特點(diǎn)和溫度范圍,本文對(duì)適用于三級(jí)自復(fù)疊制冷系統(tǒng)的R1234yf/R170/R14系混合制冷劑的氣液相平衡數(shù)據(jù)進(jìn)行了模擬計(jì)算。其中R1234yf是近年來(lái)被廣泛使用新型制冷劑,且GWP<1,ODP=0,具有非常短的大氣壽命(0.029 年),被公認(rèn)為是很有發(fā)展前景的環(huán)保替代制冷劑。R170為碳?xì)渲评鋭?,是天然工質(zhì),同時(shí)具備節(jié)能與環(huán)保的兩大優(yōu)勢(shì)。R14的ODP=0,但GWP相對(duì)較高,雖然不是很理想的選擇,但在目前情況下很難找到其對(duì)應(yīng)溫度段更好的替代工質(zhì)。在理論模型的選擇方面,超額吉布斯自由能-狀態(tài)方程GE-EoS是繼傳統(tǒng)的狀態(tài)方程法和活度系數(shù)法之后預(yù)測(cè)相平衡的一個(gè)新思路,此模型結(jié)合了狀態(tài)方程法和活度系數(shù)法在相平衡預(yù)測(cè)方面的優(yōu)點(diǎn),并將極性體系預(yù)測(cè)能力非常強(qiáng)的活度系數(shù)模型直接應(yīng)用于狀態(tài)方程法的相平衡預(yù)測(cè)中。本文基于PR狀態(tài)方程與WS混合法則,結(jié)合PSRK(Predictive-Soave-Redlich-Kwong)方程中使用的UNIFAC基團(tuán)貢獻(xiàn)法構(gòu)建了混合物氣液相平衡預(yù)測(cè)模型(PRWS-UNIFAC-PSRK)。利用此模型計(jì)算了二元混合制冷劑R161/R1234yf及三元混合制冷劑R32/R125/R134a的氣液相平衡數(shù)據(jù),并與相關(guān)文獻(xiàn)的實(shí)驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比,驗(yàn)證了模型的精確度。在此基礎(chǔ)上,對(duì)還未見(jiàn)有相平衡實(shí)驗(yàn)數(shù)據(jù)報(bào)道的R1234yf/R170/R14系混合物進(jìn)行了模擬計(jì)算和分析,并給出了相關(guān)的相平衡圖。這些相平衡特性對(duì)混合物的優(yōu)化分離及相關(guān)自動(dòng)復(fù)疊系統(tǒng)設(shè)計(jì)及改進(jìn)都具有指導(dǎo)和借鑒意義。
流體介質(zhì)最基本的平衡物性參數(shù)即為壓力-比容-溫度(pvt)三者之間的關(guān)系,是研究流體其它熱物性參數(shù)的基礎(chǔ)。而體現(xiàn)流體pvt性質(zhì)的方程式就是狀態(tài)方程,因而對(duì)流體熱物性的研究最終可歸為對(duì)狀態(tài)方程的獲取。其中,兩參數(shù)的立方型狀態(tài)方程因其參數(shù)少,形式簡(jiǎn)單,計(jì)算精度高而備受研究人員的重視。應(yīng)用狀態(tài)方程法預(yù)測(cè)混合物氣液相平衡特性,需要結(jié)合合適的混合法則,目前大多數(shù)文獻(xiàn)中使用的模擬方法為van der Waals(vdW)法則,但是其在預(yù)測(cè)非理性體系時(shí)的精度并不高。為了克服這一缺陷,采用混合法則結(jié)合立方形狀態(tài)方程及超額吉布斯自由能越來(lái)越多的在混合物氣液相平衡的預(yù)測(cè)中使用。目前來(lái)看,還沒(méi)有采用超額吉布斯自由能-狀態(tài)方程模型(GE-EoS)對(duì)強(qiáng)非共沸的三元混合工質(zhì)的氣液相平衡特性的研究報(bào)告。本文利用PR狀態(tài)方程和WS混合法則,結(jié)合PSRK方程中使用的UNIFAC活度系數(shù)模型,編譯了相關(guān)模擬程序,對(duì)多組二元及三元混合物的氣液相平衡數(shù)據(jù)進(jìn)行了計(jì)算,并與參考文獻(xiàn)數(shù)據(jù)和美國(guó)國(guó)家標(biāo)準(zhǔn)與技術(shù)研究院(NIST)數(shù)據(jù)庫(kù)進(jìn)行對(duì)比,驗(yàn)證了模型的準(zhǔn)確性。在此基礎(chǔ)上,對(duì)強(qiáng)非共沸工質(zhì)R1234yf/R170/R14系的氣液相平衡特性進(jìn)行了模擬研究。
PR方程[36]的形式為:
(1)
(2)
(3)
kω=0.374 64+1.542 26ω-0.269 92ω2
