• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于誘導(dǎo)多能干細(xì)胞技術(shù)的罕見病細(xì)胞模型及其應(yīng)用

      2018-05-24 05:10:58崔亞洲韓金祥
      協(xié)和醫(yī)學(xué)雜志 2018年3期
      關(guān)鍵詞:干細(xì)胞分化基因

      時(shí) 良,崔亞洲,韓金祥

      1山東省醫(yī)學(xué)科學(xué)院 山東省醫(yī)藥生物技術(shù)研究中心,濟(jì)南 250062 2山東省罕見疾病防治協(xié)會,濟(jì)南 250062

      罕見病通常是指患病率低但卻嚴(yán)重威脅生命的疾病。罕見病的定義在立法和政策上有所不同,通常以疾病發(fā)生率或患病率作為標(biāo)準(zhǔn)或臨界值。根據(jù)流行病學(xué)和基因組學(xué)數(shù)據(jù),美國國立衛(wèi)生研究院估計(jì)世界各地大約有7000種罕見病。中國常用世界衛(wèi)生組織對于罕見病的定義,即患病率低于0.65‰~1‰,然而,這些定義有一個相對寬泛的范圍。目前,對于中國罕見病的定義尚未統(tǒng)一[1]。盡管如此,中國作為人口大國,罕見病患者人群龐大,很多罕見病發(fā)病原因未知,且無有效根治手段,因此基于分子機(jī)制的研究和開發(fā)具有重要意義。

      超過80%的罕見病與遺傳密切相關(guān)[2]。誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cells,iPSCs)技術(shù)可以產(chǎn)生疾病特異性iPSCs,進(jìn)而分化為與疾病相關(guān)的功能細(xì)胞用于構(gòu)建疾病模型,體外再現(xiàn)疾病表型、模擬遺傳學(xué)變化和病理過程,在此基礎(chǔ)上研究發(fā)病機(jī)制、篩選安全有效的藥物、替換患病的細(xì)胞或組織等。最重要的是,iPSCs技術(shù)不像胚胎干細(xì)胞(embryonic stem cells,ESCs)研究一樣飽受倫理學(xué)爭議和免疫排斥的困擾,廣大研究者基于此項(xiàng)技術(shù)已成功建立多種罕見病模型,并進(jìn)行了深入研究。本文主要討論了iPSCs技術(shù)應(yīng)用于罕見病疾病模型的建立及其在藥物篩選、細(xì)胞治療方面的應(yīng)用。

      1 利用誘導(dǎo)多能干細(xì)胞技術(shù)建立罕見病疾病模型的優(yōu)勢

      傳統(tǒng)罕見病病因和病理生理機(jī)制研究往往依賴于原代或患者來源的永生化細(xì)胞系。雖然原始細(xì)胞類型很容易從血液或組織活檢中獲得,但與疾病相關(guān)的細(xì)胞類型如涉及大腦或心臟的細(xì)胞不易獲得,也不可能無限期增殖。此外,永生化細(xì)胞系隨著培養(yǎng)時(shí)間的延長往往不能準(zhǔn)確反映原代細(xì)胞的狀態(tài),限制了其在功能研究中的可靠性。同樣,動物模型雖然是體內(nèi)研究不可替代的工具,但動物和人類之間有相當(dāng)多的解剖學(xué)、胚胎學(xué)和代謝差異,如最常用的動物模型小鼠與人類在心臟大小和靜息心率等方面均不同[3];又如將轉(zhuǎn)基因小鼠模型應(yīng)用于阿爾茨海默病的研究中,由于人類和小鼠神經(jīng)細(xì)胞間的種屬差異造成大量神經(jīng)元缺失,因而無法準(zhǔn)確再現(xiàn)人的病理學(xué)過程[4],成為基礎(chǔ)研究轉(zhuǎn)化為臨床試驗(yàn)的最大障礙。因此,迫切需要建立人類疾病模型來彌補(bǔ)生物醫(yī)學(xué)研究中使用動物模型的缺陷。

      人iPSCs技術(shù)的誕生為建立疾病模型提供了更多選擇。人iPSCs與ESCs高度相似,如可顯示ESCs樣的細(xì)胞形態(tài)、表達(dá)多能干細(xì)胞標(biāo)志物、擁有相似的基因表達(dá)和表觀遺傳學(xué)狀態(tài)且具有體內(nèi)外分化成三胚層的能力[5- 6]。多種易獲得的供體細(xì)胞可重編程為人iPSCs(表1),其可分化為各種功能細(xì)胞,如心肌細(xì)胞、肝細(xì)胞等較難從患者身上直接獲取的疾病相關(guān)細(xì)胞。研究發(fā)現(xiàn),iPSCs中殘存對供體細(xì)胞的表觀記憶,影響了iPSCs下游分化[7- 8]。但在眾多研究中,同時(shí)用人ESCs與iPSCs建立疾病模型可在體外得到相似的表型,證明了iPSCs技術(shù)用于建立疾病模型的可行性[9]。為了iPSCs的后期應(yīng)用,重編程方法不斷改進(jìn),可采用安全高效、非病毒整合的方法(表2)。

      在既往罕見病研究中,將患者特異性的iPSCs或功能細(xì)胞與健康人進(jìn)行比較,然而由于細(xì)胞來自不同個體,擁有不同的遺傳背景和基因表達(dá)水平,在一定程度上會干擾實(shí)驗(yàn)結(jié)果,可能會影響后期臨床應(yīng)用。隨著基因編輯技術(shù)的快速發(fā)展,借助于基因打靶技術(shù)修正缺陷的基因產(chǎn)生遺傳學(xué)匹配的對照細(xì)胞用于建立疾病模型,避免細(xì)胞系不同帶來的遺傳背景差異或偶然性結(jié)果[36- 37]。由于罕見病患者分布分散,不易獲取供體細(xì)胞,iPSCs結(jié)合基因編輯技術(shù)亦可為研究不易獲得的罕見病或基因型開辟新的途徑。利用CRISPR/Cas9基因編輯工具能有效引入特定的突變位點(diǎn),僅影響某個基因的一個副本,即患者的iPSCs僅在特定位點(diǎn)與正常對照組iPSCs不同,由此可獲得攜帶致病基因的iPSCs[38- 39]。

