梁立軍 楊祎辰 王二歡
摘要 花青素是植物體內(nèi)非常重要的一類次生代謝物,有很強(qiáng)的藥理活性。花青素在醫(yī)藥保健、藥用植物開發(fā)等方面具有重要的研究價(jià)值和應(yīng)用潛力。目前研究者基本探明了花青素生物合成途徑和分子調(diào)控機(jī)制,但還沒有完全掌握花青素合成的整個(gè)網(wǎng)絡(luò)體系,還需要繼續(xù)加強(qiáng)對花青素生物合成與調(diào)控的研究。因此,對植物花青素生物合成途徑、反應(yīng)酶、結(jié)構(gòu)基因、調(diào)控基因及轉(zhuǎn)錄因子進(jìn)行綜述,旨在為花青素類植物品種改良和開發(fā)提供理論支持。
關(guān)鍵詞 花青素;生物合成;調(diào)控
中圖分類號(hào) Q943 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 0517-6611(2018)21-0018-07
Abstract Plant anthocyanin was,a group of important second plant metabolites with potent pharmacological activity,Anthocyanin has important research value and application potential in health care and development of medicinal plants,etc.The basic anthocyanin biosynthesis pathways and molecular regulation mechanism were found out by researchers,but the system of whole anthocyanin synthesis network was not grasped fully at present .The study of anthocyanin biosynthesis and regulation should be strengthened continually.The biosynthesis and regulation of plant anthocyanin,including biosynthesis pathway,enzyme,structure genes,regulation genes,and transcript factors,was reviewed in order to provide theoretical support for the improvement and development of plant which was rich in anthocyanin.
Key words Anthocyanin;Biosynthesis;Regulation
植物的葉、花、果實(shí)、種子、莖干表皮等器官或組織呈現(xiàn)出來的色彩是由于植物體中存在不同的色素物質(zhì)決定的,這些色素物質(zhì)主要包括類黃酮、類胡蘿卜素、甜菜素和葉綠素等,其中花青素是類黃酮色素中最豐富的的一類,屬于水溶性色素,大量地存在于植物的液泡中,決定大部分植物的顏色。植物體內(nèi)的花青素常與各種單糖結(jié)合形成糖苷,也稱為花青素苷。植物中主要存在6種常見的花青素苷:天竺葵素(pelargonidin)、矢車菊素(cyanidin)、飛燕草素(delphinidin)、芍藥素(peonidin)、矮牽牛素(petunidin)和錦葵素(malvidin),其中芍藥素是由矢車菊素甲基化形成的,矮牽牛素和錦葵素是由飛燕草素再不同程度的甲基化形成的[1](圖1)。
1 花青素的生物合成途徑
植物花青素是黃酮類化合物的一個(gè)亞類,其生物合成途徑的研究較為成熟。花青素是在細(xì)胞質(zhì)中進(jìn)行,從苯丙氨酸開始,經(jīng)過一系列酶促反應(yīng)合成,再經(jīng)過不同的糖基、甲基、?;绒D(zhuǎn)移酶的修飾后被轉(zhuǎn)運(yùn)儲(chǔ)存在液泡中[2]?;ㄇ嗨厣锖铣赏緩娇梢苑譃?個(gè)階段(圖2):第一階段為苯丙氨酸(Phenylalanine)和乙酸(Acetic acid)經(jīng)過一系列轉(zhuǎn)化合成花青素的直接前體p-香豆酰輔酶A(p-coumaroyl-CoA)和丙二酰輔酶A(Malonyl-CoA);第二階段為類黃酮代謝,是從p-香豆酰輔酶A和丙二酰輔酶A開始,直到形成二氫黃酮醇;第三階段為花青素的生成,即二氫黃酮醇經(jīng)過二氫黃酮醇4-還原酶(dihydroflavonol-4-reductase,DFR)催化生成無色花色素,再經(jīng)過花色素合成與轉(zhuǎn)化等酶的催化形成有色的花色素[3]。
在第一階段中,苯丙氨酸經(jīng)過苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL)脫氨形成肉桂酸(transcinnamic acid),肉桂酸被肉桂酸4-羥化酶(cinnamic acid 4-hydroxylase,C4H)羥化生成p-香豆酸(p-coumaric acid,4-香豆酸),p-香豆酸在4-香豆酸輔酶A連接酶(4-coumaric acid:CoA ligase,4CL)催化下生成p-香豆酰輔酶A;乙酸在乙酰輔酶A連接酶(acetyl-CoA ligase,ACL)和乙酰輔酶A羧化酶(acetyl-CoA carboxylase,ACC)的作用下生成丙二酰輔酶A[2,4-5]。