(4)
表1 純工質(zhì)基本物性參數(shù)Tab.1 Basic physical parameters of pure components
WS混合法則[37]的基本形式為:
(5)
(6)
(7)
(8)
由PR方程和WS混合規(guī)則推導(dǎo)所得逸度系數(shù)求解方程為:
(9)
(10)
(11)
(12)
(13)
活度系數(shù)γi由改進(jìn)的PSRK中使用的UNIFAC模型[38]計(jì)算得到:
lnγi=lnγiC+lnγiR
(14)
(15)
(16)
(17)
(18)
(19)
式中:Ni為混合物2組分的分子數(shù);N為混合物總的分子數(shù)。用于WS混合法則中相關(guān)參數(shù)計(jì)算的各組分二元相互作用系數(shù)kij列于表2,它們由表3中的文獻(xiàn)數(shù)據(jù)回歸擬合得到。
表2 二元混合物的相互作用系數(shù)kijTab.2 Regressed kij from binary system
表3 混合物文獻(xiàn)匯總Tab.3 Literature summary for mixtures
由于R1234yf/R170/R14系中各二元體系的氣液相平衡數(shù)據(jù)未見(jiàn)有公開(kāi)報(bào)道,因而相互作用系數(shù)采用Gong Maoqiong等[39-40]擬合的數(shù)值。用于活度系數(shù)和吉布斯自由能計(jì)算的UNIFAC-PSRK模型相關(guān)基團(tuán)參數(shù)列于表4和表5?;鶊F(tuán)交互作用系數(shù)Amk是基團(tuán)k和基團(tuán)m之間相互作用能與兩個(gè)m(k)基團(tuán)之間相互作用能差異的度量(Amk≠Akm),例如基團(tuán)m為CH2,基團(tuán)k為CF2時(shí),Amk=42.257,Akm=-7.474。雖然表5中每一個(gè)主基團(tuán)下子基團(tuán)的Rk和Qk的值不等,但在同一主基團(tuán)中所有子基團(tuán)的交互作用系數(shù)是相同的,因而絕大部分的HFCs和HFO制冷劑的相平衡數(shù)據(jù)都可以通過(guò)三個(gè)主基團(tuán)CH2、CF2和F的9個(gè)交互作用系數(shù)進(jìn)行預(yù)測(cè)。本文參考吳獻(xiàn)忠等[41]擬合的基團(tuán)交互作用系數(shù),對(duì)多組二元及三元混合工質(zhì)進(jìn)行氣液相平衡預(yù)測(cè)。
表4 UNIFAC模型中的基團(tuán)相互作用系數(shù)Amk和Akm[41]
表5 基團(tuán)體積參數(shù)Rk和表面積參數(shù)Qk[41]
為驗(yàn)證模型計(jì)算精度,本文選取已有文獻(xiàn)實(shí)驗(yàn)數(shù)據(jù)的二元混合工質(zhì)R161/R1234yf進(jìn)行模擬計(jì)算,并將模擬結(jié)果與文獻(xiàn)實(shí)驗(yàn)數(shù)據(jù)和美國(guó)國(guó)家標(biāo)準(zhǔn)與技術(shù)研究院(NIST)制定的REFPROP9.0軟件數(shù)據(jù)庫(kù)進(jìn)行對(duì)比分析,如表6所示。
圖1所示為R161/R1234yf系從283.15~323.15 K溫度范圍內(nèi)壓力與組分關(guān)系的對(duì)比,其中五角星和圓圈分別為實(shí)驗(yàn)測(cè)量的露點(diǎn)壓力值和泡點(diǎn)壓力值,實(shí)線和虛線分別為模型計(jì)算結(jié)果的壓力露點(diǎn)線和泡點(diǎn)線??梢钥闯觯瑢?shí)驗(yàn)數(shù)據(jù)點(diǎn)與計(jì)算結(jié)果的泡點(diǎn)和露點(diǎn)線吻合較好。圖2所示為模型計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)的偏差,壓力計(jì)算結(jié)果與實(shí)驗(yàn)值的相對(duì)誤差基本在±1.5%以內(nèi),氣相組分質(zhì)量分?jǐn)?shù)的絕對(duì)誤差均在±0.02內(nèi),表明模型對(duì)二元混合工質(zhì)氣液相平衡特性的預(yù)測(cè)精度較高,滿足實(shí)際工程應(yīng)用的需求。
