張 揚(yáng),張林平,李 冬
?
菌根真菌對(duì)森林養(yǎng)分循環(huán)潛在貢獻(xiàn)的研究進(jìn)展
張 揚(yáng),張林平,李 冬*
(江西農(nóng)業(yè)大學(xué) 林學(xué)院/江西特色林木資源培育與利用2011協(xié)同創(chuàng)新中心/江西省竹子種質(zhì)資源與利用重點(diǎn)實(shí)驗(yàn)室,江西 南昌 330045)
菌根真菌能與森林中80%以上的樹種形成菌根共生體,提高宿主吸收土壤養(yǎng)分的能力,影響森林植物的生長(zhǎng)發(fā)育,在森林生態(tài)系統(tǒng)碳(C)、氮(N)、磷(P)循環(huán)過(guò)程扮演著重要的作用。菌根真菌既可將來(lái)自樹木光合產(chǎn)物C直接轉(zhuǎn)運(yùn)到土壤中并被封存,還具有加快其C源在樹木-土壤、樹木-樹木間傳輸?shù)墓δ?;菌根真菌可直接利用土壤無(wú)機(jī)N和有機(jī)N,將其傳遞給寄主植物,從而換取所需的C源,且能夠改變森林植物N的獲取策略;菌根真菌可增強(qiáng)森林植物適應(yīng)低P環(huán)境,提高其P吸收效率,緩解P限制。綜上所述,菌根真菌在森林C、N、P循環(huán)中可扮演多重角色,具有不可低估的潛在貢獻(xiàn),今后還需從菌根真菌多樣性與生態(tài)功能分化等方面開展進(jìn)一步的研究。
菌根真菌;養(yǎng)分循環(huán);森林生態(tài)系統(tǒng)
菌根真菌與植物根系相互作用形成的菌根共生體,是大多數(shù)森林植物生長(zhǎng)發(fā)育不可缺少的組成部分,迄今已知80%以上的植物物種可以與真菌形成菌根[1-2]。菌根共生體可增大植物根系表面積,促進(jìn)根系對(duì)土壤養(yǎng)分和水分的吸收[3]。在生物進(jìn)化過(guò)程中,菌根真菌很早就可以與古老的陸生植物形成菌根,經(jīng)歷了陸地生態(tài)系統(tǒng)的變遷,在森林生態(tài)系統(tǒng)中扮演著重要角色[4-5]。目前,菌根真菌可以與植物根系形成多達(dá)7類菌根[6],其中內(nèi)生叢枝菌根(AM)和外生菌根是研究得最多的菌根種類,全球已發(fā)表的AM菌根真菌和外生菌真菌分別達(dá)200余種和7 500多種[7]。隨著菌根生態(tài)學(xué)研究的不斷深入,已發(fā)現(xiàn)菌根真菌可以在地下形成龐大的“地下高速通道系統(tǒng)”,是連接植物根系與土壤的橋梁,通過(guò)菌絲網(wǎng)絡(luò)可加快養(yǎng)分在植物間傳遞[8-11]。菌根網(wǎng)絡(luò)被認(rèn)為是自養(yǎng)系統(tǒng)不可分割的重要組成部分,對(duì)生態(tài)系統(tǒng)變化起著重要的作用,在地球生物化學(xué)元素循環(huán)過(guò)程中扮演著極為重要的角色。
碳(C)、氮(N)和磷(P)循環(huán)是森林生態(tài)系統(tǒng)中最重要的生態(tài)過(guò)程,菌根真菌在其循環(huán)過(guò)程中作用和貢獻(xiàn)一直受到關(guān)注,但至今較系統(tǒng)總結(jié)的文獻(xiàn)尚不多見,值得歸納和報(bào)道。
森林生態(tài)系統(tǒng)在全球C循環(huán)過(guò)程中扮演著重要角色,森林是最主要的植被類型,森林系統(tǒng)蓄存了全球陸地生態(tài)系統(tǒng)C量的62%~78%,而森林土壤蓄存了其中的70%,在全球C循環(huán)中扮演著陸地凈C匯的功能[12-14]。菌根真菌作為森林生態(tài)系統(tǒng)的重要組成部分,具有不可忽視的生物量,菌根真菌是異養(yǎng)型生物,需與宿主植物共生才能生長(zhǎng),但菌根真菌具有將植物光合固定的C源在植物-土壤、植物-植物間傳輸?shù)墓δ躘15,8]。如Klein[8]利用13C穩(wěn)定同位素技術(shù)發(fā)現(xiàn)菌根真菌在森林樹木間碳交換過(guò)程起到了重要的作用,能將40%的光合產(chǎn)物C通過(guò)菌絲網(wǎng)絡(luò)在樹木間進(jìn)行傳遞,證實(shí)了樹木間可能以更復(fù)雜的方式發(fā)生相互作用,包括大量的C交換等相關(guān)推測(cè)。