在第二階段中,查耳酮合成酶(chalcone synthase,CHS)為類黃酮合成途徑中的第1個(gè)關(guān)鍵酶,以4-香豆酰輔酶A與丙二酰輔酶A為底物催化生成查耳酮(Chalcone)。查耳酮由查耳酮異構(gòu)酶(chalcone isomerase,CHI)催化形成柚皮素(Naringenin),柚皮素由黃烷酮3-羥化酶(flavanone 3-hydroxylase,F(xiàn)3H)催化生成各類花青素苷的必要前體物質(zhì)二氫山萘酚(Dihydrokaempferol,DHK)。類黃酮3-羥化酶(flavonoid 3-hydroxylase,F(xiàn)3H)和類黃酮3,5-羥化酶(F35H)在DHK的不同位點(diǎn)進(jìn)行羥基化,分別形成二氫槲皮素(Dihydroquercetin,DHQ)和二氫楊梅素(Dihydromyricetin,DHM)[2,4]。
在第三階段中,DHK、DHQ和DHM經(jīng)過二氫黃酮醇4-還原酶 (dihydroflavonol-4-reductase,DFR)還原形成無色的花色素苷元,即無色的天竺葵苷元、矢車菊苷元和飛燕草苷元。它們在花青素苷合成酶(anthocyanidin aynthase,ANS)的催化下分別生成天竺葵素苷元、矢車菊苷元和飛燕草素苷元,最后經(jīng)過尿苷二磷酸-葡萄糖:類黃酮-3-O-葡糖基轉(zhuǎn)移酶(UDP-glucose:flavonoid-3-O-glucosyltransferase(UF3GT或3GT))、類黃酮5-O-糖基轉(zhuǎn)移酶(flavonoid-5-O-glucosyltransferase,5GT)、鼠李唐基轉(zhuǎn)移酶(UPD rhamnose:anthocyanidin-3-glucoside-rhamnosyltransferase,3RT)、?;D(zhuǎn)移酶(acyltransferase,AT)和甲基轉(zhuǎn)移酶(methyltransferase,MT)等酶的轉(zhuǎn)化,生成更穩(wěn)定的花青素苷[2,4,6]。最后,花青素經(jīng)過谷胱甘肽S-轉(zhuǎn)移酶(Glutathione S-transferase,GST)轉(zhuǎn)運(yùn)到液泡儲(chǔ)存[6]。
2 花青素的生物合成關(guān)鍵結(jié)構(gòu)基因
根據(jù)花青素生物合成的途徑,第一階段是與其他次生代謝共有的反應(yīng),第二、三階段是花青素代謝的前期和后期2個(gè)部分,對于花青素生物合成至關(guān)重要。在花青素生物合成過程中,至少需要15種結(jié)構(gòu)基因的協(xié)同作用,所涉及的基因可以分為2類:一類是前期合成基因,如CHS、CHI、F3H、F3H和F35H的相關(guān)基因;另一類是后期合成基因,如DFR、ANS、UF3GT、MT和RT等相關(guān)基因[2]。
2.1 查耳酮合成酶(CHS)基因
CHS催化合成查耳酮,為花青素的生物合成提供基本骨架,該酶是一類多基因家族編碼的酶[7-8]。目前,已經(jīng)在葡萄[9]等植物中得到該類基因,該基因具有一定的保守性。降低CHS基因的表達(dá)水平,會(huì)導(dǎo)致植物花色變淡[10]。因此,調(diào)控植物體內(nèi)CHS基因的表達(dá)水平會(huì)對花青素的合成產(chǎn)生影響。
2.2 查耳酮異構(gòu)酶(CHI)基因
CHI催化查耳酮的異構(gòu)化反應(yīng),生成黃烷酮,將黃色的查耳酮轉(zhuǎn)變成無色的黃烷酮,它也是一種多基因家族編碼的酶。CHI基因已經(jīng)從多種植物中分離出來[11-14],CHI基因被分為TypeⅠ和Type Ⅱ 2類。其中,TypeⅠ的CHI只能催化6-羥基査耳酮生成5-羥基黃烷酮;Type Ⅱ的CHI除了催化6-羥基査耳酮生成5-羥基黃烷酮外,還可以催化6-脫氧査耳酮生成5-脫氧黃烷酮[15]。
2.3 黃烷酮3-羥化酶(F3H)基因
F3H催化黃烷酮C環(huán)上的羥基化反應(yīng)生成二氫黃酮醇,是花青素生物合成途徑中前期階段的關(guān)鍵酶。F3H屬于氧化戊二酸依賴型加氧酶家族,是一種非血紅素鐵酶,依賴于Fe2+、分子氧、抗壞血酸和2-酮戊二酸而起作用[16-21]。多數(shù)植物的F3H基因由2個(gè)外顯子組成,編碼350~380個(gè)氨基酸[22]。
2.4 類黃酮3-羥化酶(F3H)基因和類黃酮3,5-羥化酶(F35H)基因
F3H和F35H可以催化黃烷酮或黃烷醇B環(huán)上的羥基化反應(yīng),分別生成二氫槲皮黃酮和二氫楊梅黃酮,這2種酶都屬于細(xì)胞色素P450超家族,它們在序列上具有較高的同源性[23-25]。利用F3H催化的底物DHK生成天竺葵素,最終形成粉色花[26]。而F35H的催化產(chǎn)物是藍(lán)紫色的錦葵色素合成的關(guān)鍵前體,因此,F(xiàn)35H在藍(lán)紫色花朵或果等器官的形成中起重要作用[27]。
2.5 二氫黃酮醇還原酶(DFR)基因
DFR催化DHK、DHQ、DHM生成的無色花青素,屬于花青素生物合成途徑后期反應(yīng)的直接前體,DFR屬于還原性輔酶Ⅱ(NADPH)依賴性的還原酶家族[9,28-29]。DFR的催化作用在不同植物中對底物具有一定的特異性,如大花蕙蘭的DFR不能有效地還原DHK而生成天竺葵素[30],矮牽牛的DFR上存在一段26個(gè)氨基酸殘基,該序列決定了DFR對底物的特異性[31]。DFR基因特異性在花中表達(dá),與花的著色過程密切相關(guān)[32]。