圖1 R161(1)/R1234yf(2)系計(jì)算值與實(shí)驗(yàn)值的壓力-組分關(guān)系Fig.1 Pressure-composition relationship between calculated results and experimental data for the R161(1)/R1234yf(2) system
圖2 R161(1)/R1234yf(2)系計(jì)算值與實(shí)驗(yàn)值的誤差關(guān)系Fig.2 Deviation between calculated results and experimental data for the R161(1)/R1234yf(2) system
圖3 R161(1)/R1234yf(2)系計(jì)算值與REFPROP9.0數(shù)據(jù)庫(kù)的壓力-組分關(guān)系Fig.3 Pressure-composition relationship between calculated results and REFPROP9.0 database for the R161(1)/R1234yf(2) system
將模擬結(jié)果與REFPROP9.0數(shù)據(jù)庫(kù)進(jìn)行對(duì)比,如圖3和圖4所示。壓力計(jì)算值與數(shù)據(jù)庫(kù)的相對(duì)誤差都在±5%以內(nèi),氣相組分質(zhì)量分?jǐn)?shù)的絕對(duì)誤差基本在±0.012 以內(nèi),表明模型的計(jì)算精度較高。觀察圖2可知,當(dāng)R161的質(zhì)量分?jǐn)?shù)小于0.5時(shí),壓力偏差主要表現(xiàn)為正偏差,即實(shí)驗(yàn)值大于計(jì)算值,而氣相組分質(zhì)量分?jǐn)?shù)主要表現(xiàn)為負(fù)偏差,即實(shí)驗(yàn)值小于計(jì)算值;當(dāng)R161的質(zhì)量分?jǐn)?shù)大于0.5時(shí),變化趨勢(shì)剛好與上述情況相反。分析其原因如下:1)參考文獻(xiàn)本身的測(cè)量誤差;2)由于WS混合規(guī)則直接采用由低壓氣液平衡數(shù)據(jù)得到的活度系數(shù)模型參數(shù)和二元相互作用系數(shù)kij直接推算高壓區(qū)氣液相平衡,雖有良好的溫度和壓力外推性能,但依然會(huì)有一定的誤差;3)采用PRWS-UNIFAC-PSRK模型對(duì)混合物進(jìn)行氣液相平衡預(yù)測(cè)時(shí),需要建立在對(duì)混合工質(zhì)基團(tuán)分析的基礎(chǔ)上,而UNIFAC基團(tuán)貢獻(xiàn)法主要應(yīng)用于液相逸度的計(jì)算,氣相逸度的計(jì)算還是采用狀態(tài)方程,而狀態(tài)方程在預(yù)測(cè)大分子化合物時(shí)比較困難,因而會(huì)出現(xiàn)負(fù)偏差的情況。因此,采用更高精度的狀態(tài)方程以及對(duì)UNIFAC基團(tuán)貢獻(xiàn)法及參數(shù)進(jìn)行更深入全面的分析研究,將會(huì)提高模型的預(yù)測(cè)精度和適用范圍。
表6 溫度為283.15~323.15 K時(shí)R161(1)/R1234yf(2)系氣液相平衡數(shù)據(jù)
續(xù)表6
圖4 R161(1)/R1234yf(2)系計(jì)算值與REFPROP9.0數(shù)據(jù)庫(kù)的誤差關(guān)系Fig.4 Deviation between calculated results and REFPROP9.0 database for the R161(1)/R1234yf(2) system
圖5 R32(1)/R125(2)/R134a(3)系計(jì)算值與實(shí)驗(yàn)值的壓力偏差關(guān)系Fig.5 Deviation of the pressures between the experimental data and the calculated data for the R32(1)/R125(2)/R134a(3) system
圖6 R32(1)/R125(2)/R134a(3)系計(jì)算值與實(shí)驗(yàn)值的組分質(zhì)量分?jǐn)?shù)偏差關(guān)系Fig.6 Deviation of the vapor phase mass fraction between the experimental data and the calculated data for the R32(1)/R125(2)/R134a(3) system