Read[16]根據(jù)菌根真菌的生物量數(shù)據(jù),推算出每年由菌根輸入土壤的C量為83 g/(m2·yr),約為植物凋落物輸入量的41.5%;由于菌根真菌的生物量是由菌絲體、菌根、子實(shí)體、孢子構(gòu)成,在不同的生態(tài)系統(tǒng)中菌根真菌生物量的差異很大,如熱帶雨林土壤中AM菌根外菌絲密度僅為0.15 m/g[17],美國(guó)中西部伊利諾斯州草原土壤中AM菌絲密度超過(guò)81~111 m/g,對(duì)土壤有機(jī)碳的貢獻(xiàn)率可達(dá)15%[18-19];瑞典北方松林中ECM根外菌絲量可占土壤總微生物生物量的32%以上,對(duì)土壤C的貢獻(xiàn)約為58 kg/ha[20]。Wallander[21]采用菌絲生長(zhǎng)袋的方法對(duì)ECM菌絲量進(jìn)行了研究,結(jié)果表明對(duì)ECM根外菌絲量占整個(gè)真菌菌絲量的85%~90%,ECM真菌對(duì)土壤C的貢獻(xiàn)約為280~360 kg/ha。以往研究者們總認(rèn)為土壤中大部分C是來(lái)自植物的地上凋落物,植株通過(guò)吸收大氣中的CO2,最終落在地面腐爛進(jìn)入土壤,因此植物的地上凋落物(死亡的針葉和木質(zhì)部分)是北方森林土壤C儲(chǔ)存的主要來(lái)源[22-25]。然而,Clemmensen[26]利用分子條碼(molecular barcode)技術(shù)和14C炸彈碳模型(bomb-carbon modeling)在對(duì)北方森林土壤研究中發(fā)現(xiàn)菌根真菌可以將來(lái)自植物光合作用產(chǎn)物的C直接轉(zhuǎn)運(yùn)到土壤中并被封存起來(lái),儲(chǔ)存在北方森林土壤中的C有50%~70%是來(lái)自樹根及周圍生長(zhǎng)的菌根真菌,由菌根真菌轉(zhuǎn)運(yùn)并封存的C甚至多于落葉和樹枝封存的C[27]。
雖然菌根真菌在整個(gè)生態(tài)系統(tǒng)的C代謝和循環(huán)中起著重要作用,并且對(duì)土壤和植物C平衡產(chǎn)生重大的影響[28]。然而,關(guān)于菌根真菌封存C能力方面的研究仍有很多未解的問(wèn)題,如外生菌根真菌土壤C儲(chǔ)存的持續(xù)貢獻(xiàn)問(wèn)題,如AM菌根真菌產(chǎn)生的球囊霉素對(duì)土壤C匯具有很大的貢獻(xiàn),具有維持土壤團(tuán)粒結(jié)構(gòu)和土壤肥力的功能[29-30],這些糖蛋白球囊霉素是否對(duì)C儲(chǔ)存有影響,球囊霉素這類化合物的分子結(jié)構(gòu)及理化性質(zhì)如何,是否有類似的化合物被其他菌根真菌所構(gòu)建,以及在什么條件下構(gòu)建等問(wèn)題都懸而未解。
在生態(tài)系統(tǒng)中菌根真菌是土壤微生物優(yōu)勢(shì)類群[19,31-32],菌根真菌的代謝活動(dòng)會(huì)對(duì)森林土壤C平衡產(chǎn)生極大的影響,從而影響森林生態(tài)系統(tǒng)C循環(huán)。因此,菌根真菌在森林C循環(huán)過(guò)程中起著重要的作用。