2.6 花青素合成酶(ANS)基因
ANS是一種2-酮戊二酸依賴性酶,屬于戊二酸依賴型加氧酶家族[33],是植物花青素生物合成途徑中的一個(gè)關(guān)鍵酶。ANS基因的結(jié)構(gòu)相對比較保守,一般含有2個(gè)外顯子和1個(gè)內(nèi)含子[9,33-34]。ANS基因的表達(dá)直接影響植物花青素的積累,降低ANS的表達(dá)水平,會(huì)導(dǎo)致花青素合成水平明顯下降,產(chǎn)生白色花朵[35]。而過表達(dá)ANS可以增加花青素的積累[36]。
2.7 其他結(jié)構(gòu)基因
經(jīng)過ANS催化生成不穩(wěn)定的花青素,還需要迅速經(jīng)歷一些修飾反應(yīng),主要包括糖基化、甲基化和酰基化反應(yīng)。這些反應(yīng)主要包括葡萄糖基轉(zhuǎn)移酶(glucosyltransferase,GT)、鼠李糖基轉(zhuǎn)移酶(rhamnosyltransferase,RT)、 O-甲基轉(zhuǎn)移酶(0-methyltransferase,OMT)、?;D(zhuǎn)移酶(acyltransferase,AT)等結(jié)構(gòu)類基因,與其他花青素合成基因協(xié)同在植物發(fā)育期調(diào)控花青素的代謝。
UPD-葡萄糖:類黃酮-3-O-葡糖基轉(zhuǎn)移酶(3GT),是將UDP-葡萄糖上的葡萄糖基轉(zhuǎn)移到花青素分子的C3羥基上[37-41],形成花青色素3-葡糖苷,促進(jìn)植物花或果實(shí)著色。在花青色素3-葡糖苷形成后,還需要經(jīng)過鼠李唐基轉(zhuǎn)移酶(3RT)進(jìn)一步修飾而生成花青色素3-蕓香苷[42]?;ㄇ嗨丶谆D(zhuǎn)移酶(MT)參與修飾花青素的結(jié)構(gòu),比如促使花青素C環(huán)第3位置上或第3、5位置的甲基化,可以增加植物色彩的多樣性[43]。花青素?;D(zhuǎn)移酶(AT)能夠把特異的有機(jī)酸轉(zhuǎn)移到花青素骨架上,從而提高花青素的水溶性和穩(wěn)定性[44-45]。
3 花青素生物合成的相關(guān)轉(zhuǎn)錄調(diào)控
在花青素生物合成過程中,調(diào)控基因編碼的轉(zhuǎn)錄因子通過特異蛋白(包括DNA蛋白、相互作用的蛋白-蛋白等)激活或者抑制結(jié)構(gòu)基因的時(shí)空表達(dá)而影響花青素生物合成的強(qiáng)度和模式。目前研究表明,參與花青素調(diào)節(jié)的轉(zhuǎn)錄因子類型包括MYB、MYC、bHLH、bZIP、WD40、WRKY、MADS-box等[46]。大多數(shù)植物是通過MYB、bHLH、WD40調(diào)控花青素的生物合成,不同轉(zhuǎn)錄因子調(diào)控花青素合成的基因也不盡相同(表1)。
3.1 花青素生物合成的相關(guān)轉(zhuǎn)錄因子
3.1.1 MYB轉(zhuǎn)錄因子。
MYB(myeloblastosis)轉(zhuǎn)錄因子是植物中重要的一類轉(zhuǎn)錄因子,屬于DNA結(jié)合蛋白,具有高度保守的DNA結(jié)合域——MYB結(jié)合域,每個(gè)MYB結(jié)合域一般含有3個(gè)高度保守的色氨酸殘基,這些保守的色氨酸殘基和間隔序列維持了MYB蛋白結(jié)構(gòu)域“螺旋-轉(zhuǎn)角-螺旋”的構(gòu)型。參與調(diào)控花青素生物合成相關(guān)的MYB轉(zhuǎn)錄因子包括R2R3-MYB和R3-MYB2類[47]。
花青素生物合成中的MYB蛋白相關(guān)基因最早在玉米中發(fā)現(xiàn),并克隆出第1個(gè)調(diào)節(jié)花青素合成的編碼MYB蛋白的C1基因,該基因調(diào)控著糊粉層花青素的生物合成;另外一個(gè)編碼MYB蛋白的基因Pl在玉米其他組織中調(diào)節(jié)花青素合成。C1與Pl高度同源,因此Pl被看作是C1的拷貝基因[72]。在矮牽牛中發(fā)現(xiàn)了編碼MYB蛋白的基因包括:AN2、PH4和AN4。AN2只在花瓣邊翼表達(dá)[54],PH4在花瓣表皮中表達(dá),AN4編碼花粉囊中的MYB蛋白[73]。
擬南芥中與花青素合成相關(guān)的編碼R2R3-MYB蛋白基因包括PAP1和PAP2,編碼R3-MYB蛋白基因?yàn)镸YBL2。PAP1和PAP2與玉米的C1序列的相似性, PAP1和PAP2可能與C1為相同家族成員[74]。MYBL2被認(rèn)為是花青素合成途徑上的一個(gè)抑制子,其抑制機(jī)制可能是由于它和這一途徑上的bHLH轉(zhuǎn)錄因子競爭而與TTG1、PAP1/PAP2形成絡(luò)合物,這個(gè)絡(luò)合物與DFR啟動(dòng)子結(jié)合而抑制DFR基因的轉(zhuǎn)錄,所以造成花青素合成受阻[75]。蘋果中轉(zhuǎn)錄因子屬于R2R3-MYB型,編碼轉(zhuǎn)錄蛋白的基因有MdmMYB1和MdmMYBA。MdmMYB1在擬南芥和葡萄培養(yǎng)細(xì)胞中異源表達(dá)可以誘導(dǎo)花青素的超表達(dá)[76],MdmMYBA從蘋果果皮中分離得到,其表達(dá)具有組織和品種特異性,MdmMYBA蛋白特異結(jié)合于花青素合酶的啟動(dòng)子[69]。