為了驗(yàn)證模型對(duì)三元混合物氣液相平衡的預(yù)測(cè)精度,對(duì)三元混合物R32/R125/R134a在組分質(zhì)量配比分別0.272 1/0.126 8/0.601 1、0.191 0/0.433 2/0.375 8、0.097 6/0.705 7/0.196 7下的氣液相平衡特性進(jìn)行計(jì)算,并與文獻(xiàn)[45]的實(shí)驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比,對(duì)比結(jié)果列于表7。圖5所示為壓力計(jì)算值與實(shí)驗(yàn)值的誤差關(guān)系,圖6所示為氣相組分質(zhì)量分?jǐn)?shù)計(jì)算值與實(shí)驗(yàn)值的誤差。由圖5和圖6可知,氣相組分和壓力的模擬結(jié)果與實(shí)驗(yàn)數(shù)據(jù)的偏差基本在±0.02和±4%以內(nèi),表明模型在預(yù)測(cè)三元混合物的時(shí)候亦具有較高的精度,滿足實(shí)際工程應(yīng)用的精度要求。雖然模型具有較好的預(yù)測(cè)效果,但不論是以無(wú)窮壓力或零壓力為參考態(tài)的GE-EoS模型在計(jì)算和預(yù)測(cè)非對(duì)稱體系的氣液相平衡時(shí)都會(huì)有一定的偏差,因此對(duì)GE-EoS模型進(jìn)行進(jìn)一步的擴(kuò)展研究,如對(duì)UNIFAC的參數(shù)表進(jìn)行修補(bǔ)和增訂,以期GE-EoS模型在計(jì)算非對(duì)稱體系和消除組合項(xiàng)差異時(shí)具有更好的預(yù)測(cè)效果,將會(huì)是下一步工作的重點(diǎn)。
通過(guò)前文對(duì)二元混合物R161/R1234yf和三元混合物R32/R125/R134a的氣液相平衡特性的研究,對(duì)比計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù),發(fā)現(xiàn)計(jì)算值與實(shí)驗(yàn)值具有很好的一致性。雖然在三元混合物的計(jì)算中直接采用二元體系中的相互作用系數(shù),但模擬結(jié)果具有很高的可信度,表明模型在預(yù)測(cè)二元及三元混合制冷劑氣液相平衡時(shí)具有較好的效果。在此基礎(chǔ)上,利用PRWS-UNIFAC-PSRK模型對(duì)強(qiáng)非共沸工質(zhì)R1234yf/R170/R14系的氣液相平衡特性進(jìn)行模擬研究。
圖7 0.2 MPa壓力下R1234yf/R170/R14系的三維立體相圖Fig.7 Three-dimensional phase equilibria diagrams of R1234yf/R170/R14 ternary system at 0.2 MPa
圖7~圖10分別為R1234yf/R170/R14系在壓力為0.2、0.5、1.5、2.2 MPa下的三維立體相圖,其中靠上一面為露點(diǎn)面。露點(diǎn)面以上部分為氣相區(qū);靠下一面為泡點(diǎn)面,泡點(diǎn)面以下部分為液相區(qū);泡點(diǎn)面和露點(diǎn)面之間的區(qū)域?yàn)闅庖簝上鄥^(qū)。從圖中可以很直觀的看到混合物組分、溫度、壓力及泡露點(diǎn)之間關(guān)系,紅色越深,表明溫度值越高。由于R1234yf、R170和R14三種制冷劑兩兩之間互為強(qiáng)非共沸工質(zhì),因而可以看到,泡點(diǎn)面與露點(diǎn)面之間的空間很大,即氣液兩相區(qū)范圍很大,同時(shí)意味著混合物具有很大的滑移溫度。通過(guò)數(shù)據(jù)篩選,混合物質(zhì)量分?jǐn)?shù)比為0.4/0.2/0.4時(shí)體系的溫度滑移現(xiàn)象最為明顯,最大的滑移溫度達(dá)到72.5 K。對(duì)比圖7和圖10可發(fā)現(xiàn),隨著系統(tǒng)壓力的增大,泡點(diǎn)溫度和露點(diǎn)溫度也隨之上升,且R1234yf組分的質(zhì)量分?jǐn)?shù)越大,泡露點(diǎn)溫度也越大。
表7 R32(1)/R125(2)/R134a(3)系氣液相平衡數(shù)據(jù)[45]
