過利敏,張文生*,李士明*
活性羰基化合物(reactive carbonyl species,RCS)主要指美拉德反應(yīng)和還原糖自氧化形成的甲基乙二醛(methylglyoxal,MG)、乙二醛(glyoxal,GO)和3-脫氧葡萄糖醛酮(3-deoxyglucosone,3-DG)[1]。它們的反應(yīng)活性很強(qiáng),與活性氧類(reactive oxygen species,ROS)物質(zhì)類似,能夠同蛋白質(zhì)和DNA/RNA中的氨基、巰基發(fā)生親核加成反應(yīng),生成晚期糖基化終產(chǎn)物(advanced glycosylation end products,AGEs)[2]在體內(nèi)引起多種病理變化[3]。其中,MG是研究最多的一種RCS,它可以由體內(nèi)代謝產(chǎn)生,也能在食品和飲料的加工中產(chǎn)生并積累[4]。MG具有細(xì)胞毒性[5],并能通過與蛋白質(zhì)及核酸發(fā)生非酶羰基化反應(yīng),改變蛋白質(zhì)和DNA的結(jié)構(gòu)和功能[6-7],引發(fā)羰基應(yīng)激,誘發(fā)氧化應(yīng)激與細(xì)胞凋亡[8],引起多種機(jī)體病變,如糖尿病及其并發(fā)癥、代謝綜合征、心血管疾病、神經(jīng)退行性病變等慢性疾病和癌癥[9-11]。因此,如何安全、有效地清除食品和體內(nèi)的MG是一個(gè)亟待解決的關(guān)鍵性問題。本文介紹了食品中MG的來源與產(chǎn)生機(jī)理,討論了MG及其衍生AGEs對(duì)人體的病理危害,最后總結(jié)了目前關(guān)于MG天然清除劑的體內(nèi)外研究進(jìn)展,為MG天然清除劑的優(yōu)選及開發(fā)利用提供理論指導(dǎo)和參考。
在食品加工與貯藏過程中,由于美拉德反應(yīng)及單糖自氧化作用,MG會(huì)不斷產(chǎn)生并積累,這是食品與飲料中MG的主要來源[12-14]。此外,酯類降解和微生物發(fā)酵過程中也會(huì)產(chǎn)生MG。在美拉德反應(yīng)的初始階段和發(fā)展階段中,還原糖(通常為單糖)的醛基與蛋白質(zhì)的氨基發(fā)生反應(yīng),產(chǎn)物脫水后形成醛亞胺,也叫西佛堿,再經(jīng)Amadori分子重排形成產(chǎn)物果糖胺。醛亞胺和果糖胺都不穩(wěn)定,繼續(xù)發(fā)生分子重排并脫水形成1,2-烯醇或2,3-烯醇,再發(fā)生異構(gòu)化分別生成1-脫氧葡萄糖醛酮(1-deoxyglucosone,1-DG)或3-DG。3-DG經(jīng)逆向羥醛縮合反應(yīng)可降解為MG。在高溫下,單糖會(huì)發(fā)生自氧化形成烯醇,再經(jīng)逆羥醛縮合反應(yīng)裂解形成MG(圖1),這一途徑在含糖較高的食品加工中占主導(dǎo)[15]。
MG的生成與還原糖和蛋白質(zhì)的種類、濃度及加工方式密切相關(guān)。葡萄糖和果糖含量高的食品中MG含量較高[15-16]。例如,高果糖玉米糖漿中MG含量為1.38~10.88 μg/mL[12],在含高果糖玉米糖漿的碳酸飲料中MG可高達(dá)139.5 μg/100 mL[13]。炒制咖啡豆[17]、麻花[14]的長(zhǎng)期存放、油脂中多不飽和脂肪酸的氧化或高溫降解[18]及葡萄的乳酸發(fā)酵[19]都會(huì)產(chǎn)生MG和GO。部分MG會(huì)繼續(xù)和蛋白質(zhì)的氨基發(fā)生反應(yīng)生成AGEs,在高蛋白食品中MG衍生AGEs含量較高,并且AGEs含量隨加工溫度升高及時(shí)間延長(zhǎng)而增多[20-21]。
圖1 MG等RCS的主要食品來源及其產(chǎn)生機(jī)理Fig. 1 Major food sources and formation pathways of MG and other RCS
在體內(nèi),美拉德反應(yīng)產(chǎn)物經(jīng)Amadori重排和裂解生成MG,但機(jī)體中MG主要由糖、蛋白質(zhì)和脂類的氧化分解生成,涉及一系列酶促或非酶催化反應(yīng)[4]。正常生理狀態(tài)下,機(jī)體內(nèi)葡萄糖在糖酵解過程中由磷酸丙酮中間體經(jīng)非酶催化裂解產(chǎn)生MG,隨后被乙二醛酶系統(tǒng)(glyoxalase-I和glyoxalase-II)有效降解。但是在高血糖患者體內(nèi),MG的血液濃度為正常人的3~5 倍[10]。由于葡萄糖利用出現(xiàn)問題,致使葡萄糖、果糖、磷酸丙糖及糖化蛋白等大量積累,它們都能降解并產(chǎn)生MG,是血液和組織中MG水平升高的主要來源;此外,在葡萄糖利用不足時(shí),蛋白質(zhì)和脂肪也能經(jīng)代謝分解產(chǎn)生MG[4,10]。
MG是研究最多的一種1,2-二羰基化合物,它是體內(nèi)AGEs形成的最重要前體[4,22],主要與蛋白質(zhì)的胍基(如精氨酸)、側(cè)鏈氨基(如賴氨酸)和巰基(如半胱氨酸)反應(yīng)生成AGEs。MG含有2 個(gè)相鄰并相互活化的羰基,反應(yīng)活性很強(qiáng),為葡萄糖的2萬 倍[10]。MG極易與精氨酸和賴氨酸發(fā)生親核反應(yīng),而這2 種氨基酸在蛋白質(zhì)活性結(jié)構(gòu)域中所占比例很高,因此體內(nèi)蛋白質(zhì)很容易與MG發(fā)生糖化反應(yīng)[22]。此外,MG還能與DNA發(fā)生糖化反應(yīng),導(dǎo)致基因功能降低甚至缺失[6]。