      表 1 產(chǎn)生人誘導(dǎo)多能干細(xì)胞的多種供體來源

      表 2 采用非病毒整合方法獲得誘導(dǎo)多能干細(xì)胞

      K:KLF4;L:LIN28;M:c-MYC;O:OCT4;S:SOX2

      iPSCs技術(shù)結(jié)合基因編輯技術(shù)對于研究表型差異較小的散發(fā)性或自發(fā)性疾病尤為重要[40]。常用兩種分析方法來避免除目的基因外的基因多樣性干擾,在疾病特異性iPSCs中修正疾病相關(guān)基因或在野生型iPSCs中引入致病突變[41]。研究人員利用這種方式建立了C1型尼曼匹克癥疾病模型,與對照組相比,疾病特異性iPSCs分化而來的肝細(xì)胞和神經(jīng)細(xì)胞表現(xiàn)出疾病相關(guān)缺陷,比如膽固醇積累和異常的細(xì)胞自噬現(xiàn)象,通過修正突變基因NPC1,修復(fù)了上述缺陷[42],因此iPSCs技術(shù)為罕見病研究開辟了新的途徑。隨著iPSCs技術(shù)的不斷發(fā)展,患者特異性iPSCs的獲取將更加規(guī)范化和規(guī)?;?,疾病模型會成為一種有效的工具,為新藥篩選、個性化再生醫(yī)療方案的制定另辟蹊徑。

      2 基于誘導(dǎo)多能干細(xì)胞罕見病疾病模型的建立及機(jī)制研究

      細(xì)胞重編程可產(chǎn)生基于iPSCs的罕見病疾病模型,從根本上推動了對罕見病病理生理學(xué)和發(fā)病機(jī)制的深入理解,尤其是先前不易獲得的細(xì)胞或組織如心肌細(xì)胞、神經(jīng)細(xì)胞等;另外,iPSCs結(jié)合基因編輯技術(shù),可解決罕見病患者樣本難獲得問題。迄今為止,絕大多數(shù)疾病模型針對以孟德爾遺傳方式導(dǎo)致的病例而建立,但仍有很多疾病是偶發(fā)性或由多個位點(diǎn)基因的多態(tài)性導(dǎo)致。轉(zhuǎn)基因動物或細(xì)胞系等傳統(tǒng)建模方法極具挑戰(zhàn)性,而iPSCs技術(shù)可解決這一難題,即便有多個未知突變,疾病特異性iPSCs攜帶患者遺傳背景仍可再現(xiàn)病理表型,并在此基礎(chǔ)上探究疾病發(fā)生的機(jī)制。最近研究者利用iPSCs技術(shù)成功建立了多種罕見病疾病模型,并發(fā)現(xiàn)了其重要機(jī)制或靶點(diǎn)(表3)。

      2.1 單基因罕見病

      單基因突變造成的疾病稱為單基因病,單基因缺陷引起的新生兒患病率通常小于0.1‰,因而絕大多數(shù)屬于罕見病。iPSCs技術(shù)被廣泛應(yīng)用于建立先天突變的單基因罕見病模型,研究發(fā)現(xiàn)多種單基因疾病來源的iPSCs通過合適的下游分化方法得到疾病相關(guān)細(xì)胞類型,可在體外真實(shí)地模擬疾病病理學(xué)過程[62- 63]。通過iPSCs技術(shù)可建立單基因罕見病疾病模型,例如與神經(jīng)損傷有關(guān)的疾病(弗里德賴希共濟(jì)失調(diào)、共濟(jì)失調(diào)性毛細(xì)血管擴(kuò)張癥、C1型尼曼匹克癥、柯凱因綜合征等),采用適宜的下游分化方法可得到疾病相關(guān)功能細(xì)胞,深入探究疾病發(fā)病機(jī)制[64- 67]。隨著iPSCs技術(shù)不斷發(fā)展,關(guān)于神經(jīng)發(fā)育障礙罕見病,最近研究者發(fā)現(xiàn)了一種更加高效的建模方法,從尿液收集到獲得神經(jīng)亞型僅需75 d[68]。

      脊髓性肌萎縮癥是早發(fā)性罕見病,由于運(yùn)動神經(jīng)元1突變導(dǎo)致,將患者特異性iPSCs分化為神經(jīng)細(xì)胞用于模型建立[62]。運(yùn)動神經(jīng)元1突變導(dǎo)致運(yùn)動神經(jīng)元衰退和肌肉萎縮變性。Ⅰ型脊髓性肌萎縮癥患者通常在出生6個月內(nèi)表現(xiàn)出癥狀,隨著病情加重, 2歲時(shí)患兒死亡[69]。最初的iPSCs疾病模型,將Ⅰ型脊髓性肌萎縮癥患者成纖維細(xì)胞來源的iPSCs分化成運(yùn)動神經(jīng)元[62]。從患者特異性iPSCs分化而來的運(yùn)動神經(jīng)元與正常組相比存活能力降低。這項(xiàng)研究結(jié)果表明,患者來源的iPSCs可用于早發(fā)性單基因罕見病模型建立。