圖8 0.5 MPa壓力下R1234yf/R170/R14系的三維立體相圖Fig.8 Three-dimensional phase equilibria diagrams of R1234yf/R170/R14 ternary system at 0.5 MPa
圖9 1.5 MPa壓力下R1234yf/R170/R14系的三維立體相圖Fig.9 Three-dimensional phase equilibria diagrams of R1234yf/R170/R14 ternary system at 1.5 MPa
圖10 2.2 MPa壓力下R1234yf/R170/R14系的三維立體相圖Fig.10 Three-dimensional phase equilibria diagrams of R1234yf/R170/R14 ternary system at 2.2 MPa
在三級(jí)自復(fù)疊系統(tǒng)中,每級(jí)循環(huán)中兩組分的標(biāo)準(zhǔn)沸點(diǎn)差值在40~80 K較合適,通過(guò)分析R1234yf/R170/R14系三維立體相圖,可大致判斷適用于實(shí)際工程應(yīng)用的工況,對(duì)制冷裝置的設(shè)計(jì)和改進(jìn)、系統(tǒng)中工質(zhì)組分的配比、混合物的優(yōu)化分離、合適的運(yùn)行溫度及壓力范圍等具有很好的指導(dǎo)及參考價(jià)值,以提高系統(tǒng)運(yùn)行效率。但由于還未見(jiàn)有相關(guān)實(shí)驗(yàn)數(shù)據(jù)的報(bào)道,本文的計(jì)算結(jié)果還無(wú)法進(jìn)行實(shí)驗(yàn)對(duì)比驗(yàn)證,只能作為一種預(yù)測(cè)。未來(lái)將會(huì)對(duì)R1234yf/R170/R14系混合物的氣液相平衡特性進(jìn)行實(shí)驗(yàn)研究,提供更為準(zhǔn)確的氣液相平衡數(shù)據(jù)。
本文利用混合工質(zhì)氣液相平衡計(jì)算模型(PRWS-UNIFAC-PSRK)對(duì)溫度范圍283.15~323.15 K和壓力范圍0.44~1.74 MPa下二元體系R161/R1234yf,以及200~350 K溫度下三元體系R32/R125/R134a的氣液相平衡特性進(jìn)行了研究,并對(duì)比了計(jì)算結(jié)果與參考文獻(xiàn)的實(shí)驗(yàn)數(shù)據(jù)。二元混合物R161/R1234yf的壓力計(jì)算值與實(shí)驗(yàn)值相對(duì)誤差基本在±1.5%以內(nèi),氣相組分質(zhì)量分?jǐn)?shù)的絕對(duì)誤差均在±0.02內(nèi);而三元混合物R32/R125/R134a的壓力及質(zhì)量分?jǐn)?shù)偏差則分別在±4%和±0.02以內(nèi),說(shuō)明模型對(duì)二元混合工質(zhì)氣液相平衡特性的預(yù)測(cè)精度較高,滿足實(shí)際工程應(yīng)用的需求。
利用文獻(xiàn)已有的相互作用系數(shù),對(duì)強(qiáng)非共沸工質(zhì)R1234yf/R170/R14系在0.2、0.5、1.5、2.2 MPa下的等壓氣液相平衡特性進(jìn)行模擬研究,并構(gòu)建了相關(guān)的三維立體相圖。混合物質(zhì)量分?jǐn)?shù)比為0.4/0.2/0.4時(shí)體系的溫度滑移現(xiàn)象最明顯,最大滑移溫度達(dá)72.5 K。隨著系統(tǒng)壓力的增大,泡點(diǎn)溫度和露點(diǎn)溫度也隨之上升,且R1234yf組分的質(zhì)量分?jǐn)?shù)越大,泡點(diǎn)溫度和露點(diǎn)溫度也越大。模擬結(jié)果對(duì)相關(guān)制冷系統(tǒng)設(shè)計(jì)及優(yōu)化有一定的參考價(jià)值。采用多參數(shù)狀態(tài)方程及改進(jìn)活度系數(shù)模型,可進(jìn)一步提高模型的預(yù)測(cè)精度。
[1] 芮勝軍.帶兩路旁通的三級(jí)自動(dòng)復(fù)疊制冷系統(tǒng)實(shí)驗(yàn)研究[D].上海:上海理工大學(xué),2014. (RUI Shengjun. Experimental study on three stage cascade refrigeration system with two bypass[D].Shanghai: University of Shanghai for Science and Technology, 2014.)