N是植物生長(zhǎng)發(fā)育和生物量積累的必需元素,在植物生長(zhǎng)發(fā)育過(guò)程中起著重要作用[33-35]。然而,N缺乏是大多數(shù)森林生態(tài)系統(tǒng)面臨的問(wèn)題,成為限制陸地森林生態(tài)系統(tǒng)生產(chǎn)力的主要因素之一[35-36]。N主要以有機(jī)N形式存在,需經(jīng)礦化轉(zhuǎn)化為NH4+-N、NO3--N后才能被植物吸收利用[37-38]。森林土壤中N循環(huán)過(guò)程是由相關(guān)的N循環(huán)功能微生物所驅(qū)動(dòng),而菌根真菌分布廣泛,其菌絲體內(nèi)N庫(kù)非常豐富,菌絲周轉(zhuǎn)率高,在森林系統(tǒng)N循環(huán)過(guò)程中發(fā)揮著重要作用[15,39]。菌根真菌可從土壤利用無(wú)機(jī)N和有機(jī)N,并且把部分養(yǎng)分傳遞給寄主植物吸收,以換取它們需要的C源[40-41]。然而,不同菌根真菌類型對(duì)促進(jìn)植物吸收N素貢獻(xiàn)的差異也很大。如Govindarajulu等[42]利用穩(wěn)定同位素15N試驗(yàn)發(fā)現(xiàn)菌根真菌對(duì)宿主植物N的貢獻(xiàn)率可達(dá)到30%,而Jin等[43]利用原位控制試驗(yàn)得出的結(jié)果為50%。Hobbie等[44]發(fā)現(xiàn)溫帶森林ECM菌根和AM菌根類型主導(dǎo)的森林樣地中養(yǎng)分經(jīng)濟(jì)模式是不一樣的,AM主導(dǎo)的森林樣地中凋落物分解速率較快,土壤以無(wú)機(jī)N形式為主;而ECM主導(dǎo)的樣地中凋落物分解速率較慢、土壤主要以有機(jī)N形式存在[45];Yin等[46]研究發(fā)現(xiàn)在同一森林生態(tài)系統(tǒng)水平上,ECM菌根對(duì)森林土壤凈N礦化速率的貢獻(xiàn)約為32%,而AM菌根根系對(duì)森林土壤凈N礦化速率的貢獻(xiàn)率約為6%。
菌根真菌不僅能促進(jìn)宿主對(duì)N吸收及利用,還能通過(guò)地下菌絲網(wǎng)調(diào)節(jié)N的分配。由于大多數(shù)菌根真菌不存在寄主偏好性和專一性[3],侵染宿主后可在地下形成巨大的菌絲網(wǎng)絡(luò)[47],通過(guò)地下網(wǎng)絡(luò)系統(tǒng),菌根真菌可有效調(diào)節(jié)植物間N的再分配。如Wu[48]采用“15N標(biāo)記技術(shù)”來(lái)觀察菌根對(duì)地生蘭無(wú)機(jī)N和有機(jī)N的吸收,結(jié)果表明菌根真菌改變了地生蘭N獲取策略,由偏好NO3--N轉(zhuǎn)到偏好NH4+-N,并在不同土壤層次的N獲取策略也存在顯著差異。Cheng and Baumgartner[49]采用穩(wěn)定性同位素標(biāo)記方法驗(yàn)證了通過(guò)菌根真菌的調(diào)節(jié)N可以在不同植物間轉(zhuǎn)移。N在植物間傳遞具有重要生態(tài)學(xué)意義,通過(guò)影響到植物間生長(zhǎng)及競(jìng)爭(zhēng),進(jìn)而維持森林生態(tài)系統(tǒng)穩(wěn)定。Javelle and Willmann等[50-51]證實(shí)N素對(duì)外生菌根真菌銨鹽轉(zhuǎn)運(yùn)蛋白基因的表達(dá)有著調(diào)節(jié)作用。Tian等[52]在菌根真菌中鑒定出NO3--N轉(zhuǎn)運(yùn)蛋白基因GiNT,并且驗(yàn)證了NO3--N可以刺激此基因的表達(dá)。Cappellazzo等[53]從菌根真菌中發(fā)現(xiàn)了氨基酸轉(zhuǎn)運(yùn)蛋白基因1和1,其中基因1能與質(zhì)子耦合進(jìn)而運(yùn)輸脯氨酸。