3.1.2 bHLH轉(zhuǎn)錄因子。bHLH(basic helix-loop-helix,堿性螺旋-環(huán)-螺旋)轉(zhuǎn)錄因子是植物中第二大轉(zhuǎn)錄因子超家族,僅次于MYB轉(zhuǎn)錄因子。在bHLH轉(zhuǎn)錄因子的蛋白結(jié)構(gòu)中,含有保守的bHLH基序,每個(gè)bHLH基序約由60個(gè)氨基酸殘基組成,含有2個(gè)亞功能區(qū),即位于N末端的堿性氨基酸DNA結(jié)合區(qū)和C末端的HLH區(qū)。植物bHLH轉(zhuǎn)錄因子參與調(diào)控多種生理途徑,其中調(diào)控花青素合成是其重要功能之一。
玉米基因組中編碼bHLH的基因主要包括R1、B1、LC和IN1等,R1蛋白可能通過形成二聚體(bHLH結(jié)構(gòu)域和ACT結(jié)構(gòu)域)發(fā)揮調(diào)控花青素合成的功能。B1基因調(diào)節(jié)多個(gè)組織中花青素的合成,但很少影響糊粉層和幼苗的顏色;LC基因調(diào)節(jié)葉中脈、葉舌、葉緣和果皮等組織的著色[49]。IN1基因能夠編碼與R1高度同源的bHLH轉(zhuǎn)錄因子, IN1基因轉(zhuǎn)錄產(chǎn)物可與R1/B1結(jié)合,阻止二聚體形成以及R1/B1與DNA結(jié)合,還能與C1/PL1的R2R3-MYB結(jié)構(gòu)域結(jié)合,阻止它們發(fā)揮功能,從而抑制花青素合成[77]。擬南芥中參與調(diào)控花青素合成的bHLH蛋白都聚集于bHLH家族第三亞組(subgroup III),有TT8、GL3、EGL3和MYC1 [78-79]。主要通過參與形成MBW(MYB-bHLH-WD40)復(fù)合物調(diào)節(jié)花青素合成[57]。矮牽牛中調(diào)節(jié)花青素合成的bHLH蛋白有2個(gè):AN1和JAF13。AN1基因與結(jié)構(gòu)基因DFR同源,可直接調(diào)節(jié)DFR的表達(dá)?;ㄋ幹蠥N1的表達(dá)依賴于AN4 (R2R3-MYB),在AN4功能缺失的葉片和花藥中AN2 (R2R3-MYB)能夠重新激活A(yù)N1的表達(dá),表明AN2和AN4均是AN1表達(dá)的激活因子[53,80]。JAF13基因與AN2一起在葉片中瞬時(shí)表達(dá)能夠激活DFR啟動(dòng)子,卻不影響CHS和F3H等早期基因的表達(dá)[81]。龍膽是一種觀花植物,花色碧藍(lán)鮮艷,它的bHLH轉(zhuǎn)錄因子GtBHLH1與矮牽牛AN1蛋白高度同源,GtBHLH1基因表達(dá)模式與花青素合成結(jié)構(gòu)基因表達(dá)模式一致[71]。金魚草的編碼bHLH基因DELILA[63-64],具有較強(qiáng)的組織特異性,主要在花冠、萼片、子葉和莖中起作用[16]。
3.1.3 WD40轉(zhuǎn)錄因子。
WD40蛋白是一類大的蛋白家族,這類蛋白結(jié)構(gòu)高度保守,一般含有4~16個(gè)串聯(lián)重復(fù)的WD基元。WD基元存在于真核生物的1%~2%蛋白質(zhì)中[82],是一個(gè)高度保守的核心區(qū)域,每個(gè)WD基元含有大約由40個(gè)氨基酸殘基組成的保守序列,該序列以N末端11~24個(gè)殘基處GH二肽(Gly-His,GH)開始, C末端以WD 結(jié)尾(Trp-Asp,WD)[83]。
在矮牽牛中,WD40轉(zhuǎn)錄因子AN11會(huì)對結(jié)構(gòu)基因DFR的表達(dá)量產(chǎn)生影響,從而調(diào)控花的色素積累[84]。在模式植物擬南芥中,TTG1蛋白是WD40轉(zhuǎn)錄因子,與矮牽牛AN11具有高度的同源性[85],TTG1影響DFR的功能,誘導(dǎo)DFR的表達(dá)[86]。在玉米中,pac1編碼WD40蛋白,在pac1缺失突變體中,pac1的缺失導(dǎo)致a1、bz1 和c2 等花色素苷結(jié)構(gòu)基因的表達(dá)下調(diào),在種子的糊粉層沒有花青素的積累[48,87-88]。在紫蘇葉子中也發(fā)現(xiàn)花青素合成相關(guān)的WD40型PFWD蛋白,它含4個(gè)WD重復(fù)序列,氨基酸序列與AN11和TTG1較為相似,也相當(dāng)保守,推測PFWD可能通過與MYC家族蛋白共同作用,可從細(xì)胞質(zhì)中轉(zhuǎn)移到細(xì)胞核上,在花青素合成等信號(hào)轉(zhuǎn)導(dǎo)途徑中起著信號(hào)傳遞的作用[66]。
3.2 轉(zhuǎn)錄因子與結(jié)構(gòu)基因的作用形式
3.2.1 轉(zhuǎn)錄因子單獨(dú)或協(xié)同調(diào)控結(jié)構(gòu)基因。
轉(zhuǎn)錄因子單獨(dú)調(diào)節(jié)花青素的生物合成,例如番茄中的轉(zhuǎn)錄因子ANT1調(diào)節(jié)果實(shí)中花青素的積累,金龜草AmMYB305的調(diào)控不依賴于bHLH類轉(zhuǎn)錄因子就可激活合成途徑結(jié)構(gòu)基因的表達(dá)[67,89]。轉(zhuǎn)錄因子可以通過協(xié)作方式調(diào)控花青素的生物合成,例如擬南芥鋅指蛋白TT1與同源域蛋白ANL2共同調(diào)控花青素的積累[90]。擬南芥TT2基因編碼的MYB蛋白依賴bHLH型轉(zhuǎn)錄因子TT8的作用,共同控制DFR基因的表達(dá)[55]。
3.2.2 轉(zhuǎn)錄因子在不同位點(diǎn)上調(diào)控結(jié)構(gòu)基因。