      表 3 利用誘導(dǎo)多能干細(xì)胞技術(shù)建立的罕見病疾病模型

      2.2 多基因罕見病

      在染色體區(qū)域的缺失或重復(fù)稱為多基因病,復(fù)雜罕見病通常涉及多個或未知的異?;颉H缱蚤]癥因表型和病因異質(zhì)性,建立細(xì)胞模型或動物模型存在很大困難,因而揭示潛在的遺傳學(xué)、病理生理學(xué)機(jī)制具有很大挑戰(zhàn)。iPSCs技術(shù)的出現(xiàn)對于理解復(fù)雜或散發(fā)性罕見病帶來了新的希望[70],研究人員假設(shè)自閉癥患者中增多的腦體積和神經(jīng)元數(shù)量可能是神經(jīng)祖細(xì)胞增殖率增加的結(jié)果[71],于是將患者特異性iPSCs分化為神經(jīng)祖細(xì)胞,患者的神經(jīng)祖細(xì)胞比正常組增殖速度快,與假設(shè)一致。神經(jīng)元則表現(xiàn)出異常神經(jīng)發(fā)生和突觸減少,導(dǎo)致神經(jīng)元網(wǎng)絡(luò)的功能缺陷。在哺乳動物大腦發(fā)育過程中,神經(jīng)祖細(xì)胞是受到嚴(yán)格調(diào)控的,如果異常增殖會導(dǎo)致長久性分化異常和缺陷,將導(dǎo)致自閉癥的發(fā)生。第一型類胰島素生長因子(insulin-like growth factor 1,IGF- 1)是一種自然產(chǎn)生的神經(jīng)營養(yǎng)因子,對大腦發(fā)育和可塑性至關(guān)重要[72- 73]。研究人員發(fā)現(xiàn)IGF- 1可改善神經(jīng)網(wǎng)絡(luò)異常,目前正處于臨床試驗(yàn)階段。

      2.3 遲發(fā)性罕見病

      相比于早發(fā)疾病,細(xì)胞的老化程度是遲發(fā)疾病病理學(xué)研究的重要因素,建立遲發(fā)性罕見病模型更具挑戰(zhàn)性,因?yàn)閕PSCs的特點(diǎn)是具有早期胚胎的基因表達(dá)程序[74]。成功建模的重要方法是人工誘導(dǎo)細(xì)胞的衰老[75- 76]。具體方法如下:(1)氧化應(yīng)激:使用MG- 132和吡唑醚菌酯等化合物,通過靶向線粒體的功能或蛋白質(zhì)降解途徑,進(jìn)而促進(jìn)細(xì)胞衰老[77- 78];(2)早衰蛋白:由核纖層蛋白截短后產(chǎn)生,可導(dǎo)致過早老化[75]。

      最近發(fā)現(xiàn)的一種更具生理學(xué)意義的方法是采用小分子抑制端粒酶活性,其顯示了衰老的經(jīng)典特征,包括DNA損傷、活性氧增加,酪氨酸羥化酶的下調(diào)[79]。早衰綜合癥的iPSCs模型,如哈欽森-吉爾福德早衰綜合癥,不僅成功地模擬了高速分化和衰老的干細(xì)胞,而且也促進(jìn)了與年齡有關(guān)的標(biāo)志物應(yīng)用于更普遍的遲發(fā)性疾病如帕金森病研究[80]。

      迄今為止,多種疾病的建模方案是基于單一的功能細(xì)胞。然而,對于很多疾病而言,不止一種功能細(xì)胞能準(zhǔn)確模擬疾病發(fā)生,如自閉癥建模,使用的是患者特異性神經(jīng)祖細(xì)胞和神經(jīng)元細(xì)胞。除此之外,為了更精確地再現(xiàn)疾病表型,需將不同類型的細(xì)胞共培養(yǎng)以研究細(xì)胞間的相互作用,如3D組織培養(yǎng)技術(shù)。從傳統(tǒng)的二維分化培養(yǎng)方法逐步發(fā)展為空間模擬人類組織或器官的交互作用。目前采用老鼠和人的組織干細(xì)胞或多能干細(xì)胞可產(chǎn)生多種器官,包括大腦、視網(wǎng)膜、腸道、腎臟、肝臟、肺、胃[81]。人iPSCs分化形成的組織因與內(nèi)源性細(xì)胞組織或器官結(jié)構(gòu)相似,而被廣泛應(yīng)用于模擬人類生理和發(fā)育過程中細(xì)胞間相互作用。以組織形式存在的多種細(xì)胞比單獨(dú)分化得來的細(xì)胞功能上更加成熟,主要原因是存在細(xì)胞間的通訊,比如3D結(jié)構(gòu)中神經(jīng)元細(xì)胞和星形膠質(zhì)細(xì)胞。目前已被用于模擬人類器官形成和疾病病理過程,檢驗(yàn)可用于治療的化合物或進(jìn)行細(xì)胞移植[82- 84]。3D組織培養(yǎng)技術(shù)有待發(fā)掘更加標(biāo)準(zhǔn)化的培養(yǎng)條件和胞外基質(zhì),高效地再現(xiàn)組織系統(tǒng),將更適用于建立精準(zhǔn)疾病模型,進(jìn)而篩選新藥,促進(jìn)再生醫(yī)學(xué)發(fā)展[85]。