在蛋白質(zhì)和核酸的糖化加合物中,研究較多的是MG與精氨酸反應(yīng)形成的一類氫化咪唑酮類產(chǎn)物,它們環(huán)化形成3 種異構(gòu)體,分別是Nd-(5-氫-5-甲基-4-咪唑酮-2-基)-L-鳥氨酸(Nd-(5-hydro-5-methyl-4-imidazolon-2-yl)-L-ornithine,MG-H1)、2-氨基-5-(2-氨基-5-氫-5-甲基-4-咪唑酮-1-基)-戊酸(2-amino-5-(2-amino-5-hydro-5-methyl-4-imidazolon-1-yl)-pentanoic acid,MG-H2)和2-氨基-5-(2-氨基-4-氫-4-甲基-5-咪唑酮-1-基)-戊酸(2-amino-5-(2-amino-4-hydro-4-methyl-5-imidazolon-1-yl)pentanoic acid,MG-H3),它們之間相互轉(zhuǎn)化并處于動(dòng)態(tài)平衡狀態(tài)[23]。MG與賴氨酸反應(yīng)生成1,3-二(Ne-賴氨酸)-4-甲基咪唑鎓(1,3-di(Ne-lysino)-4-methylimidazolium,MOLD)和Ne-1-羧乙基賴氨酸(Ne-(1-carboxyethyl)lysine,CEL),見表1。有研究表明,血漿中高濃度的MG及其糖化蛋白MG-H1和CEL的水平與糖尿病、腎病的發(fā)生發(fā)展有直接關(guān)系。因此,氫化咪唑酮類產(chǎn)物可以成為糖尿病、腎病早期診斷的生物標(biāo)志物[24]。
表1 MG與氨基酸的主要加合產(chǎn)物[2,24]Table 1 Major addition products of MG and amino acids[2,24]
攝入富含MG及其糖化產(chǎn)物(AGEs)的食物很可能對(duì)身體健康產(chǎn)生不良影響。身體內(nèi)的MG具有細(xì)胞毒性,與蛋白質(zhì)發(fā)生糖化反應(yīng),造成分子交聯(lián),引起蛋白質(zhì)功能紊亂,同時(shí)生成AGEs,AGEs與糖基化終產(chǎn)物受體(receptor for advanced glycation endproducts,RAGE)結(jié)合,激活多條信號(hào)通路,誘導(dǎo)機(jī)體發(fā)生氧化應(yīng)激與炎癥反應(yīng),引起細(xì)胞凋亡及組織損傷。這一過程與糖尿病及其并發(fā)癥[9]、代謝綜合征、心血管疾病[25]、阿爾茨海默癥(Alzheimer’s disease,AD)等神經(jīng)退行性疾病[26]和惡性腫瘤[11,27]的發(fā)展密切相關(guān)。在此概述MG與糖尿病、神經(jīng)退行性疾病和癌癥的關(guān)系。
大量動(dòng)物實(shí)驗(yàn)證明,MG在Ⅱ型糖尿病及其并發(fā)癥的發(fā)生發(fā)展中起了重要作用[28]。胰島素是由胰腺β細(xì)胞產(chǎn)生的肽激素,用于調(diào)節(jié)葡萄糖的體內(nèi)平衡。MG及其衍生的AGEs是造成糖尿病患者β細(xì)胞功能障礙和胰島素抵抗的誘因之一。MG與胰島素B鏈的精氨酸殘基及其N-末端苯丙酸能夠發(fā)生糖基化反應(yīng),使胰島素活性降低,不能正常調(diào)節(jié)對(duì)葡萄糖的攝取[7],阻礙胰島素信號(hào)傳導(dǎo),產(chǎn)生胰島素抵抗[9]。AGEs通過激活其膜受體RAGE,產(chǎn)生氧化應(yīng)激,造成炎癥環(huán)境,從而損害胰島細(xì)胞,降低胰島素分泌[29]。研究表明,連續(xù)28 d給Sprague-Dawley大鼠背部皮下注入MG(60 mg/(kg·d))或飲水中添加1 mg/100 mL MG,導(dǎo)致了大鼠體內(nèi)葡萄糖水平升高,胰島素受體底物1失活,脂肪細(xì)胞中葡萄糖轉(zhuǎn)運(yùn)蛋白(glucose transporter 4,GLUT4)表達(dá)減少,誘導(dǎo)了胰島素抵抗的發(fā)生[30-32]。食品中的MG會(huì)衍生形成AGEs,長(zhǎng)期攝入AGEs含量高的食物會(huì)導(dǎo)致或加速血管疾病的發(fā)生[33],所以限制AGEs攝入量有助于改善代謝等疾病[34-35]。
MG造成的糖基化能誘導(dǎo)內(nèi)皮功能障礙、損害微血管系統(tǒng)。MG與糖尿病腎病和視網(wǎng)膜病變密切相關(guān)[9]。由于機(jī)體循環(huán)中多數(shù)RCS和AGEs在腎臟中被過濾與清除,因而腎臟作為AGEs的主要代謝器官,易發(fā)生高血糖誘導(dǎo)的微血管損傷[36-37]。MG增加了不同類型腎細(xì)胞中黏附分子、促炎細(xì)胞因子和轉(zhuǎn)化生長(zhǎng)因子TGFβ的表達(dá)[38],也使腎細(xì)胞的電子呼吸鏈?zhǔn)芤种?,?dǎo)致線粒體功能障礙,還誘導(dǎo)ROS的生成并激活了轉(zhuǎn)化生長(zhǎng)因子[39]。這些因素都促使腎小球基底膜增厚和腎臟纖維化,造成糖尿病腎病[40]。由MG衍生的主要AGEs中,MG-H1是腎小球基底膜增厚的一個(gè)顯著性獨(dú)立預(yù)測(cè)因子,MG-H1和CEL是糖尿病腎病發(fā)展的重要早期指標(biāo)[41]。血漿中的高M(jìn)G含量與糖尿病腎病高患病率密切相關(guān)[42-44],通常的情況是,即便糖尿病病人的血糖水平得到了控制,蛋白質(zhì)非酶糖基化和氧化應(yīng)激反應(yīng)仍然繼續(xù),即所謂的“高血糖記憶狀態(tài)”[45]。清除MG能夠有效阻斷非酶糖基化反應(yīng),繼而防治糖尿病并發(fā)癥的發(fā)生發(fā)展,是近年來食物預(yù)防與藥物治療糖尿病并發(fā)癥的研究重點(diǎn)之一。