在不同種類的植物中,轉(zhuǎn)錄因子調(diào)節(jié)花青素生物合成的作用位點(diǎn)不同。如轉(zhuǎn)錄因子在金魚草中調(diào)控F3H與下游DFR、ANS、3GT等基因的表達(dá),卻在矮牽牛中是調(diào)控下游DFR、ANS、3GT、GST等基因的表達(dá),而在玉米中又是調(diào)控CHS與下游DFR、3GT等基因的表達(dá)[2]。在過表達(dá)PAP1或PAP2基因的擬南芥植株中,PAL、CHS和DFR的表達(dá)水平均有所提高,但DFR基因的表達(dá)提高程度強(qiáng)于PAL和CHS基因的提高程度。轉(zhuǎn)錄因子EGL3和GL3主要調(diào)控花青素合成途徑晚期基因DFR、LDOX和UF3GT的表達(dá)[91]。TTG1調(diào)控DFR、LDOX基因的表達(dá),但不影響CHS、CHI和F3H基因的表達(dá)[34,91]。一些不依賴于WD40蛋白的MYB類轉(zhuǎn)錄因子則調(diào)控花青素合成途徑早期基因PAL、CHS、CHI、F3H和F3H的表達(dá)[58]。
4 展望
盡管前人已經(jīng)通過研究明確了花青素生物合成途徑,但是花青素的合成代謝過程非常復(fù)雜,還沒有完全掌握。近年來,通過突變體和轉(zhuǎn)基因等技術(shù),對花青素代謝及分子調(diào)控進(jìn)行更加深入的探索,陸續(xù)分離、鑒定和克隆了花青素相關(guān)結(jié)構(gòu)基因和調(diào)控基因,然而還并沒有完全掌握花青素合成的整個(gè)網(wǎng)絡(luò)體系。因此,還需要借助現(xiàn)代轉(zhuǎn)基因技術(shù)、測序技術(shù)、RNA干擾技術(shù)、生物信息分析技術(shù)和組學(xué)(基因組學(xué)、轉(zhuǎn)錄組學(xué)、蛋白組學(xué)等)技術(shù)等,進(jìn)一步對花青素生物合成與調(diào)控機(jī)制進(jìn)行研究,著力解決植物花青素合成中調(diào)控機(jī)制和體系、花青素代謝與其他代謝的關(guān)系與影響機(jī)制、生物環(huán)境和非生物環(huán)境對花青素合成的影響、花青素的修飾與轉(zhuǎn)運(yùn)等問題,為花青素類植物品種改良和開發(fā)提供理論支持。
參考文獻(xiàn)
[1]GROTEWOLD E.The genetics and biochemistry of floral pigments[J].Annual review of plant biology,2006,57:761-780.
[2] HOLTON T A,CORNISH E C.Genetics and biochemistry of anthocyanin biosynthesis[J].Plant cell,1995,7(7):1071-1083.
[3] 周惠,文錦芬,鄧明華,等.植物花青素生物合成相關(guān)基因研究進(jìn)展[J].辣椒雜志,2011(4):1-7.
[4] TANAKA Y,SASAKI N,OHMIYA A.Biosynthesis of plant pigments:Anthocyanins,betalains and carotenoids[J].Plant J,2008,54(4):733-749.
[5] SAITO K,YONEKURASAKAKIBARA K,NAKABAYASHI R,et al.The flavonoid biosynthetic pathway in Arabidopsis:Structural and genetic diversity[J].Plant physiology and biochemistry,2013,72:21-34.
[6] AL SANE K O,HESHAM A E L.Biochemical and genetic evidences of anthocyanin biosynthesis and accumulation in a selected tomato mutant[J].Rendiconti lincei,2015,26(3):293-306.
[7] DURBIN M L,MCCAIG B,CLEGG M T.Molecular evolution of the chalcone synthase multigene family in the morning glory genome[J].Plant Mol Biol,2000,42(1):79-92.
[8] KOES R E,SPELT C E,VAN DEN ELZEN P J M,et al.Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida[J].Gene,1989,81(2):245-257.
[9] SPARVOLI F,MARTIN C,SCIENZA A,et al.Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.)[J].Plant Mol Biol,1994,24(5):743-755.
[10] VAN DER KROL A R,MUR L A,DE LANGE P,et al.Inhibition of flower pigmentation by antisense CHS genes:Promoter and minimal sequence requirements for the antisense effect[J].Plant Mol Biol,1990,14(4):457-466.