      3 基于誘導(dǎo)多能干細(xì)胞罕見病模型的應(yīng)用

      iPSCs技術(shù)除了上述提到的建立罕見病模型,在發(fā)病機(jī)制和功能上進(jìn)行深入探究外,在藥物篩選、臨床治療等方面亦具有廣泛應(yīng)用。在有效疾病模型的基礎(chǔ)上,探究罕見病的病理生理學(xué)進(jìn)程,利用功能細(xì)胞篩選新型藥物,可推進(jìn)細(xì)胞或組織治療等再生醫(yī)學(xué)的發(fā)展,達(dá)到干細(xì)胞研究的最終目的。結(jié)合基因編輯技術(shù),具體應(yīng)用流程如圖1所示,重編程罕見病患者的體細(xì)胞,誘導(dǎo)得到患者特異性iPSCs,結(jié)合基因編輯工具修正患病基因得到同型對照組,兩組細(xì)胞系均分化產(chǎn)生大量的功能細(xì)胞,在體外再現(xiàn)疾病表型,在此基礎(chǔ)上發(fā)現(xiàn)新的診斷標(biāo)志物、篩選安全有效的藥物、替換患病的細(xì)胞或組織。這種定制化的治療方法可以避免免疫排斥和倫理學(xué)爭議。

      3.1 藥物篩選

      罕見病的藥物開發(fā)過程與普通疾病相似,需要大量資源,通常持續(xù)10~12年。952種中國住院患者可見的罕見病中,50種罕見病有相應(yīng)的孤兒藥在中國上市、獲得臨床批件或正在進(jìn)行臨床試驗(yàn),95%的罕見病目前尚無特效治療藥物,患者預(yù)后不佳,給社會帶來沉重負(fù)擔(dān)。因罕見病患者基數(shù)小而限制了全面的藥物試驗(yàn),因而準(zhǔn)確測定患者藥物反應(yīng)和新陳代謝情況以降低不良反應(yīng)對罕見病患者的治療至關(guān)重要。考慮到整體市場份額不足,藥品開發(fā)對制藥公司通常缺乏吸引力。直到1983年,《孤兒藥法案》才將美國食品藥品監(jiān)督管理局(Food and Drug Administration,F(xiàn)DA)批準(zhǔn)的罕見病藥物份額提高至35%左右[2]。基于iPSCs的罕見病模型為發(fā)現(xiàn)罕見病可用藥物帶來了新的希望。家族性自主神經(jīng)功能障礙是單基因遺傳的早發(fā)性疾病,影響神經(jīng)嵴細(xì)胞系,由IKBKAP編碼核因子抑制劑κB激酶復(fù)合物相關(guān)蛋白突變引起,表現(xiàn)為神經(jīng)系統(tǒng)缺陷和小纖維感覺神經(jīng)元功能障礙。在iPSCs模型的基礎(chǔ)上,分選并純化自主神經(jīng)元的神經(jīng)嵴細(xì)胞前體。研究小組檢測了6912個小分子化合物,發(fā)現(xiàn)8個化合物可恢復(fù)IKBKAP的表達(dá),其中SKF- 86466可改善異常剪接[86]。這是使用基于人iPSCs疾病模型進(jìn)行高通量藥物篩選的第一個研究成果。

      圖1誘導(dǎo)多能干細(xì)胞技術(shù)用于罕見病研究流程圖

      疾病特異性iPSCs的另一個應(yīng)用是藥物重新定位,即在現(xiàn)有的已被批準(zhǔn)用于特定疾病的藥物中,找到其在其他疾病中新的應(yīng)用。研究α- 1抗胰蛋白酶缺乏癥的學(xué)者,從iPSCs分化得到肝細(xì)胞,利用已建立的臨床化合物數(shù)據(jù)庫,篩選了3131種臨床批準(zhǔn)的化合物(2800種藥物已被美國FDA/國外同行批準(zhǔn)或已進(jìn)入第二階段臨床試驗(yàn)),確定5種可改善該疾病表型的臨床藥物,繞過臨床前和臨床研究早期階段,直接作為臨床療法迅速進(jìn)行臨床試驗(yàn)[87]。軟骨發(fā)育不全由成纖維細(xì)胞生長因子受體3突變導(dǎo)致,日本京都大學(xué)研究人員成功獲得軟骨發(fā)育不全患者的iPSCs,并在體外再現(xiàn)了異常的軟骨形成過程;在此基礎(chǔ)上,通過大量化合物篩選,研究者驚喜地發(fā)現(xiàn)他汀類藥物可明顯恢復(fù)骨骼生長,改善軟骨發(fā)育不全的癥狀[88]。他汀類藥物因有降低膽固醇的功效而被廣泛用于治療心血管疾病,如果臨床試驗(yàn)成功,將意味著擴(kuò)大了他汀類藥物的適用范圍。已批準(zhǔn)的藥物被確定可治療其他疾病并可在臨床試驗(yàn)中進(jìn)一步評估,而無需長時(shí)間的臨床前開發(fā)。此外,由于這些藥物的作用靶點(diǎn)已知(如激酶抑制劑或蛋白酶),有助于其在新的疾病中確定新的藥物靶點(diǎn)和治療方法。

      通過以上研究,證明了與使用永生化細(xì)胞系和動物模型相比,患者特異性iPSCs分化得到的疾病相關(guān)細(xì)胞更能準(zhǔn)確反映藥物的療效。此外,已批準(zhǔn)的藥物通過iPSCs罕見病模型可發(fā)現(xiàn)新的適應(yīng)癥。

      3.2 藥物毒性試驗(yàn)