大腦對(duì)能量和氧的需求量大,對(duì)氧化應(yīng)激高度敏感。MG是造成氧化應(yīng)激的原因之一。例如,在SH-SY5Y神經(jīng)瘤母細(xì)胞中,MG處理會(huì)嚴(yán)重影響線粒體的呼吸及細(xì)胞能量狀態(tài),導(dǎo)致ROS和乳酸水平增加,造成線粒體膜電位降低和細(xì)胞內(nèi)ATP水平下降[46]。在小鼠神經(jīng)母細(xì)胞瘤細(xì)胞中,MG處理能促進(jìn)絲裂原活化蛋白激酶(mitogenactivated protein kinase,MAPK)中JNK和p38信號(hào)傳導(dǎo)途徑激活,誘導(dǎo)細(xì)胞凋亡[47]。在AD中,MG能夠活化GSK-3β和p38 MAPK,并調(diào)節(jié)大腦中tau的過磷酸化過程[48]。同時(shí),在AD患者的大腦中,β-淀粉樣蛋白(β-amyloid peptide,Aβ)沉積逐漸增多。在體外,Aβ與MG發(fā)生反應(yīng)生成Aβ-AGEs,把Aβ-AGEs注射到SD大鼠的側(cè)腦室中,加劇了Aβ誘導(dǎo)的認(rèn)知損傷,還觀察到RAGE的過度表達(dá)和RAGE介導(dǎo)的通路關(guān)鍵蛋白如GSK3、NF-κB、p38等的激活[49-50]。總之,增加MG的代謝和清除效率能夠減輕蛋白羰基化,有助于延緩AD及衰老等慢性疾病的發(fā)生和發(fā)展。
MG與腫瘤的關(guān)系迄今為止尚無一致的認(rèn)識(shí)。一方面,MG能夠抑制癌細(xì)胞的擴(kuò)散和腫瘤局部生長(zhǎng),另一方面,研究顯示MG能誘發(fā)腫瘤的形成與發(fā)展。一項(xiàng)于20世紀(jì)60年代的研究發(fā)現(xiàn),相對(duì)于控制組,MG有效地阻止了瑞士白鼠移植腹水肉瘤的生長(zhǎng)[51]。MG的代謝酶glyoxalase-Ⅰ在多種腫瘤組織中均存在過度表達(dá)現(xiàn)象,而glyoxalase-Ⅰ的過度表達(dá)使得MG被過度清除,致使MG的腫瘤抑制作用消失,腫瘤得以發(fā)展[52]。類似的研究顯示,用MG清除劑處理后,能提高癌細(xì)胞對(duì)腫瘤治療藥物的敏感性[53]。相反地,用MG處理乳腺癌細(xì)胞,影響了Hsp90的伴侶活性,并降低了它與Hippo途徑關(guān)鍵激酶大腫瘤抑制基因1的結(jié)合,使癌細(xì)胞生長(zhǎng)和轉(zhuǎn)移潛力增強(qiáng)[54]。MG衍生的MG-BSA能夠增加人乳腺癌細(xì)胞的增殖、遷移和侵襲,表明MG-AGEs在癌癥中具有促腫瘤作用[27]。與非糖尿病患者相比,糖尿病患者的癌癥發(fā)病率較高,這與患者體內(nèi)高M(jìn)G濃度密切相關(guān)。降糖藥二甲雙胍具有捕獲并降低糖尿病患者血漿MG水平的作用,也通過誘導(dǎo)細(xì)胞周期阻滯和細(xì)胞凋亡,降低各種癌細(xì)胞株的增殖,所以,二甲雙胍也具有抗癌作用[55]。總之,目前學(xué)術(shù)界對(duì)MG與腫瘤的關(guān)系缺乏統(tǒng)一認(rèn)識(shí),癌細(xì)胞中MG的應(yīng)激作用亟待探索與解釋。
無論生理健康還是病理?xiàng)l件下,體內(nèi)都會(huì)產(chǎn)生MG。正常情況下,機(jī)體清除MG的機(jī)制比較完善,體內(nèi)MG處于正常水平;但在病理和衰老過程中,由于人體自身清除MG的效率降低,體內(nèi)MG及其衍生的AGEs逐漸增多并不斷積累,帶來諸多疾病。在諸多RCS中,MG細(xì)胞毒性最強(qiáng),但是,通過加速體內(nèi)磷酸丙酮的代謝通量,或提高M(jìn)G代謝酶glyoxalase-I的蛋白表達(dá),或者攝入MG等RCS的清除劑,都能有效地降低體內(nèi)MG水平。近年來研究發(fā)現(xiàn),包括黃酮、二苯乙烯苷等化合物在內(nèi)的植物多酚容易與MG等RCS反應(yīng),因而具有有效的MG清除作用。
據(jù)報(bào)道,一些天然植物化學(xué)成分具有優(yōu)良的MG清除能力,尤其是天然多酚類化合物,包括茶多酚(兒茶素、表沒食子兒茶素沒食子酸酯和茶黃素)[56]、蘋果多酚(phloretin和phloridzin)[57]、槲皮素、蘆丁、白藜蘆醇[58]、石榴原花青素[59-60]、姜黃素[61]、姜辣素、姜烯醇[62]和何首烏芪[63]等。它們與MG形成加合物,相應(yīng)的物質(zhì)結(jié)構(gòu)也都得到了鑒定。其中,茶多酚多具有高效的MG清除活性。例如,綠茶中的主要多酚表沒食子兒茶素沒食子酸酯能在反應(yīng)5 min時(shí)捕獲并清除超過90%的MG[64]。這是由于A環(huán)的C6和C8位的電子云密度高,極易與缺電子的MG發(fā)生親核反應(yīng)。清除MG的重大意義在于抑制相關(guān)AGEs的形成。體外研究一般采用牛血清白蛋白(bovine serum albumin,BSA)模擬人血漿白蛋白。例如,在模擬生理?xiàng)l件下,綠原酸、槲皮素和蘆丁都能以劑量依賴性方式抑制MG對(duì)BSA的糖化,其中蘆丁效率最高,反應(yīng)1 h時(shí)對(duì)MG的捕獲率可超過80%[65-66]。