[2] RUHEMANN M. The separation of gases[M]. 2nd ed. London: Oxford University Press,1949.
[3] KLEEMENKO A P. One-flow cascade cycle[C]//Proceedings of 10th International Congress of Refrigeration.Copenhagen, 1959.
[4] FUDERER A. Compression process for refrigeration:US3203194[P]. 1965-08-31.
[5] LITTLE W A, SAPOZHNIKOV I. Low cost cryocoolers for cryoelectronics[J]. Cryocooler, 1997, 9: 509-513.
[6] NAYAK H G, VENKATARATHNAM G. Performance of an auto refrigerant cascade refrigerator operating in gas refrigerant supply (GRS) mode with nitrogen hydrocarbon and argon-hydrocarbon refrigerants[J]. Cryogenics, 2009, 49(7):350-359.
[7] NARASIMHAN N L, VENKATARATHNAM G. Effect of mixture composition and hardware on the performance of a single stage JT refrigerator[J]. Cryogenics, 2011, 51(8): 446-451.
[8] REDDY K R, MURTHY S S, VENKATARATHNAM G. Relationship between the cool down characteristics of J-T refrigerators and mixture composition[J]. Cryogenics, 2010, 50(6/7): 421-425.
[9] 李文林.混合制冷劑的研究與發(fā)展[J].流體工程,1986,15(4):60-64. (LI Wenlin. Research and development of mixed refrigerants[J]. Fluid Machinery, 1986,15(4):60-64.)
[10] 李文林,華小龍. 混合工質(zhì)制冷循環(huán)的試驗(yàn)研究[J]. 流體工程,1987,9(5):49-54. (LI Wenlin, HUA Xiaolong. Experimental study on refrigeration cycle of mixed refrigerant[J]. Fluid Machinery, 1987, 9(5):49-54.)
[11] LUO Ercang, GONG Maoqiong, ZHOU Yuan, et al. Experimental investigation of a mixed refrigerant T-T cryocooler operating from 30 to 60 K[J]. Advanced in Cryogenic Engineering, 2000, 45:315-322.
[12] WU J F, GONG M Q, LIU J L, et al. A new type mixture refrigeration auto-cascade cycle with partial condensation and separation reflux exchanger and its preliminary experimental test[J]. Advances in Cryogenic Engineering, 2002, 47:887-892.
[13] GONG Maoqiong, WU Jianfeng, LUO Ercang, et al. Further development of the mixture refrigeration cycle with a dephlegmation separator[J]. Cryocoolers, 2003, 12:603-608.
[14] GONG Maoqiong, WU Jianfeng, LUO Ercang, et al. Study of the single-stage mixed-gases refrigeration cycle for cooling temperature-distributed heat loads[J]. International Journal of Thermal Sciences, 2004, 43(1): 31-41.
[15] 王國(guó)棟.非共沸制冷劑自復(fù)疊制冷系統(tǒng)特性及應(yīng)用研究[D]. 上海:上海理工大學(xué), 2004. (WANG Guodong. Study on the characteristics and application of non azeotropic refrigerant auto cascade refrigeration system[D]. Shanghai: University of Shanghai for Science and Technology, 2002.)
[16] 陸向陽(yáng).三級(jí)自動(dòng)復(fù)疊制冷循環(huán)的實(shí)驗(yàn)研究[D]. 上海:上海理工大學(xué), 2002. (LU Xiangyang. Experimental study on three stage auto cascade refrigeration cycle[D]. Shanghai: University of Shanghai for Science and Technology, 2004.)
[17] 荊磊. R600a/R23自動(dòng)復(fù)疊制冷系統(tǒng)及其應(yīng)用[D]. 上海:上海理工大學(xué), 2006. (JING Lei. Auto cascade refrigeration system and application of R600a/R23[D]. Shanghai: University of Shanghai for Science and Technology, 2006.)
[18] 劉紅紹. 單級(jí)自動(dòng)復(fù)疊制冷系統(tǒng)的實(shí)驗(yàn)研究[D]. 上海:上海理工大學(xué), 2008. (LIU Hongshao. Experimental study on single stage auto cascade refrigeration system[D]. Shanghai: University of Shanghai for Science and Technology, 2008.)