      新藥開發(fā)需要高額的經(jīng)費(fèi),主要用于臨床試驗(yàn)后期出現(xiàn)的無法預(yù)測的副作用[89]。然而,iPSCs模型能有效預(yù)測候選藥物可能引起嚴(yán)重副作用,從而使候選藥物在后期毒性試驗(yàn)中失敗率大大降低。例如,西沙必利原本用于治療胃食管反流病,因?qū)π呐K有毒性而退出市場。研究人員將遺傳性長QT綜合征、家族性肥厚性心肌病、家族性擴(kuò)張型心肌病患者的iPSCs分化為心肌細(xì)胞,這些心肌細(xì)胞再現(xiàn)了疾病表型如電生理功能障礙,在此基礎(chǔ)上用已知化合物包括西沙必利檢測對心臟毒性的反應(yīng),發(fā)現(xiàn)患者來源的心肌細(xì)胞比正常組對西沙必利導(dǎo)致的異常更加敏感[90]。鑒于多種藥物因?qū)θ梭w產(chǎn)生副作用而被撤出市場,可能是當(dāng)前不全面的評估方法導(dǎo)致,iPSCs模型可進(jìn)一步證實(shí)和補(bǔ)充。

      3.3 細(xì)胞治療

      利用iPSCs技術(shù)促進(jìn)再生醫(yī)學(xué)(內(nèi)源再生過程或細(xì)胞移植后替代受損組織)的發(fā)展引起了人們極大興趣。2014年Takahashi研究小組進(jìn)行了第一次iPSCs臨床試驗(yàn),其將老年性黃斑變性患者自身iPSCs來源的視網(wǎng)膜色素上皮細(xì)胞進(jìn)行自體移植治療,治療結(jié)果為陽性,阻止黃斑變性并改善了患者的視力[91],雖然由于第2個患者iPSCs與供體成纖維細(xì)胞相比,存在3個單核苷酸變異和3個拷貝數(shù)變異而終止了下一步移植,但預(yù)計(jì)會重新開始細(xì)胞治療[92]?;?、表觀遺傳、染色體的變化往往是由iPSCs體外培養(yǎng)導(dǎo)致[93],目前尚不完全清楚這些突變是否由重編程過程引起。盡管目前干細(xì)胞移植存在局限性,但其為罕見病治療開辟了新的道路,而人類干細(xì)胞治療罕見病的臨床試驗(yàn)已經(jīng)開始[94]。

      利用iPSCs技術(shù)進(jìn)行細(xì)胞治療具有很多優(yōu)勢:(1)iPSCs能夠自我更新,可獲得足夠數(shù)量的細(xì)胞,隨后在體外可分化成任何類型的細(xì)胞;(2)iPSCs來源于患者自身供體細(xì)胞,避免尋找與組織相容性抗原兼容的細(xì)胞供體和使用免疫抑制劑。

      然而,將iPSCs技術(shù)真正用于人類細(xì)胞治療,仍有很多困難需要克服:(1)iPSCs的致瘤性[95],為確保最終分化得到的細(xì)胞中不含未分化的iPSCs,研究人員發(fā)現(xiàn)小分子抑制劑可進(jìn)行篩選,使未分化的iPSCs死亡而不影響分化的細(xì)胞,降低了致瘤風(fēng)險(xiǎn)[96]。(2)由于iPSCs在體外培養(yǎng)時(shí)間較長,會導(dǎo)致異常核型和拷貝數(shù)變異[97],因此,在投入臨床治療前,需仔細(xì)排查iPSCs來源的細(xì)胞是否存在潛在的遺傳變異風(fēng)險(xiǎn),進(jìn)行嚴(yán)格的鑒定以確保其純度、質(zhì)量和無菌。人類iPSCs平臺與基因編輯、3D組織培養(yǎng)技術(shù)相結(jié)合,可讓iPSCs技術(shù)為以干細(xì)胞為基礎(chǔ)的細(xì)胞療法提供更強(qiáng)大的細(xì)胞資源。

      4 總結(jié)與展望

      罕見病嚴(yán)重影響人類健康,相關(guān)研究已引起全球重視。盡管如此,罕見病仍然面臨著難診斷、難治療的挑戰(zhàn),并發(fā)癥的存在亦增加了其診治難度。為了推動中國罕見病政策的制定、深入發(fā)現(xiàn)遺傳機(jī)制、提升臨床診療水平,2016年“精準(zhǔn)醫(yī)學(xué)研究”重點(diǎn)專項(xiàng)“罕見病臨床隊(duì)列研究”的重要內(nèi)容即是建立全國統(tǒng)一的罕見病注冊登記系統(tǒng),完善可共享的臨床隊(duì)列和樣本庫,整合臨床診療信息,進(jìn)而建立可開展預(yù)后研究的隨訪數(shù)據(jù)庫體系。基于此,2017年3月1日山東省罕見病注冊登記系統(tǒng)正式上線,目前已注冊罕見病病例850例。在十三五國家重點(diǎn)研發(fā)計(jì)劃“罕見病臨床隊(duì)列研究項(xiàng)目”的指導(dǎo)下,建立的中國國家罕見病注冊體系,將為中國罕見病精準(zhǔn)診斷與轉(zhuǎn)化醫(yī)學(xué)提供強(qiáng)大動力。

      在此平臺的支撐下,采用人的疾病模型來模擬這些復(fù)雜、多樣的癥狀,可更深入剖析發(fā)病機(jī)制、開發(fā)新的治療方法。iPSCs技術(shù)在罕見病建模方面具有獨(dú)特優(yōu)勢,并成功建立了單基因、多基因、遲發(fā)性罕見病疾病模型,該模型已成為藥物篩選、藥物毒性研究、個性化細(xì)胞治療的有效工具,推動了精準(zhǔn)醫(yī)學(xué)的發(fā)展。隨著高通量測序、基因編輯技術(shù)和小分子篩選技術(shù)的突破,與這些技術(shù)結(jié)合起來,開發(fā)罕見病的治療干預(yù)措施,將為罕見病患者的診治帶來前所未有的希望。

      參 考 文 獻(xiàn)

      [1] Cui Y, Han J. Defining rare diseases in China[J]. Intractable Rare Dis Res, 2017, 6:148- 149.