采用細(xì)胞學(xué)模型對(duì)MG的細(xì)胞毒性及其可能的病理機(jī)理的研究較多,而關(guān)于天然產(chǎn)物對(duì)MG的毒性干預(yù)作用報(bào)道較少,作用機(jī)制也很少涉及對(duì)MG的清除作用。一些多酚具有直接保護(hù)細(xì)胞免受MG損傷的活性,機(jī)理涉及保護(hù)細(xì)胞線粒體功能損傷及改善能量代謝[67]。例如,從蠟果楊梅的根皮中分離出的楊梅黃素及二氫楊梅素,分別改善了SH-SY5Y和PC12神經(jīng)細(xì)胞中由MG引起的細(xì)胞損傷,機(jī)理分別涉及到了AGEs/RAGE/NF-κB通路和AMPK/GLUT4通路,說明這類天然物質(zhì)具有降低MG的細(xì)胞毒性并治療糖尿病、腦病的潛力[68]。再如,紅花的主要活性成分羥基紅花黃色素A具有抗糖化作用,在10~100 μmol/L濃度范圍內(nèi)能夠保護(hù)由MG引起的人腦微血管內(nèi)皮細(xì)胞的損傷,濃度為100 μmol/L時(shí)能夠抑制MG衍生AGEs的形成[69]。MG能夠干擾3T3-L1脂肪細(xì)胞對(duì)葡萄糖的利用,而原花青素預(yù)處理能夠起到保護(hù)細(xì)胞的作用,并能抑制CML和MG-AGEs等特定AGEs的形成[60]。有文獻(xiàn)報(bào)道,在小鼠尿液中能夠檢測(cè)到大豆異黃酮與MG的2 種加合物[70]。采用綠茶多酚單體(+)-兒茶素(epicatechin,EC)灌胃16 周,改善了糖尿病db/db小鼠的腎病損傷,并在腎臟中檢測(cè)到EC和MG的加合物,同時(shí),EC也阻斷了AGE引起的促炎細(xì)胞因子TNF-α和IL-1β的釋放[71]。在馬兜鈴酸誘導(dǎo)的小鼠腎病模型中,腎臟MG的積累較對(duì)照組高出12 倍。采用低分子殼聚糖(500 mg/(kg?d))喂食14 d,顯著地降低了腎臟中的MG及CEL的積累(P<0.05)[72];在D-半乳糖誘導(dǎo)的癡呆小鼠腦中,補(bǔ)充齊墩果酸(0.05%~0.20%)和原兒茶酸(0.5%~2.0%)都能夠劑量依賴性地預(yù)防和減輕小鼠腦中ROS和蛋白糖基化,抑制MG水平升高,降低CML水平,改善glyoxalase-I的活性和蛋白表達(dá),抑制NF-κB p65入核及阻止炎癥因子IL-1β、TNF-α和前列腺素E2的釋放,具有預(yù)防和延緩衰老的功能[73-74]。
在食品加工和貯藏過程中,MG及其衍生物AGEs的產(chǎn)生與積累影響了食品的色澤和風(fēng)味,更給人體健康帶來諸多危害。過多的MG在人體內(nèi)循環(huán),使組織內(nèi)MG含量升高,AGEs的體內(nèi)生成量增加,繼而加劇氧化應(yīng)激、炎癥發(fā)生及RAGE活性上調(diào),從而影響人體健康,促進(jìn)糖尿病及其并發(fā)癥、代謝綜合征、癌癥、心血管疾病以及AD等神經(jīng)退行性疾病的發(fā)生和發(fā)展。因此,有效地捕獲和清除體內(nèi)的MG對(duì)維持人體健康非常重要。對(duì)于體內(nèi)MG的清除,主要有2 個(gè)機(jī)制:其一是協(xié)助和增強(qiáng)體內(nèi)清除MG的乙醛酶系統(tǒng),促進(jìn)MG的快速代謝;其二是體內(nèi)MG的直接捕獲,即一些物質(zhì)包括食品和其他天然產(chǎn)物在機(jī)體內(nèi)與MG發(fā)生親核反應(yīng),生成的加合物能夠被代謝并排出體外,例如目前發(fā)現(xiàn)大多數(shù)酚類化合物都是有效的MG清除劑??傊绾斡行У厍宄梭w內(nèi)的MG是一個(gè)很重要的研究方向,而食品或其他天然產(chǎn)物通過直接捕獲MG或者加速乙醛酶系統(tǒng)對(duì)MG的代謝,都是行之有效的MG清除途徑。隨著對(duì)天然植物(包括傳統(tǒng)醫(yī)食兩用植物)在清除MG和抗羰基應(yīng)激方面的深入研究,尤其是對(duì)其中有效活性成分及加合產(chǎn)物的鑒定和機(jī)理研究,將為清除MG功能食品的理論研究和產(chǎn)品開發(fā)提供理論依據(jù),進(jìn)而促進(jìn)相應(yīng)功能食品在人類健康領(lǐng)域的廣泛應(yīng)用。
參考文獻(xiàn):
[1] THORNALLEY P J, LANGBORG A, MINHAS H S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose[J]. Biochemical Journal, 1999, 344: 109-116.DOI:10.1042/0264-6021:3440109.
[2] NEMET I, VARGA-DEFTERDAROVIC L, TURK Z. Methylglyoxal in food and living organisms[J]. Molecular Nutrition and Food Research, 2006, 50(12): 1105-1117. DOI:10.1002/mnfr.200600065.
[3] CAI Weijing, RAMDAS M, ZHU Li, et al. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1[J].Proceedings of the National Academy of Sciences, 2012, 109(39):15888-15893. DOI:10.1073/pnas.1205847109.