這些N相關(guān)基因的發(fā)現(xiàn)不僅為菌根真菌吸收利用N提供分子證明,也為菌根真菌利用N機(jī)理的研究打下堅(jiān)實(shí)的基礎(chǔ)。但總體來(lái)看,還是遠(yuǎn)遠(yuǎn)不夠的,例如:菌根真菌可直接通過(guò)自身菌絲作用驅(qū)動(dòng)N的循環(huán),也可間接的影響植物群落或土壤其它微生物群落影響N循環(huán),那么這兩者是誰(shuí)占據(jù)主導(dǎo)地位還是兩者共同調(diào)控N循環(huán),這些問(wèn)題都有待進(jìn)一步的解決。
菌根真菌能在土壤N循環(huán)過(guò)程中發(fā)揮著重要作用,然而由于N循環(huán)的復(fù)雜性,菌根真菌在森林生態(tài)系統(tǒng)N循環(huán)過(guò)程中扮演何種角色還需更深入的探索。
磷是植物生長(zhǎng)發(fā)育所必需的營(yíng)養(yǎng)元素之一,也是森林生態(tài)系統(tǒng)中關(guān)鍵養(yǎng)分限制因子,在森林系統(tǒng)中P主要來(lái)源是源于緩慢的礦物巖風(fēng)化作用。由于P循環(huán)的復(fù)雜性和研究方法局限性,其研究深度及水平都較滯后[54],因此對(duì)森林生態(tài)系統(tǒng)P循環(huán)的理解還較為有限。目前發(fā)現(xiàn)菌根真菌可以促進(jìn)植物對(duì)P吸收并吸收土壤中的活性P并傳遞給宿主植物,從而有利于減少吸收面損耗的P[55-56],除此之外,菌根真菌還可加速土壤P的風(fēng)化速率,將保存于巖石層中的難溶性P轉(zhuǎn)化為植物可以吸收利用的可溶性P,增加參與生態(tài)系統(tǒng)P循環(huán)的總P量[57-59]。因此,資源豐富的菌根真菌在森林生態(tài)系統(tǒng)P循環(huán)過(guò)程中扮演著重要的角色。
菌根真菌不僅能提高植物對(duì)P的吸收,還能通過(guò)P的吸收來(lái)提高植物的抗逆性。如鹽脅迫條件下菌根真菌通過(guò)增加植物吸收P,改變植物體內(nèi)碳水化合物和氨基酸的含量和組成,進(jìn)而改變根組織滲透平衡,減少吸收Na+和Cl-,提高其適應(yīng)鹽脅迫的能力[60]。在P貧瘠的土壤中菌根真菌通過(guò)在植物根系形成高密度的菌絲來(lái)增加對(duì)土壤P的吸收[61],菌根真菌還可以分泌檸檬酸、植物鐵載體等螯合劑和磷酸酶等酶類能夠提高土壤中的有效P含量[62-64]。菌根真菌還可以調(diào)節(jié)森林植物適應(yīng)低P環(huán)境,提高其P吸收效率,緩解P限制[65]。
雖然菌根真菌在森林土壤P循環(huán)過(guò)程中發(fā)揮了重要的作用,但在復(fù)雜的森林生態(tài)系統(tǒng)中,菌根真菌對(duì)森林C、N循環(huán)方面的研究越來(lái)越深入,相關(guān)機(jī)制也逐漸被人們所認(rèn)知,而菌根真菌在森林生態(tài)系統(tǒng)中轉(zhuǎn)運(yùn)P的機(jī)制是什么?在C、N、P營(yíng)養(yǎng)元素存在著相關(guān)機(jī)制是怎樣的?這些還待更深一步的探知。
菌根微觀和宏觀理論研究及其應(yīng)用技術(shù)是今后菌根真菌的主流研究方向。微觀方面主要利用分子生物學(xué)技術(shù)對(duì)菌根真菌資源、多樣性及相關(guān)共生機(jī)理進(jìn)行研究,而宏觀方面則主要為菌根真菌對(duì)生態(tài)系統(tǒng)穩(wěn)定性的維持機(jī)制等問(wèn)題,以及在全球生態(tài)環(huán)境變化過(guò)程中菌根真菌相應(yīng)的響應(yīng)機(jī)制研究,研究層次也由個(gè)體生態(tài)學(xué)向群落及生態(tài)系統(tǒng)生態(tài)學(xué)方面轉(zhuǎn)變。