      [2] Melnikova I. Rare diseases and orphan drugs[J]. Nat Rev Drug Discov, 2012, 11:267- 268.

      [3] Hamlin RL, Altschuld RA. Extrapolation from mouse to man[J]. Circ Cardiovasc Imaging, 2011, 4:2- 4.

      [4] Onos KD, Sukoff Rizzo SJ, Howell GR, et al. Toward more predictive genetic mouse models of Alzheimer’s disease[J]. Brain Res Bull, 2016, 122:1- 11.

      [5] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131:861- 872.

      [6] Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluri-potent stem cell lines derived from human somatic cells[J]. Science, 2007, 318:1917- 1920.

      [7] Kim K, Zhao R, Doi A, et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells[J]. Nat Biotechnol, 2011, 29:1117- 1119.

      [8] Ohi Y, Qin H, Hong C, et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells[J]. Nat Cell Biol, 2011,13:541- 549.

      [9] Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery[J]. Nat Rev Mol Cell Biol, 2016, 17:170- 182.

      [10] Wada N, Wang B, Lin NH, et al. Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts[J]. J Periodontal Res, 2011, 46:438- 447.

      [11] Aasen T, Raya A, Barrero MJ, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes[J]. Nat Biotechnol, 2008, 26:1276- 1284.

      [12] Giorgetti A, Montserrat N, Aasen T, et al. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2[J]. Cell Stem Cell, 2009, 5:353- 357.

      [13] Haase A, Olmer R, Schwanke K, et al. Generation of induced pluripotent stem cells from human cord blood[J]. Cell Stem Cell, 2009, 5:434- 441.

      [14] Seki T, Yuasa S, Fukuda K. Generation of induced pluripotent stem cells from a small amount of human peri-pheral blood using a combination of activated T cells and Sendai virus[J]. Nat Protoc, 2012, 7:718- 728.

      [15] Simara P, Tesarova L, Rehakova D, et al. Reprogramming of adult peripheral blood cells into human induced pluripotent stem cells as a safe and accessible source of endothelial cells[J]. Stem Cells Dev, 2018, 27:10- 22.

      [16] Aoki T, Ohnishi H, Oda Y, et al. Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC[J]. Tissue Eng Part A, 2010, 16:2197- 2206.

      [17] Sugii S, Kida Y, Kawamura T, et al. Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells[J]. Proc Natl Acad Sci USA, 2010, 107:3558- 3563.

      [18] Kim JB, Greber B, Arauzo-Bravo MJ, et al. Direct reprogramming of human neural stem cells by OCT4[J]. Nature, 2009, 461:649- 653.

      [19] Cai J, Li W, Su H, et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells[J]. J Biol Chem, 2010, 285:11227- 11234.

      [20] Li C, Zhou J, Shi G, et al. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells[J]. Hum Mol Genet, 2009, 18:4340- 4349.

      [21] Liu H, Ye Z, Kim Y, et al. Generation of endoderm-derived human induced pluripotent stem cells from primary hepato-cytes[J]. Hepatology, 2010, 51:1810- 1819.

      [22] Zhou T, Benda C, Dunzinger S, et al. Generation of human induced pluripotent stem cells from urine samples[J]. Nat Protoc, 2012, 7:2080- 2089.

      [23] Uhm KO, Jo EH, Go GY, et al. Generation of human induced pluripotent stem cells from urinary cells of a healthy donor using a non-integration system[J]. Stem Cell Res, 2017, 21:44- 46.

      [24] Fusaki N, Ban H, Nishiyama A, et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2009, 85:348- 362.

      [25] Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration[J]. Science, 2008, 322:945- 949.

      [26] Si-Tayeb K, Noto FK, Sepac A, et al. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors[J]. BMC Dev Biol, 2010, 10:81.

      [27] Lorenzo IM, Fleischer A, Bachiller D. Generation of mouse and human induced pluripotent stem cells (iPSC) from primary somatic cells[J]. Stem Cell Rev, 2013, 9:435- 450.

      [28] Xue Y, Cai X, Wang L, et al. Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells[J]. PLoS One, 2013, 8:e70573.

      [29] Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells[J]. Nature, 2009, 458:766- 770.

      [30] Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins[J]. Cell Stem Cell, 2009, 4:381- 384.

      [31] Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins[J]. Cell Stem Cell, 2009, 4:472- 476.

      [32] Ichida JK, Blanchard J, Lam K, et al. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog[J]. Cell Stem Cell, 2009, 5:491- 503.

      [33] Zhu S, Li W, Zhou H, et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds[J]. Cell Stem Cell, 2010, 7:651- 655.

      [34] Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA[J]. Cell Stem Cell, 2010, 7:618- 630.

      [35] Miyoshi N, Ishii H, Nagano H, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs[J]. Cell Stem Cell, 2011, 8:633- 638.

      [36] Kwart D, Paquet D, Teo S, et al. Precise and efficient scarless genome editing in stem cells using CORRECT[J]. Nat Protoc, 2017, 12:329- 354.

      [37] Park CY, Sung JJ, Choi SH, et al. Modeling and correction of structural variations in patient-derived iPSCs using CRISPR/Cas9[J]. Nat Protoc, 2016, 11:2154- 2169.

      [38] Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9[J]. Nature, 2016, 533:125- 129.

      [39] Zhang Y, Schmid B, Nielsen TT, et al. Generation of a human induced pluripotent stem cell line via CRISPR-Cas9 mediated integration of a site-specific heterozygous mutation in CHMP2B[J]. Stem Cell Res, 2016,17:148- 150.

      [40] Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing[J]. Cell Stem Cell, 2016, 18:573- 586.