[19] 朱軍韜,張華. 混合工質(zhì)Linde-Hampson 制冷系統(tǒng)的實(shí)驗(yàn)研究[J].制冷學(xué)報(bào),2012, 33(2):18-23. (ZHU Juntao, ZHANG Hua. The experimental research on refrigerant mixtures of a Linde-Hampson refrigeration system[J]. Journal of Refrigeration, 2012, 33(2):18-23.)
[20] HU Peng, CHEN Longxiang, ZHU Wanbao, et al. Isothermal VLE measurements for the binary mixture of 2,3,3,3-tetrafluoroprop-1-ene(HFO-1234yf) + 1,1-difluoroethane(HFC-152a)[J]. Fluid Phase Equilibria, 2014, 373:80-83.
[21] HU Peng, CHEN Longxiang, CHEN Zeshao. Vapor-liquid equilibria for binary system of 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) + isobutane (HC-600a)[J]. Fluid Phase Equilibria, 2014, 365:1-4.
[22] CHEN Longxiang, HU Peng, ZHU Wanbao, et al. Vapor-liquid equilibria of fluoroethane (HFC-161) + 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf)[J]. Fluid Phase Equilibria, 2015, 392:19-23.
[23] HU Peng, ZHU Wanbao, CHEN Longxiang, et al. Vapor-liquid equilibria measurements of 1,1,1,2-tetrafluoroethane (HFC-134a) + 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) + isobutane (HC-600a) ternary system[J]. Fluid Phase Equilibria, 2016, 414:111-116.
[24] HU Peng, CHEN Longxiang, CHEN Zeshao. Vapor-liquid equilibria for the 1,1,1,2-tetrafluoroethane (HFC-134a) + 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) and 1,1,1-trifluoroethane (HFC-143a) + 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) systems[J]. Fluid Phase Equilibria, 2013, 360:293-297.
[25] 胡芃, 高敬軒, 陳龍祥, 等. PR方程結(jié)合vdW混合法則推算二元及三元HFC/HC混合工質(zhì)汽液相平衡性質(zhì)[J].化工學(xué)報(bào), 2012, 63(2):350-355. (HU Peng, GAO Jingxuan, CHEN Longxiang, et al. Prediction of vapor-liquid equilibria for binary and ternary HFC/HC mixtures using PR equation of state and vdW mixing rule[J]. CIESC Journal, 2012, 63(2):350-355.)
[26] LIA J, TILLNER-ROTHB R, SATOA H, et al. Equation of state for hydrofluorocarbon refrigerant mixtures of HFC-125/143a, HFC-125/134a, HFC-134a/143a and HFC-125/134a/143a[J]. Fluid Phase Equilibria, 1999, 161(2):225-239.
[27] GONG Maoqiong, ZHAO Yanxing, DONG Xueqiang. Measurements of isothermal (vapor + liquid) equilibria for the (propane + cis-1,3,3,3-tetrafluoropropene) system at temperatures from (253.150 to 293.150)K[J]. The Journal of Chemical Thermodynamics, 2016, 98:319-323.
[28] GONG Maoqiong, GUO Hao, DONG Xueqiang. (Vapor + liquid) phase equilibria measurements for {trifluoroiodomethane (R13I1) + propane (R290)} from T=(258.150 to 283.150)K[J]. The Journal of Chemical Thermodynamics, 2014, 79:167-170.
[29] LIM J S,PARK J Y, KANG J W, et al. Measurement of vapor-liquid equilibria for the binary systems of propane + 1,1,1,2-tetrafluoroethane and 1,1,1-trifluoroethane + propane at various temperatures[J]. Fluid Phase Equilibria, 2006, 243(1/2):57-63.
[30] JU M, YUN Y,SHINM S, et al. (Vapour + liquid) equilibria of the {trifluoromethane (HFC-23) + propane} and {trifluoromethane (HFC-23) + n-butane} systems[J]. The Journal of Chemical Thermodynamics, 2009, 41(12):1339-1342.
[31] 陳秀萍, 祁影霞, 趙勝喜, 等. 新型二元混合制冷劑(R290 + R227ea) 氣液相平衡研究[J]. 制冷學(xué)報(bào), 2014,35(5):94-100. (CHEN Xiuping, QI Yingxia, ZHAO Shengxi, et al. Vapor-liquid equilibrium properties of new binary mixture refrigerant (R290 + R227ea)[J]. Journal of Refrigeration, 2014, 35(5):94-100.)