菌根真菌在調(diào)控森林土壤養(yǎng)分循環(huán)過(guò)程中發(fā)揮著重要作用,然而對(duì)現(xiàn)階段菌根真菌研究中存在的問(wèn)題仍不容小覷,今后亟待加強(qiáng)的方面包括:(1)菌根真菌的物種多樣性在全球變化下的生態(tài)功能。在全球變化大背景下,植物生態(tài)系統(tǒng)的多樣性、群落組成都會(huì)隨之變化,不可避免的,與植物有著共生關(guān)系的菌根真菌群落結(jié)構(gòu)不可避免地也會(huì)隨之改變,不同森林生態(tài)系統(tǒng)的演替階段,菌根真菌群落結(jié)構(gòu)也會(huì)顯著的發(fā)生變化[66],作為陸生植物最古老的共生者,菌根真菌是這些過(guò)程的參與者還是推動(dòng)者呢?其中的作用機(jī)制還有待于揭示。隨著分子生物學(xué)技術(shù)應(yīng)用于菌根真菌分類學(xué),以全基因組測(cè)序、高通量測(cè)序、分子標(biāo)記等技術(shù)為基礎(chǔ)的分子生態(tài)學(xué)研究,突破了經(jīng)典分類學(xué)方法的限制,為揭示這些相關(guān)機(jī)制提供了技術(shù)支撐。
(2)菌根真菌影響森林土壤養(yǎng)分循環(huán)及吸收傳遞的機(jī)制。菌根真菌可通過(guò)自身菌絲對(duì)森林土壤養(yǎng)分循環(huán)產(chǎn)生直接影響;也可以通過(guò)影響植物群落或者其它微生物群落來(lái)對(duì)森林土壤養(yǎng)分循環(huán)產(chǎn)生間接影響[8]。這兩種作用方式是怎么共同作用調(diào)控土壤養(yǎng)分素循環(huán)過(guò)程呢?盡管目前對(duì)這方面進(jìn)行了不少的研究,然而相關(guān)機(jī)制還不是很清楚。此外,菌根真菌給植物傳遞養(yǎng)分的分子機(jī)理尚不明確,菌根真菌是通過(guò)什么信號(hào)通路來(lái)實(shí)現(xiàn)養(yǎng)分的傳遞呢?目前只有為數(shù)不多的相關(guān)轉(zhuǎn)運(yùn)基因被克隆與注釋,還不能全面的解釋其機(jī)理。
(3)野外尺度條件下的菌根生態(tài)學(xué)研究工作。迄今多數(shù)菌根真菌方面的研究成果都集中在室內(nèi)或溫室盆栽條件下的人工控制試驗(yàn),缺少野外尺度條件下的菌根生態(tài)學(xué)方面的研究,應(yīng)在野外生態(tài)學(xué)的基礎(chǔ)上,開展長(zhǎng)期的野外定位試驗(yàn),輔以跟蹤、監(jiān)測(cè)試驗(yàn),采用傳統(tǒng)與分子技術(shù)相結(jié)合手段研究大尺度生態(tài)系統(tǒng)中菌根真菌與生態(tài)系統(tǒng)互作中群落多樣性、生物多樣性及生態(tài)系統(tǒng)修復(fù)與穩(wěn)定性維持機(jī)制的關(guān)系。
當(dāng)前人們對(duì)菌根真菌參與森林養(yǎng)分循環(huán)研究愈來(lái)愈感興趣,可以預(yù)見,隨著基因組學(xué)技術(shù)的發(fā)展,基因組序列信息極大的豐富,轉(zhuǎn)運(yùn)基因的克隆和功能分析會(huì)有較大突破,隨著菌根真菌與植物間養(yǎng)分傳輸機(jī)制的研究越來(lái)越深入的理解,將會(huì)闡明菌根真菌對(duì)森林生態(tài)系統(tǒng)養(yǎng)分循環(huán)中的功能及作用機(jī)制。
[1] Harley J L, Harley E. A check-list of mycorrhiza in the british flora[J]. New Phytologist, 1987, 105(suppl): 1-102.