[11] MEHDY M C,LAMB C J.Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor,wounding and infection[J].The EMBO Journal,1987,6(6):1527-1533.
[12] VAN TUNEN A J,KOES R E,SPELT C E,et al.Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida:Coordinate,light-regulated and differential expression of flavonoid genes[J].The EMBO Journal,1988,7(5):1257-1263.
[13] ICHINOSE Y,KAWAMATA S,YAMADA T,et al.MOLE molecularcloning of chalcone synthase cDNAs from Pisum sativum[J].Plant Mol Biol,1992,18(5):1009-1012.
[14] MCKHANN H I,HIRSCH A M.Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.):Highest transcript levels occur in young roots and root tips[J].Plant Mol Biol,1994,24(5):767-777.
[15] SHIMADA N,AOKI T,SATO S,et al.A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legumespecific 5deoxy(iso)flavonoids in Lotus japonicus[J].Plant Physiol,2003,131(3):941-951.
[16] MARTIN C,PRESCOTT A,MACKAY S,et al.Control of anthocyanin biosynthesis in flowers of Antirrhinum majus[J].The plant journal,1991,1(1):37-49.
[17] BRITSCH L,RUHNAUBRICH B,F(xiàn)ORKMANN G.Molecular cloning,sequence analysis,and in vitro expression of flavanone 3 betahydroxylase from Petunia hybrida[J].Journal of biological chemistry,1992,267(8):5380-5387.
[18] PELLETIER M K,SHIRLEY B W.Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings:Coordinate regulation with chalcone synthase and chalcone isomerase[J].Plant Physiol,1996,111(1):339-345.
[19] GONG Z,YAMAZAKI1 M,SUGIYAMA M,et al.Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a formaspecific manner in Perilla fnitescens[J].Plant Mol Biol,1997,35:915-927.
[20] CHARRIER B,CORONADO C,KONDOROSI A,et al.Molecular characterization and expression of alfalfa (Medicago sativa L.) flavanone3hydroxylase and dihydroflavonol4reductase encoding genes[J].Plant Mol Biol,1995,29(4):773-786.
[21] JIANG F,WANG J Y,JIA H F,et al.RNAimediated silencing of the flavanone 3hydroxylase gene and its effect on flavonoid biosynthesis in strawberry fruit[J].Journal of plant growth regulation,2013,32(1):182-190.
[22] ZUKER A,TZFIRA T,BENMEIR H,et al.Modification of flower color and fragrance by antisense suppression of the flavanone 3hydroxylase gene[J].Molecular breeding,2002,9(1):33-41.
[23] BRUGLIERA F,BARRIREWELL G,HOLTON T A,et al.Isolation and characterization of a flavonoid 3hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida[J].Plant journal,1999,19(4):441-451.
[24] SCHOENBOHM C,MARTENS S,EDER C,et al.Identification of the Arabidopsis thaliana flavonoid 3 -hydroxylase gene and functional expression of the encoded P450 enzyme[J].Biological chemistry,2000,381(8):749-753.
[25] KITADA C,GONG Z,TANAKA Y,et al.Differential expression of two cytochrome P450s involved in the biosynthesis of flavones and anthocyanins in chemo-varietal forms of Perilla frutescens[J].Plant Cell Physiol,2001,42(12):1338-1344.
[26] 李義龍,肇濤瀾,陳立超,等.花色素苷生物合成及花色的調(diào)控[J].生命科學(xué),2008,20(1):147-152.
[27] DE VETTEN N,TER HORST J,VAN SCHAIK H P,et al.A cytochrome b5 is required for full activity of flavonoid 3,5hydroxylase,a cytochrome P450 involved in the formation of blue flower colors[J].Plant biology,1999,96(2):778-783.
[28] OREILLY C,SHEPHERD N S,PEREIRA A,et al.Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1[J].The EMBO Journal,1985,4(4):877-882.
[29] BELD M,MARTIN C,HUITS H,et al.Flavonoid synthesis in Petunia hybrida:Partial characterization of dihydroflavonol4reductase genes[J].Plant Mol Biol,1989,13(5):491-502.
[30] JOHNSON E T,YI H K,SHIN B C,et al.Cymbidium hybrida dihydroflavonol 4reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidintype anthocyanins[J].Plant journal,1999,19(1):81-85.
[31] JOHNSON E T,RYU S,YI H K,et al.Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4reductase[J].Plant journal,2001,25(3):325-333.
[32] NAKATSUKA A,IZUMI Y,YAMAGISHI M.Spatial and temporal expression of chalcone synthase and dihydroflavonol 4-reductase genes in the Asiatic hybrid lily[J].Plant Science,2003,165(4):759-767.
[33] SAITO K,KOBAYASHI M,GONG Z,et al.Direct evidence for anthocyanidin synthase as a 2oxoglutarate dependent oxygenase:Molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens[J].The plant journal,1999,17(2):181-189.
[34] PELLETIER M K,MURRELL J R,SHIRLEY B W.Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis.Further evidence for differential regulation of “early” and “l(fā)ate” genes[J].Plant Physiol,1997,113(4):1437-1445.
[35] NAKAMURA N,F(xiàn)UKUCHIMIZUTANI M,MIYAZAKI K,et al.RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression[J].Plant biotechnology,2006,23:13-17.
[36] REDDY A M,REDDY V S,SCHEFFLER B E,et al.Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential[J].Metabolic engineering,2007,9(1):95-111.