      [41] Suh W. A new era of disease modeling and drug discovery using induced pluripotent stem cells[J]. Arch Pharm Res, 2017, 40:1- 12.

      [42] Maetzel D, Sarkar S, Wang H, et al. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells[J]. Stem Cell Reports, 2014, 2:866- 880.

      [43] Hall CE, Yao Z, Choi M, et al. Progressive motor neuron pathology and the role of astrocytes in a human stem cell model of VCP-related ALS[J]. Cell Rep, 2017, 19:1739- 1749.

      [44] Yoshida M, Kitaoka S, Egawa N, et al. Modeling the early phenotype at the neuromuscular junction of spinal muscular atrophy using patient-derived iPSCs[J]. Stem Cell Reports, 2015, 4:561- 568.

      [45] Okuno H, Renault Mihara F, Ohta S, et al. CHARGE syndrome modeling using patient-iPSCs reveals defective migra-tion of neural crest cells harboring CHD7 mutations[J]. Elife, 2017, 6.

      [46] Chailangkarn T, Muotri AR. Modeling Williams syndrome with induced pluripotent stem cells[J]. Neurogenesis, 2017, 4:e1283187.

      [47] Aflaki E, Borger DK, Moaven N, et al. A new glucocerebrosidase chaperone reduces alpha-synuclein and glycolipid levels in iPSC-derived dopaminergic neurons from patients with Gaucher disease and Parkinsonism[J]. J Neurosci, 2016, 36:7441- 7452.

      [48] Awad O, Sarkar C, Panicker LM, et al. Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells[J]. Hum Mol Genet, 2015, 24:5775- 5788.

      [49] Chou SJ, Yu WC, Chang YL, et al. Energy utilization of induced pluripotent stem cell-derived cardiomyocyte in Fabry disease[J]. Int J Cardiol, 2017, 232:255- 263.

      [50] Sato Y, Kobayashi H, Higuchi T, et al. TFEB overexpression promotes glycogen clearance of Pompe disease iPSC-derived skeletal muscle[J]. Mol Ther Methods Clin Dev, 2016, 3:16054.

      [51] Yoshida S, Nakanishi C, Okada H, et al. Characteristics of induced pluripotent stem cells from clinically divergent female monozygotic twins with Danon disease[J]. J Mol Cell Cardiol, 2017, 114:234- 242.

      [52] HD iPSC Consortium. Developmental alterations in Huntington’s disease neural cells and pharmacological rescue in cells and mice[J]. Nat Neurosci, 2017, 20:648- 660.

      [53] Lukovic D, Artero Castro A, Delgado AB, et al. Human iPSC derived disease model of MERTK-associated retinitis pigmentosa[J]. Sci Rep, 2015, 5:12910.

      [54] Ramsden CM, Nommiste B, A RL, et al. Rescue of the MERTK phagocytic defect in a human iPSC disease model using translational read-through inducing drugs[J]. Sci Rep, 2017, 7:51.

      [55] Matsumoto Y, Ikeya M, Hino K, et al. New protocol to optimize iPS cells for genome analysis of fibrodysplasia ossificans progressiva[J]. Stem Cells, 2015,33:1730- 1742.

      [56] Barruet E, Morales BM, Lwin W, et al. The ACVR1 R206H mutation found in fibrodysplasia ossificans progressiva increases human induced pluripotent stem cell-derived endothelial cell formation and collagen production through BMP-mediated SMAD1/5/8 signaling[J]. Stem Cell Res Ther, 2016, 7:115.

      [57] Yi F, Qu J, Li M, et al. Establishment of hepatic and neural differentiation platforms of Wilson’s disease specific induced pluripotent stem cells[J]. Protein Cell, 2012, 3:855- 863.

      [58] Granata A, Serrano F, Bernard WG, et al. An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death[J]. Nat Genet, 2017, 49:97- 109.

      [59] Park JW, Yan L, Stoddard C, et al. Recapitulating and correcting Marfan syndrome in a cellular model[J]. Int J Biol Sci, 2017, 13:588- 603.

      [60] Fink JJ, Robinson TM, Germain ND, et al. Disrupted neuronal maturation in Angelman syndrome-derived induced pluripotent stem cells[J]. Nat Commun, 2017, 8:15038.

      [61] Francis KR, Ton AN, Xin Y, et al. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/beta-catenin defects in neuronal choles-terol synthesis phenotypes[J]. Nat Med, 2016, 22:388- 396.

      [62] Ebert AD, Yu J, Rose FF Jr, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient[J]. Nature, 2009, 457:277- 280.

      [63] Itzhaki I, Maizels L, Huber I, et al. Modelling the long QT syndrome with induced pluripotent stem cells[J]. Nature, 2011, 471:225- 259.

      [64] Carlessi L, Fusar Poli E, Bechi G, et al. Functional and molecular defects of hiPSC-derived neurons from patients with ATM deficiency[J]. Cell Death Dis, 2014, 5:e1342.

      [65] Long Y, Xu M, Li R, et al. Induced pluripotent stem cells for disease modeling and evaluation of therapeutics for Niemann-Pick disease type A[J]. Stem Cells Transl Med, 2016, 5:1644- 1655.

      [66] Trilck M, Hubner R, Seibler P, et al. Niemann-Pick type C1 patient-specific induced pluripotent stem cells display disease specific hallmarks[J]. Orphanet J Rare Dis, 2013, 8:144.

      [67] Vessoni AT, Herai RH, Karpiak JV, et al. Cockayne syndrome-derived neurons display reduced synapse density and altered neural network synchrony[J]. Hum Mol Genet, 2016, 25:1271- 1280.