[2] Wang B, Qiu Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants[J]. Mycorrhiza, 2006, 16(5): 299-363.
[3] Smith S E, Read D J. Mycorrhizal symbiosis[M]. Academic Press, 2010.
[4] Pirozynski K, Malloch D. The origin of land plants: a matter of mycotrophism[J]. Biosystems, 1975, 6(3): 153-164.
[5] Simon L, Bousquet J, Lévesque R C, et al. Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants[J]. Nature, 1993, 363: 67-69.
[6] Harley J. The significance of mycorrhiza[J]. Mycological Research, 1989, 92(2): 129-139.
[7] 郭良棟. 中國(guó)微生物物種多樣性研究進(jìn)展[J]. 生物多樣性, 2012, 20(5): 572-580.
[8] Klein T, Siegwolf R T, K?rner C. Belowground carbon trade among tall trees in a temperate forest[J]. Science, 2016, 352(6283): 342-344.
[9] He X, Bledsoe C S, Zasoski R J, et al. Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland[J]. New Phytologist, 2006, 170(1): 143-151.
[10] Simard S W, Perry D A, Jones M D, et al. Net transfer of carbon between ectomycorrhizal tree species in the field[J]. Nature, 1997, 388: 579-582.
[11] Perry D A, Margolis H, Choquette C, et al. Ectomycorrhizal mediation of competition between coniferous tree species[J]. New Phytologist, 1989, 112(4): 501-511.
[12] Dixon R K, Solomon A M, Brown S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144): 185-190.
[13] Schimel D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology, 1995, 1(1): 77-91.
[14] Hagedorn F, Maurer S, Egli P, et al. Carbon sequestration in forest soils: effects of soil type, atmospheric CO2enrichment, and N deposition[J]. European Journal of Soil Science, 2001, 52(4): 619-628.
[15] Staddon P L, Fitter A H. Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of14C[J]. Science, 2003, 300(5622): 1138-1140.
[16] Read D J. Mycorrhizas in ecosystems[J]. Experientia, 1991, 47(4): 376-391.
[17] Powers J S, Tresder K K, Lerdau M T. Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four neotropical rain forests: patterns across large geographic distances[J]. New Phytologist, 2005, 165(3): 913-921.
[18] Miller R, Jastrow J, Reinhardt D. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities[J]. Oecologia, 1995, 103(1): 17-23.
[19] Miller R, Kling M. The importance of integration and scale in the arbuscular mycorrhizal symbiosis[J]. Plant and Soil, 2000, 226(2): 295-309.
[20] H?gberg M N, H?gberg P. Extramatrical ectomycorrhizal mycelium contributes one‐third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil[J]. New Phytologist, 2002, 154(3): 791-795.
[21] Wallander H. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field[J]. New Phytologist, 2001, 151(3): 753-760.
[22] Cornwell W K, Cornelissen J H, Amatangelo K, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide[J]. Ecology Letters, 2008, 11(10): 1065-1071.
[23] Brovkin V, Bodegom P M V, Kleinen T, et al. Plant-driven variation in decomposition rates improves projections of global litter stock distribution[J]. Biogeosciences, 2012, 9(1): 565-576.
[24] Makkonen M, Berg M P, Handa I T, et al. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient[J]. Ecology Letters, 2012, 15(9): 1033-1041.
[25] Wardle D A, H?rnberg G, Zackrisson O, et al. Long-term effects of wildfire on ecosystem properties across an island area gradient[J]. Science, 2003, 300(5621): 972-975.
[26] Clemmensen K E, Bahr A, Ovaskainen O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest[J]. Science, 2013, 339(6127): 1615-1618.
[27] Treseder K K, Holden S R. Fungal carbon sequestration[J]. Science, 2013, 339(6127): 1528-1529.
[28] 郭良棟, 田春杰. 菌根真菌的碳氮循環(huán)功能研究進(jìn)展[J]. 微生物學(xué)通報(bào), 2013, 40(1): 158-171.