[32] BUDINSKY R, VACEK V, LISAL M. Vapor-liquid equilibria of alternative refrigerants and their binaries by molecular simulations employing the reaction Gibbs ensemble Monte Carlo method[J]. Fluid Phase Equilibria, 2004, (222/223):213-220.
[33] HO Q N, YOO K S, LEE B G. Measurement of vapor-liquid equilibria for the binary mixture of propylene (R1270) + propane (R290)[J]. Fluid Phase Equilibria, 2006, 245(1):63-70.
[34] HO Q N, LEE B G, PARK J Y, et al. Measurement of vapor-liquid equilibria for the binary mixture of propylene (R-1270) + 1,1,1,2-tetrafluoroethane (HFC-134a)[J]. Fluid Phase Equilibria, 2004, 225:125-132.
[35] 公茂瓊, 吳劍鋒, 羅二倉(cāng). 深冷混合工質(zhì)節(jié)流制冷原理及應(yīng)用[M].北京:中國(guó)科學(xué)技術(shù)出版社, 2014. (GONG Maoqiong, WU Jianfeng, LUO Ercang. The principle and application of throttling refrigeration for cryogenic mixtures[M]. Beijing: China Science and Technology Press, 2014.)
[36] PENG D Y,ROBINSON D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1):59-64.
[37] WONG D S H, SANDLER S. A theoretically correct mixing rule for cubic equations of state[J]. Aiche Journal, 1992, 38(5):671-680.
[38] ORBEY H, SANDLER S I. Modelling vapour-liquid equilibria: cubic equation of state and their mixing rules[J]. Cambridge: Cambridge University Press, 1998.
[39] ZHANG Haiyang, GONG Maoqiong, LI Huiya, et al. A simple model for temperature-independent kij of the PR-vdW model for mixtures containing HCs, HFCs, PFCs, HFOs, CO2, RE170 and R13I1[J]. Fluid Phase Equilibria, 2016, 425:374-384.
[40] ZHAO Yanxing, GONG Maoqiong, DONG Xueqiang, et al. Prediction of ternary azeotropic refrigerants with a simple method[J]. Fluid Phase Equilibria, 2016, 425:72-83.
[41] 吳獻(xiàn)忠, 崔曉鈺, 李美玲. UNIFAC基團(tuán)貢獻(xiàn)法預(yù)測(cè)混合制冷劑的氣液相平衡[J].化工學(xué)報(bào),2005, 56(10):1832-1836. (WU Xianzhong, CUI Xiaoyu, LI Meiling. Estimation of refrigerant mixture phase equilibria with UNIFAC model[J]. CIESC Journal, 2005, 56(10):1832-1836.)
[42] MIYAUCHI H, YASUDA K, MATSUMOTO Y,et al. Isothermal phase equilibria for the (HFC-32 + HFC-134a) mixed-gas hydrate system[J]. Journal of Chemical Thermodynamics, 2012, 47:1-5.
[43] NICOLA G D, GIULIANI G,PASSERINIG, et al. Vapor-Liquid-Equilibria (VLE) properties of R-32+R-134a system derived from isochoric measurements[J]. Fluid Phase Equilibria, 1998, 153(1):143-165.
[44] SHIMAWAKI S, FUJII K, HIGASHI Y. Precise measurements of the vapor-liquid equilibria (VLE) of HFC-32/134a mixtures using a new apparatus[J]. International Journal of Thermophysics, 2002, 23(3):801-808.
[45] KATO R, NISHIUMI H. Vapor-liquid equilibria and critical loci of binary and ternary systems composed of CH2F2, C2HF5and C2H2F4[J]. Fluid Phase Equilibria, 2006, 249:140-146.
[46] NAGEL M, BIER K. Vapor-liquid equilibria of ternary mixtures of the refrigerants R32, R125and R134a[J]. International Journal of Refrigeration, 1995, 18(8):534-543.
[47] HU Xiaozhen, YANG Tao, MENG Xianyang, et al. Vapor liquid equilibria measurements for difluoromethane(R32)+2,3,3,3-tetrafluoroprop-1-ene(R1234yf) and fluoroethane(R161) + 2,3,3,3-tetrafluoroprop-1-ene(R1234yf)[J]. Fluid Phase Equilibria, 2017, 438:10-17.