[4] THORNALLEY P J. Pharmacology of methylglyoxal: formation,modification of proteins and nucleic acids, and enzymatic detoxification-a role in pathogenesis and antiproliferative chemotherapy[J]. General Pharmacology, 1996, 27(4): 565-573.DOI:10.1016/0306-3623(95)02054-3.
[5] CHAKRABORTY S, KARMAKAR K, CHAKRAVORTTY D.Cells producing their own nemesis: understanding methylglyoxal metabolism[J]. IUBMB Life, 2014, 66(10): 667-678. DOI:10.1002/iub.1324.
[6] MURATAKAMIYA N, KAMIYA H. Methylglyoxal, an endogenous aldehyde, crosslinks DNA polymerase and the substrate DNA[J]. Nucleic Acids Research, 2001, 29(16): 3433-3438. DOI:10.1093/nar/29.16.3433.
[7] JIA Xuming, OLSON J H D, ROSS R S A, et al. Structural and functional changes in human insulin induced by methylglyoxal[J]. The FASEB Journal, 2006, 20(9): 1555-1557. DOI:10.1096/fj.05-5478fje.
[8] RABBANI N, THORNALLEY J P. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease[J]. Biochemical and Biophysical Research Communications, 2015, 458(2): 221-226.DOI:10.1097/00003246-199507000-00010.
[9] MATAFOME P, SENA C, SEICA R. Methylglyoxal, obesity, and diabetes[J]. Endocrine, 2013, 43(3): 472-484. DOI:10.1007/s12020-012-9795-8.
[10] VAN NGUYEN C. Toxicity of the AGEs generated from the Maillard reaction: on the relationship of food-AGEs and biological-AGEs [J].Molecular Nutrition and Food Research, 2006, 50(12): 1140-1149.DOI:10.1002/mnfr.200600144.
[11] LIN J A, WU C H, LU C C, et al. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: an emerging biological factor in cancer onset and progression[J]. Molecular Nutrition & Food Research, 2016, 60(8): 1850-1864. DOI:10.1002/mnfr.201500759.
[12] GENSBERGER S, MITTELMAIER S, GLOMB MA, et al.Identification and quantification of six major α-dicarbonyl process contaminants in high-fructose corn syrup[J]. Analytical and Bioanalytical Chemistry, 2012, 403(10): 2923-2931. DOI:10.1007/s00216-012-5817-x.
[13] LO Chiyu, LI Shiming, WANG Yu, et al. Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup[J]. Food Chemistry, 2008, 107(3):1099-1105. DOI:10.1016/j.foodchem.2007.09.028.
[14] LIU Huicui, LI Juxiu. Changes in glyoxal and methylglyoxal content in the fried dough twist during frying and storage[J]. European Food Research and Technology, 2014, 238(2): 323-331. DOI:10.1007/s00217-013-2110-y.