      [68] Bell S, Peng H, Crapper L, et al. A rapid pipeline to model rare neurodevelopmental disorders with simultaneous CRISPR/Cas9 gene editing[J]. Stem Cells Transl Med, 2017, 6:886- 896.

      [69] Munsat TL, Davies KE. International SMA consortium meeting[J]. Neuromuscul Disord,1992, 2:423- 428.

      [70] DeRosa BA, Van Baaren JM, Dubey GK, et al. Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells[J]. Neurosci Lett, 2012, 516:9- 14.

      [71] Marchetto MC, Belinson H, Tian Y, et al. Altered proli-feration and networks in neural cells derived from idiopathic autistic individuals[J]. Mol Psychiatry, 2017, 22:820- 835.

      [72] Ciucci F, Putignano E, Baroncelli L, et al. Insulin-like growth factor 1 (IGF- 1) mediates the effects of enriched environment (EE) on visual cortical development[J]. PLoS One, 2007, 2:e475.

      [73] Cheng CM, Reinhardt RR, Lee WH, et al. Insulin-like growth factor 1 regulates developing brain glucose metabolism[J]. Proc Natl Acad Sci USA, 2000, 97:10236- 10241.

      [74] Studer L, Vera E, Cornacchia D. Programming and reprogramming cellular age in the era of induced pluripotency[J]. Cell Stem Cell, 2015, 16:591- 600.

      [75] Miller JD, Ganat YM, Kishinevsky S, et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging[J]. Cell Stem Cell, 2013,13:691- 705.

      [76] Cooper O, Seo H, Andrabi S, et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease[J]. Sci Transl Med, 2012, 4:141ra90.

      [77] Pearson BL, Simon JM. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration[J]. Nat Commun, 2016, 7:11173.

      [78] Nguyen HN, Byers B, Cord B, et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress[J]. Cell Stem Cell, 2011, 8:267- 280.

      [79] Vera E, Bosco N, Studer L. Generating late-onset human iPSC-based disease models by inducing neuronal age-related phenotypes through telomerase manipulation[J]. Cell Rep, 2016, 17:1184- 1192.

      [80] Liu GH, Barkho BZ, Ruiz S, et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome[J]. Nature, 2011, 472:221- 225.

      [81] Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345:1247125.

      [82] Camp JG, Badsha F, Florio M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocor-tex development[J]. Proc Natl Acad Sci USA, 2015, 112:15672- 15677.

      [83] Otani T, Marchetto MC, Gage FH, et al. 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size[J]. Cell Stem Cell, 2016, 18:467- 480.

      [84] Takasato M, Er PX, Chiu HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis[J]. Nature, 2015, 526:564- 568.

      [85] Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease[J]. Nat Cell Biol, 2016, 18:246- 254.

      [86] Lee G, Ramirez CN, Kim H, et al. Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression[J]. Nat Biotechnol, 2012, 30:1244- 1248.

      [87] Choi SM, Kim Y, Shim JS, et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells[J]. Hepatology, 2013, 57:2458- 2468.

      [88] Yamashita A, Morioka M, Kishi H, et al. Statin treatment rescues FGFR3 skeletal dysplasia phenotypes[J]. Nature, 2014, 513:507- 511.

      [89] DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs[J]. J Health Econ, 2016, 47:20- 33.

      [90] Liang P, Lan F, Lee AS, et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity[J]. Circulation, 2013, 127:1677- 1691.

      [91] Kimbrel EA, Lanza R. Current status of pluripotent stem cells: moving the first therapies to the clinic[J]. Nat Rev Drug Discov, 2015, 14:681- 692.

      [92] Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic[J]. Nat Rev Mol Cell Biol, 2016, 17:194- 200.

      [93] Pera MF. Stem cells: The dark side of induced pluripotency[J]. Nature, 2011, 471:46- 47.

      [94] Thomsen GM, Gowing G, Svendsen S, et al. The past, present and future of stem cell clinical trials for ALS[J]. Exp Neurol, 2014, 262 Pt B:127- 137.

      [95] Lee AS, Tang C, Rao MS, et al. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies[J]. Nat Med, 2013, 19:998- 1004.

      [96] Lee MO, Moon SH, Jeong HC, et al. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules[J]. Proc Natl Acad Sci USA, 2013, 110:E3281- 3290.

      [97] Lund RJ, Narva E, Lahesmaa R. Genetic and epigenetic stability of human pluripotent stem cells[J]. Nat Rev Genet, 2012, 13:732- 744.

      猜你喜歡
      干細(xì)胞分化基因
      干細(xì)胞:“小細(xì)胞”造就“大健康”
      兩次中美貨幣政策分化的比較及啟示
      Frog whisperer
      分化型甲狀腺癌切除術(shù)后多發(fā)骨轉(zhuǎn)移一例
      造血干細(xì)胞移植與捐獻(xiàn)
      修改基因吉兇未卜
      奧秘(2019年8期)2019-08-28 01:47:05
      干細(xì)胞產(chǎn)業(yè)的春天來了?
      創(chuàng)新基因讓招行贏在未來
      商周刊(2017年7期)2017-08-22 03:36:21
      基因
      干細(xì)胞治療有待規(guī)范
      平武县| 上虞市| 连南| 昌邑市| 临颍县| 弥渡县| 资源县| 增城市| 双牌县| 务川| 溧水县| 高碑店市| 太和县| 申扎县| 莱芜市| 勐海县| 祁门县| 当阳市| 隆尧县| 大城县| 新竹市| 阳东县| 成安县| 镶黄旗| 内江市| 新沂市| 米易县| 锦州市| 孙吴县| 滦平县| 阿坝县| 汉阴县| 广丰县| 通榆县| 高清| 南岸区| 山阴县| 金门县| 日喀则市| 鸡东县| 新源县|