[37] DOONER H K,WECK E,ADAMS S,et al.A molecular genetic analysis of insertions in the bronze locus in maize[J].Mol Gen Genet,1985,200:240-246.
[38] MARTIN C,PRESCOTT A,MACKAY S,et al.Control of anthocyanin biosynthesis in flowers of Antirrhinum[J].The Plan journal,1991,1(1):37-49.
[39] FORD C M,BOSS P K,HOJ P B.Cloning and characterization of Vitis vinifera UDPglucose:Flavonoid 3Oglucosyltransferase,a homologue of the enzyme encoded by the maize Bronze1 locus that may primarily serve to glucosylate anthocyanidins in vivo[J].Journal of biological chemistry,1998,273(15):9224-9233.
[40] HU C Y,GONG Y F,JIN S,et al.Molecular analysis of a UDPglucose:Flavonoid 3Oglucosyltransferase (UFGT) gene from purple potato (Solanum tuberosum)[J].Molecular biology reports,2011,38(1):561-567.
[41] WEN X C,HAN J,LENG X P,et al.Cloning and expression of UDPglucose:Flavonoid 3Oglucosyltransferase gene in peach flowers[J].Genetics and molecular research,2014,13(4):10067-10075.
[42] BRUGLIERA F,HOLTON T A,STEVENSON T W,et al.Isolation and characterization of a cDNA clone corresponding to the Rt locus of Petunia hybrida[J].Plant journal,1994,5(1):81-92.
[43] JONSSON L M V,DE VLAMING P,WIERING H,et al.Genetic control of anthocyaninOmethyltransferase activity in flowers of Petunia hybrida[J].Theor Appl Genet,1983,66(3/4):349-355.
[44] FUJIWARA H,TANAKA Y,YONEKURASAKAKIBARA K,et al.cDNA cloning,gene expression and subcellular localization of anthocyanin 5aromatic acyltransferase from Gentiana triflora[J].Plant journal,1998,16(4):421-431.
[45] NAKATSUKA T,NISHIHARA M,MISHIBA K,et al.Temporal expression of flavonoid biosynthesisrelated genes regulates flower pigmentation in gentian plants[J].Plant science,2005,168(5):1309-1318.
[46] 寧張,胡宗利,陳緒清,等.植物花青素代謝途徑分析及調(diào)控模型建立[J].中國生物工程雜志,2008,28(1):97-105.
[47] LINWANG K,BOLITHO K,GRAFTON K,et al.An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae[J].Plant biology,2010,10:50.
[48] CAREY C C,STRAHLE J T,SELINGER D A,et al.Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana[J].Plant cell,2004,16(2):450-464.
[49] LUDWIG S R,HABERA L F,DELLAPORTA S L,et al.Lc,a member of the maize R gene family responsible for tissuespecific anthocyanin production,encodes a protein similar to transcriptional activators[J].Proc Natl Acad Sci USA,1989,86(18):7092-7096.
[50] HERNANDEZ J M,HEINE G F,IRANI N G,et al.Different mechanisms participate in the Rdependent activity of the R2R3 MYB transcription factor C1[J].Journal of biological chemistry,2004,279(46):48205-48213.
[51] SINGER T,GIERL A,PETERSON P A.Three new dominant C1 suppressor alleles in Zea mays[J].Genetical research,1998,71(2):127-132.
[52] FRANKEN P,SCHRELL S,PETERSON P A,et al.Molecular analysis of protein domain function encoded by the mybhomologous maize genes C1,Zm 1 and Zm 38[J].Plant journal,1994,6(1):21-30.
[53] SPELT C,QUATTROCCHIO F,MOL J N M,et al.anthocyanin1 of petunia encodes a basic helixloophelix protein that directly activates transcription of structural anthocyanin genes[J].The plant cell,2000,12:1619-1631.
[54] QUATTROCCHIO F,WING J,VAN DER WOUDE K,et al.Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color[J].Plant cell,1999,11(8):1433-1444.
[55] NESI N,DEBEAUJON I,JOND C,et al.The TT8 gene encodes a basic helixloophelix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques[J].Plant cell,2000,12(10):1863-1878.
[56] BAUDRY A,HEIM M A,DUBREUCQ B,et al.TT2,TT8,and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana[J].Plant journal,2004,39(3):366-380.
[57] ZIMMERMANN I M,HEIM M A,WEISSHAAR B,et al.Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/Blike BHLH proteins[J].Plant journal,2004,40(1):22-34.
[58] STRACKE R,ISHIHARA H,BARSCH G H A,et al.Differential regulation of closely related R2R3MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J].Plant journal,2007,50(4):660-677.
[59] JIN H L,COMINELLI E,BAILEY P,et al.Transcriptional repression by AtMYB4 controls production of UVprotecting sunscreens in Arabidopsis[J].EMBO Journal,2000,19(22):6150-6161.
[60] BOGS J,JAFFE F W,TAKOS A M,et al.The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development[J].Plant Physiol,2007,143(3):1347-1361.
[61] WALKER A R,LEE E,BOGS J,et al.White grapes arose through the mutation of two similar and adjacent regulatory genes[J].Plant J,2007,49(5):772-785.
[62] HICHRI I,HEPPEL S C,PILLET J,et al.The basic helixloophelix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine[J].Mol Plant,2010,3(3):509-523.
[63] DAVIES K M,SCHWINN K E.Transcriptional regulation of secondary metabolism[J].Functional plant biology,2003,30(9):913-925.
[64] MARTIN C,PRESCOTT A,MACKAY S,et al.Control of anthocyanin biosynthesis in flowers of Antirrhinum majus[J].The planl journal,1991,1(1):37-49.