[15] ALVAREZ-SUAREZ J M, GIAMPIERI F, BATTINO M. Honey as a source of dietary antioxidants: structures, bioavailability and evidence of protective effects against human chronic diseases[J]. Current Medicinal Chemistry, 2013, 20(5): 621-638.DOI:10.2174/092986713804999358.
[16] ZHANG Dongmei, JIAO Ruiqing, KONG Lingdong. High dietary fructose: direct or indirect dangerous factors disturbing tissue and organ functions[J]. Nutrients, 2017, 9(4): 335-359. DOI:10.3390/nu9040335.
[17] WANG J, CHANG T J. Methylglyoxal content in drinking coffee as a cytotoxic factor[J]. Journal of Food Science, 2010, 75(6): 167-171.DOI:10.1111/j.1750-3841.2010.01658.x.
[18] KAZUTOSHI F, TAKAYUKI S. Formation of genotoxic dicarbonyl compounds in dietary oils upon oxidation[J]. Lipids, 2004, 39(5): 481-486. DOI:10.1007/s11745-004-1254-y.
[19] SANTOS C M, VALENTE I M, GONCALVES L M, et al.Chromatographic analysis of methylglyoxal and other alpha-dicarbonyls using gas-diffusion microextraction[J]. Analyst,2013, 138(23): 7233-7237. DOI:10.1039/c3an00766a.
[20] 房紅娟, 王麗娟, 張雙鳳, 等. 高蛋白食品加工模擬體系中晚期糖基化末端產(chǎn)物的形成[J]. 中國(guó)食品學(xué)報(bào), 2014, 14(2): 28-34.DOI:10.13982/j.mfst.1673-9078.2014.12.006.
[21] GOLDBERG T, CAI Weijing, PEPPA M, et al. Advanced glycoxidation end products in commonly consumed foods[J]. Journal of the American Dietetic Association, 2004, 104(8): 1287-1291.DOI:10.1016/j.jada.2004.05.214.
[22] RABBANI N, THORNALLEY P J. The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy[J]. Diabetes, 2014, 63(1): 50-52. DOI:10.2337/db13-1606.
[23] RABBANI N, THORNALLEY P J. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome[J]. Amino Acids, 2012, 42(4): 1133-1142.DOI:10.1007/s00726-010-0783-0.
[24] BEISSWENGER J P, HOWELL K S, RUSSELL G, et al. Detection of diabetic nephropathy from advanced glycation endproducts(AGEs) differs in plasma and urine, and is dependent on the method of preparation[J]. Amino Acids, 2014, 46(2): 311-319. DOI:10.1007/s00726-013-1533-x.
[25] HANSSEN N M, WOUTERS K, HUIJBERTS M S, et al. Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype[J]. European Heart Journal, 2014, 35(17): 1137-1146.DOI:10.1093/eurheartj/eht402.
[26] ANGELONI C, ZAMBONIN L, HRELIA S. Role of methylglyoxal in Alzheimer’s disease[J]. BioMed Research International, 2014, 2014:1-12. DOI:10.1155/2014/238485.
[27] SHARAFA1 H, MATOU-NASRIB1 S, WANGA Q, et al. Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231[J]. Biochimica et Biophysica Acta: Molecular Basis of Disease, 2015, 1852(3): 429-441.DOI:10.1016/j.bbadis.2014.12.009.
[28] SIREESH D, BHAKKIYALAKSHMI E, PONJAYANTHI B, et al. Pathophysiological insights of methylglyoxal induced type-2 diabetes[J]. Chemical Research in Toxicology, 2015, 28(9): 1666-1674. DOI:10.1021/acs.chemrestox.5b00171.
[29] LUIS M A O, ANA L, RICARDO A G, et al. Insulin glycation by methylglyoxal results in native-like aggregation and inhibition of fibril formation[J]. BMC Biochemistry, 2011, 12(1): 41-52.DOI:10.1186/1471-2091-12-41.
[30] JIA Xuming, WU Lingyun. Accumulation of endogenous methylglyoxal impaired insulin signaling in adipose tissue of fructose-fed rats[J]. Molecular and Cellular Biochemistry, 2007, 306(1/2): 133-139.DOI:10.1007/s11010-007-9563-x.
[31] DHAR A, DHAR I, JIANG Bo, et al. Chronic methylglyoxal infusion by minipump causes pancreatic β-cell dysfunction and induces type 2 diabetes in sprague-dawley rats[J]. Diabetes, 2011, 60(3): 899-908.DOI:10.2337/db10-0627.
[32] GUO Qi, MORI T, JIANG Yue, et al. Methylglyoxal contributes to the development of insulin resistance and salt sensitivity in Sprague-Dawley rats[J]. Journal of Hypertension, 2009, 27(8): 1664-1671. DOI:10.1097/HJH.0b013e32832c419a.
[33] URIBARRI J, CAI Weijing, WOODWARD M, et al. Elevated serum advanced glycation endproducts in obese indicate risk for the metabolic syndrome: a link between healthy and unhealthy obesity?[J].Journal of Clinical Endocrinology and Metabolism, 2015, 100(5):1957-1966. DOI:10.1210/jc.2014-3925.
[34] URIBARRI J, CAI Weijing, RAMDAS M, et al. Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: potential role of ager1 and sirt1[J]. Diabetes Care,2011, 34(7): 1610-1616. DOI:10.2337/dc11-0091.