[29] Rillig M C, Wright S F, Nichols K A, et al. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J]. Plant and Soil, 2001, 233(2): 167-177.
[30] Rillig M C, Ramsey P W, Morris S, et al. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change[J]. Plant and Soil, 2003, 253(2): 293-299.
[31] O'Brien H E, Parrent J L, Jackson J A, et al. Fungal community analysis by large-scale sequencing of environmental samples[J]. Applied and Environmental Microbiology, 2005, 71(9):5544-5550.
[32] Lindahl B D, Ihrmark K, Boberg J, et al. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest[J]. New Phytologist, 2007, 173(3): 611-620.
[33] Chapin F S, Vitousek P M, Cleve K V. The nature of nutrient limitation in plant communities[J]. American Naturalist, 1986, 127(1):48-58.
[34] Mooney H A, Vitousek P M, Matson P A. Exchange of materials between terrestrial ecosystems and the atmosphere[J]. Science, 1987, 238(4829): 926-932.
[35] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: How can it occur?[J]. Biogeochemistry, 1991, 13(2):87-115.
[36] Tilman D.The resource-ratio hypothesis of plant succession[J]. American Naturalist, 1985, 827-852.
[37] ChapinIII F S, Matson P A, Vitousek P. Principles of terrestrial ecosystem ecology[M]. Springer Science & Business Media, 2011.
[38] Kirkby E A. Plant growth in relation to nitrogen supply[M]. Sweden: Ecological Bulletins, 1981.
[39] Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proceedings of the National Academy of Sciences, 2010, 107(31): 13754-13759.
[40] Hodge A, Storer K. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems[J]. Plant and Soil, 2015, 386(1-2): 1-19.
[41] Marmeisse R, Girlanda M. 10 mycorrhizal fungi and the soil carbon and nutrient cycling[C]// Environmental and Microbial Relationships. Springer International Publishing, 2016: 189-203.
[42] Govindarajulu M, Pfeffer P E, Jin H, et al. Nitrogen transfer in the arbuscular mycorrhizal symbiosis[J]. Nature, 2005, 435(7043): 819-823.
[43] Jin H, Pfeffer P E, Douds D D, et al. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis[J]. New Phytologist, 2005, 168(3): 687-696.
[44] Hobbie S E, Reich P B, Oleksyn J, et al. Tree species effects on decomposition and forest floor dynamics in a common garden[J]. Ecology, 2006, 87(9): 2288-2297.
[45] Cornelissen J, Aerts R, Cerabolini B, et al. Carbon cycling traits of plant species are linked with mycorrhizal strategy[J]. Oecologia, 2001, 129(4):611-619.
[46] Yin H, Wheeler E, Phillips R P. Root-induced changes in nutrient cycling in forests depend on exudation rates[J]. Soil Biology and Biochemistry, 2014, 78: 213-221.
[47] Newman E. Mycorrhizal links between plants: their functioning and ecological signi?cance[J]. Advances in Ecological Research, 1988, 18: 243-70.
[48] Wu J, Ma H, Xu X, et al. Mycorrhizas alter nitrogen acquisition by the terrestrial orchid[J]. Annals of Botany, 2013, 111(6): 1181-1187.
[49] Cheng X, Baumgartner K. Arbuscular mycorrhizal fungi-mediated nitrogen transfer from vineyard cover crops to grapevines[J]. Biology & Fertility of Soils, 2004, 40(6):406-412.
[50] Javelle A, Rodríguez-Pastrana B R, Jacob C, et al. Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum[J]. Febs Letters, 2001, 505(3): 393-398.
[51] Willmann A, Weiss M, Nehls U. Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria[J]. Current Genetics, 2007, 51(2):71-78.
[52] Tian C J, Kasiborski B, Koul R, et al. Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux[J]. Plant Physiology, 2010, 153(3):1175-1187.
[53] Cappellazzo G, Lanfranco L, Fitz M, et al. Characterization of an amino acid permease from the endomycorrhizal fungus glomus mosseae[J]. Plant Physiology, 2008, 147(1):429-437.