[65] SCHWINN K,VENAIL J,SHANG Y,et al.A small family of MYBregulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum[J].Plant cell,2006,18(4):831-851.
[66] YAMAZAKI M,MAKITA Y,SPRINGOB K,et al.Regulatory mechanisms for anthocyanin biosynthesis in chemotypes of Perilla frutescens var.crispa[J].Biochemical engineering journal,2003,14(3):191-197.
[67] MATHEWS H,CLENDENNEN S K,CALDWELL C G,et al.Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis,modification,and transport[J].Plant Cell,2003,15(8):1689-1703.
[68] ESPLEY R V,HELLENS R P,PUTTERILL J,et al.Red colouration in apple fruit is due to the activity of the MYB transcription factor,MdMYB10[J].Plant journal,2007,49(3):414-427.
[69] BAN Y,HONDA C,HATSUYAMA Y,et al.Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin[J].Plant and cell physiology,2007,48(7):958-970.
[70] PARK K I,MORITA Y,ISHIKAWA N,et al.A bHLH regulatory gene controls pigmentation of both flower and seed,and seed trichome formation in the common morning glory[J].Plant and cell physiology,2007,48:66.
[71] NAKATSUKA T,HARUTA K S,PITAKSUTHEEPONG C,et al.Identification and characterization of R2R3MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers[J].Plant Cell Physiol,2008,49(12):1818-1829.
[72] CONE K C,BURR F A,BURR B.Molecular analysis of the maize anthocyanin regulatory locus Cl[J].Proc Natl Acad Sci USA,1986,83(24):9631-9635.
[73] WALKER A R,DAVISON P A,BOLOGNESIWINFIELD A C,et al.The TRANSPARENT TESTA GLABRA1 locus,which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis,encodes a WD40 repeat protein[J].The plant cell,1999,11:1337-1349.
[74] BOREVITZ J O,XIA Y,BLOUNT J,et al.Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J].The plant cell,2000,12:2383-2393.
[75] MATSUI K,UMEMURA Y,OHMETAKAGI M.AtMYBL2,a protein with a single MYB domain,acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis[J].Plant journal,2008,55(6):954-967.
[76] TAKOS A M,JAFFE F W,JACOB S R,et al.Lightinduced expression of a MYB gene regulates anthocyanin biosynthesis in red apples[J].Plant Physiol,2006,142(3):1216-1232.
[77] BURR F A,BURR B,BLEWITT B E S M,et al.The maize repressorlike gene intensifier1 shares homology with the r1/b1 multigene family of transcription factors and exhibits missplicing[J].The plant cell,1996,8(8):1249-1259.
[78] BAILEY P C,MARTIN C,TOLEDOORTIZ G,et al.Update on the basic helixloophelix transcription factor gene family in Arabidopsis thaliana[J].The plant cell,2003,15(11):2497-2501.
[79] HEIM M A,JAKOBY M,WERBER M,et al.The basic helixloophelix transcription factor family in plants:A genomewide study of protein structure and functional diversity[J].Mol Biol Evol,2003,20(5):735-747.
[80] GERATS A G M,HUITS H,VRIJLANDT E,et al.Molecular characterization of a nonautonomous transposable element (dTph1) of petunia[J].The plant cell,1990,2:1121-1128.
[81] ALBERT N W,LEWIS D H,ZHANG H,et al.Members of an R2R3MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning[J].Plant J,2011,65(5):771-784.
[82] MADRONA A Y,WILSON D K.The structure of Ski8p,a protein regulating mRNA degradation:Implications for WD protein structure[J].Protein Sci,2004,13(6):1557-1565.
[83] NEER E J,SCHMIDT C J,NAMBUDRIPAD R,et al.The ancient regulatoryprotein family of WDrepeat proteins[J].Nature,1994,371(6495):297-300.
[84] DE VETTEN N,QUATTROCCHIO F,MOL J et al.The an11 locus controlling flower pigmentation in petunia encodes a novel WDrepeat protein conserved in yeast,plants,and animals[J].Genes & development,1997,11:1422-1434.
[85] SPRINGOB K,NAKAJIMA J I,YAMAZAKI M,et al.Recent advances in the biosynthesis and accumulation of anthocyanins[J].Natural product reports,2003,20(3):288-303.
[86] HELLER W,F(xiàn)ORKMANN G,BRITSCH L,et al.Enzymatic reduction of (+)dihydroflavonols to flavan3,4cisdiols with flower extracts from Matthiola incana and its role in anthocyanin biosynthesis[J].Planta,1985,165:284-287.
[87] LUDWIG S R,HABERA L F,DELLAPORTA S L,et al.Lc,a member of the maize R gene family responsible for tissuespecific anthocyanin production,encodes a protein similar to transcriptional activators[J].Proc Natl Acad Sci USA,1989,86(18):7092-7096.
[88] SELINGER D A,CHANDLER V L.A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway[J].The plant cell,1999,11:5-14.
[89] MOYANO E,MARTNEZGARCIA J F,MARTIN C.Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in antirrhinum flowers[J].The plant cell,1996,8:1519-1532.
[90] KUBO H,PEETERS A J M,AARTS M G M,et al.ANTHOCYANINLESS2,a homeobox gene affecting anthocyanin distribution and root development in arabidopsis[J].The plant cell,1999,11:1217-1226.
[91] ZHANG F,GONZALEZ A,ZHAO M Z,et al.A network of redundant bHLH proteins functions in all TTG1dependent pathways of Arabidopsis[J].Development,2003,130(20):4859-4869.