[35] DE COURTEN B, DE COURTEN M P, SOLDATOS G, et al. Diet low in advanced glycation end products increases insulin sensitivity in healthy overweight individuals: a double-blind, randomized, crossover trial[J]. American Journal of Clinical Nutrition, 2016, 103(6): 1426-1433. DOI:10.3945/ajcn.115.125427.
[36] NEGRESALVAYRE A, SALVAYRE R, AUGé N, et al.Hyperglycemia and glycation in diabetic complications[J].Antioxidants & Redox Signaling, 2009, 11(12): 3071-3109.DOI:10.1089/ars.2009.2484.
[37] NAKAJOU K, HORIUCHI S, SAKAI M, et al. Renal clearance of glycolaldehyde- and methylglyoxal- modified proteins in mice is mediated by mesangial cells through a class A scavenger receptor(SR-A)[J]. Diabetologia, 2005, 48(2): 317-327. DOI:10.1007/s00125-004-1646-6.
[38] ZHAO Yanhua, BANERJEE S, LEJEUNE W S, et al. NF-κB-inducing kinase increases renal tubule epithelial inflammation associated with diabetes[J]. Journal of Diabetes Research, 2011, 2011:192564. DOI:10.1155/2011/192564.
[39] ROSCA M, MUSTATA T, KINTER M, et al. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation[J]. American Journal of Physiology Renal Physiology, 2005, 289(2): F420-F430. DOI:10.1152/ajprenal.00415.2004.
[40] TANG S C W, CHAN L Y Y, LEUNG J C K, et al. Differential effects of advanced glycation end-products on renal tubular cell inflammation[J]. Nephrology, 2011, 16(4): 417-425. DOI:10.1111/j.1440-1797.2010.01437.x.
[41] BEISSWENGER P J, HOWELL S K, RUSSELL G B, et al. Early progression of diabetic nephropathy correlates with methylglyoxalderived advanced glycation end products[J]. Diabetes Care, 2013,36(10): 3234-3239. DOI:10.2337/dc12-2689.
[42] LU Jianxin, RANDELL E, HAN Yingchun, et al. Increased plasma methylglyoxal level, inflammation, and vascular endothelial dysfunction in diabetic nephropathy[J]. Clinical Biochemistry, 2011,44(4): 307-311. DOI:10.1016/j.clinbiochem.2010.11.004.
[43] NAKAYAMA K, NAKAYAMA M, IWABUCHI M, et al. Plasma alpha-oxoaldehyde levels in diabetic and nondiabetic chronic kidney disease patients[J]. American Journal of Nephrology, 2008, 28(6):871-878. DOI:10.1159/000139653.
[44] BEISSWENGER P J, DRUMMOND K S, NELSON R G, et al.Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress[J]. Diabetes, 2005, 54(11): 3274-3281. DOI:10.2337/diabetes.54.11.3274.
[45] PANENI F, COSENTINO F. Advanced glycation end products and plaque instability: a link beyond diabetes[J]. European Heart Journal,2014, 35(17): 1095-1097. DOI:10.1093/eurheartj/eht454.
[46] DE ARRIBA S G, STUCHBURY G, YARIN J, et al. Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells-protection by carbonyl scavengers[J]. Neurobiology of Aging,2007, 28(7): 1044-1050. DOI:10.1016/j.neurobiolaging.2006.05.007.
[47] HUANG Shangming, CHUANG Hongchin, WU Chihao, et al.Cytoprotective effects of phenolic acids on methylglyoxal-induced apoptosis in Neuro-2A cells[J]. Molecular Nutrition and Food Research, 2008, 52(8): 940-949. DOI:10.1002/mnfr.200700360.
[48] LI Xiaohong, XIE Jiazhao, XIA Jiang, et al. Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation[J].Neuromolecular Medicine, 2012, 14(4): 338-348. DOI:10.1007/s12017-012-8191-0.
[49] CHEN Chong, LI Xiaohong, TU Yue, et al. Abeta-AGE aggravates cognitive deficit in rats via RAGE pathway[J]. Neuroscience, 2014,257: 1-10. DOI:10.1016/j.neuroscience.2013.10.056.
[50] LI Xiaohong, DU Lailing, CHENG Xiangshu, et al. Glycation exacerbates the neuronal toxicity of β-amyloid[J]. Cell Death &Disease, 2013, 4: e673. DOI:10.1038/cddis.2013.180.
[51] EGYüD L G, SZENT-GY?RGYI A. Cancerostatic action of methylglyoxal[J]. Science, 1968, 160: 1140. DOI:10.1126/science.160.3832.1140.
[52] 王蕾, 朱迪娜, 呂翠, 等. 甲基乙二醛與相關(guān)疾病的研究進(jìn)展[J]. 中國(guó)藥理學(xué)通報(bào), 2014, 30(4): 456-459. DOI:10.3969/j.issn.1001-1978.2014.04.004.
[53] SAKAMOTO H, MASHIMA T, YAMAMOTO K, et al. Modulation of heat-shock protein 27 (Hsp27) anti-apoptotic activity by methylglyoxal modification[J]. Journal of Biological Chemistry, 2002,277: 45770-45775. DOI:10.1074/jbc.M207485200.
[54] NOKIN M J, DURIEUX F, PEIXOTO P, et al. Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis[J]. eLife, 2016, 5: e19375. DOI:10.7554/eLife.19375.
[55] SAHRA I B, LAURENT K, LOUBAT A, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level[J]. Oncogene, 2008, 27(25): 3576-3586.DOI:10.1038/sj.onc.1211024.