[54] Zhu F, Lu X, Liu L, et al. Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests[J]. Scientifi Reports, 2015, 5(1): 7923.
[55] Harrison M J. A phosphate transporter from the mycorrhizal fungus Glomus versiforme[J]. Nature, 1995, 378(6557): 626-629.
[56] Li H, Smith F A, Dickson S, et al. Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain?[J]. New Phytologist, 2008, 178(4): 852-862.
[57] Owusu-Bennoah E, Wild A. Effects of vesicular-arbuscular mycorrhiza on the size of the labile pool of soil phosphate[J]. Plant & Soil, 1980, 54(2): 233-242.
[58] Allen M F. The ecology of mycorrhizae[M]. London: Cambridge University Press, 1991.
[59] Bolan N. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants[J]. Plant and Soil, 1991, 134(2): 189-207.
[60] Daei G, Ardekani M R, Rejali F, et al. Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions.[J]. Journal of Plant Physiology, 2009, 166(6):617-625.
[61] Bolan N S, Barrow N J. Effects of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants[J]. Plant and Soil, 1987, 99(2-3): 401-410.
[62] Cress W A, Johnson G V, Barton L L. The role of endomycorrhizal fungi in iron uptake by Hilariajamesii[J]. Journal of Plant Nutrition, 1986, 9(3-7):547-556.
[63] Haselwandter K. Mycorrhizal fungi: siderophore production[J]. Critical Reviews in Biotechnology, 1995, 15(3/4): 287-291.
[64] Tarafdar J C, Marschner H. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus[J]. Soil Biology and Biochemistry, 1994, 26(3): 387-395.
[65] 童琳, 唐旭利, 張靜, 等. 菌根形成對(duì)不同成熟度的森林優(yōu)勢(shì)樹種磷吸收的影響[J]. 生態(tài)科學(xué), 2015, 34(4): 93-98.
[66] Gao C, Zhang Y, Shi N N, et al. Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession[J]. New Phytologist, 2015, 205(2): 771-785.
Research Progress of Potential Contribution of Mycorrhiazl Fungi to Forest Nutrient Cycling
ZHANG Yang, ZHANG Lin-ping, LI Dong*
(College of Forestry, 2011 Collaborative Innovation Center for Jiangxi Typical Tree Cultivation and Utilization, Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agricultural University, Nanchang 330045, China)
Mycorrhizal fungi plays an important role in the cycle process of carbon (C), nitrogen (N), and phosphorus (P), in the forest ecosystem. It can form arbuscular mycorrhizae with more than 80% species of trees in the forest, thus improve the host’s ability of absorbing soil nutrients and have an influence on the growth of plants in the forest. Some studies showed that: Mycorrhizal fungi not only could transport directly the photosynthetic products C from trees into the soil and sequestration, but also was able to accelerate the C-resource’s function of transportation from trees to soil, and trees to trees; Mycorrhizal fungi could use directly soil inorganic N and organic N, which were passed to the host plant in exchange for the required C source, and could thus change the way of forest plant’s getting N; Mycorrhizal fungi could strengthen the ability of plants in forest to adapt the low P environment and improve the P absorption efficiency, so as to ease P restrictions. In summary, Mycorrhizal fungi played multiple roles in the cycling of forest C, N, and P, which made it have a potential contribution not to be underestimated. So we need to have the further research from the diversity of mycorrhizal fungi and its ecological functions of differentiation in the future.
Mycorrhizal fungi; nutrient cycling; forest ecosystem
S718.81;S154.4
A
2095-3704(2018)03-0169-07
2018-06-28
國(guó)家自然科學(xué)基金項(xiàng)目(31660190,31660189)和江西省教育廳科學(xué)技術(shù)研究項(xiàng)目(GJJ15038)
張揚(yáng)(1984—),男,博士生,主要從事微生物生態(tài)學(xué)和林木病理學(xué)研究,zhangyang0558@163.com;
李冬,副教授,jxld2008@163.com。
張揚(yáng), 張林平, 李冬. 菌根真菌對(duì)森林養(yǎng)分循環(huán)潛在貢獻(xiàn)的研究進(jìn)展[J]. 生物災(zāi)害科學(xué), 2018, 41(3): 169-175.
10.3969/j.issn.2095-3704.2018.03.39