[56] LO C Y, LI S J, TIAN D, et al. Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions[J].Molecular Nutrition and Food Research, 2006, 50(12): 1118-1128.DOI:10.1002/mnfr.200600094.
[57] SHAO Xi, BAI Naisheng, HE Kan, et al. Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species[J].Chemical Research in Toxicology, 2008, 21(10): 2042-2050.DOI:10.1021/tx800227v.
[58] SHEN Yixiao, XU Zhimin, SHENG Zhanxu. Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal[J]. Food Chemistry, 2017, 216: 153-160. DOI:10.1016/j.foodchem.2016.08.034.
[59] KUMAGAI Y, NAKATANI S, ONODERA H, et al. Anti-glycation effects of pomegranate (Punica granatum L.) fruit extract and its components in vivo and in vitro[J]. Journal of Agricultural and Food Chemistry, 2015, 63(35): 7760-7764. DOI:10.1021/acs.jafc.5b02766.
[60] LIU Weixi, MA Hang, FROST L, et al. Pomegranate phenolics inhibit formation of advanced glycation endproducts by scavenging reactive carbonyl species[J]. Food and Function, 2014, 5(11): 2996-3004.DOI:10.1039/c4fo00538d.
[61] HU Teyu, HU Miaolin, CHYAU Charngcherng, et al. Trapping of methylglyoxal by curcumin in cell-free systems and in human umbilical vein endothelial cells[J]. Journal of Agricultural and Food Chemistry, 2012, 60(33): 8190-8196. DOI:10.1021/jf302188a.
[62] WEI Yan, HAN Chanshuai, WANG Yujing, et al. Ribosylation triggering alzheimer’s disease-like tau hyperphosphorylation via activation of camkii[J]. Aging Cell, 2015, 14(5): 754-763.DOI:10.1111/acel.12355.
[63] Lü Lishuang, SHAO Xi, WANG Liyan, et al. Stilbene glucoside from polygonum multiflorum thunb: a novel natural inhibitor of advanced glycation end product formation by trapping of methylglyoxal[J].Journal of Agricultural and Food Chemistry, 2010, 58(4): 2239-2245.DOI:10.1021/jf904122q.
[64] SANG Shengmin, SHAO Xi, BAI Naisheng, et al. Tea polyphenol(?)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species[J]. Chemical Research in Toxicology, 2007, 20(12):1862-1870. DOI:10.1021/tx700190s.
[65] YOON S R, SHIM S M. Inhibitory effect of polyphenols in houttuynia cordata on advanced glycation end-products (AGEs) by trapping methylglyoxal[J]. LWT-Food Science and Technology, 2015, 61(1):158-163. DOI:10.1016/j.lwt.2014.11.014.
[66] 李曉明, 鄧榮華, 孔陽輝, 等. 蘆丁抑制牛血清白蛋白糖基化[J]. 食品科學(xué), 2014, 35(3): 85-89. DOI:10.7506/spkx1002-6630-201403018.
[67] WANG Yuehua, YU Haitao, PU Xiaoping, et al. Myricitrin alleviates methylglyoxal-induced mitochondrial dysfunction and AGEs/RAGE/NF-κB pathway activation in SH-SY5Y cells[J]. Journal of Molecular Neuroscience, 2014, 53(4): 562-570. DOI:10.1007/s12031-013-0222-2.
[68] JIANG Baoping, LE Le, PAN Huimin, et al. Dihydromyricetin ameliorates the oxidative stress response induced by methylglyoxal via the AMPK/GLUT4 signaling pathway in PC12 cells[J]. Brain Research Bulletin, 2014, 109: 117-126. DOI:10.1016/j.brainresbull.2014.10.010.[69] LI Wenlu, LIU Jie, HE Ping, et al. Hydroxysafflor yellow a protects methylglyoxal-induced injury in the cultured human brain microvascular endothelial cells[J]. Neuroscience Letters, 2013, 549:146-150. DOI:10.1016/j.neulet.2013.06.007.
[70] WANG Pei, CHEN Huadong, SANG Shengmin. Trapping of methylglyoxal by genistein and its metabolites in mice[J]. Chemical Research in Toxicology, 2016, 29(3): 406-414. DOI:10.1021/acs.chemrestox.5b00516.
[71] ZHU Dina, WANG Lei, ZHOU Qile, et al. (+)-Catechin ameliorates diabetic nephropathy by trapping methylglyoxal in type 2 diabetic mice[J]. Molecular Nutrition and Food Research, 2014, 58(12): 2249-2260. DOI:10.1002/mnfr.201400533.
[72] CHOU C K, CHEN S M, LI Y C, et al. Low-molecular-weight chitosan scavenges methylglyoxal and Nε-(carboxyethyl)lysine, the major factors contributing to the pathogenesis of nephropathy[J].SpringerPlus, 2015, 4: 312. DOI:10.1186/s40064-015-1106-4.
[73] TSAI S J, YIN M C. Anti-oxidative, anti-glycative and anti-apoptotic effects of oleanolic acid in brain of mice treated by D-galactose[J].European Journal of Pharmacology, 2012, 689(1/2/3): 81-88.DOI:10.1016/j.ejphar.2012.05.018.
[74] TSAI S J, YIN M C. Anti-glycative and anti-inflammatory effects of protocatechuic acid in brain of mice treated by D-galactose[J]. Food and Chemical Toxicology, 2012, 50(9): 3198-3205. DOI:10.1016/j.fct.2012.05.056.