王軍濤
摘 要: 傳統(tǒng)二階特征估計法在對大數(shù)據(jù)方差進行估計,預測大型教學系統(tǒng)中的智能大數(shù)據(jù)關鍵特征時,存在對多特征的智能大數(shù)據(jù)關鍵特征估計效果不明顯,估計結果誤差累計量大的問題。因此,提出大型教學系統(tǒng)的智能大數(shù)據(jù)關鍵特征估計方法,其采用Relief關鍵特征估計方法獲取大數(shù)據(jù)特征權重,完成智能大數(shù)據(jù)特征流行學習,通過對特征權重選擇后的數(shù)據(jù)空間進行無監(jiān)督學習和低維嵌入,實現(xiàn)對多特征的智慧大數(shù)據(jù)的特征估計。基于大數(shù)據(jù)關鍵特征估計結果,采用滾動時間序列估計方法,通過[AR(p)]模型運算大數(shù)據(jù)特征的模型階數(shù),依據(jù)該階數(shù)向滾動AR算法引入實時數(shù)據(jù),解決大數(shù)據(jù)特征估計中估計結果不同步造成的累計誤差問題,實現(xiàn)智能大數(shù)據(jù)關鍵特征準確預測。實驗結果表明,所提方法可增強對關鍵特征的估計精度,對關鍵特征的估計效果也有所提高。
關鍵詞: 大型教學系統(tǒng); 智能大數(shù)據(jù); 關鍵特征; Relief; 時間序列估計; 累計誤差
中圖分類號: TN911?34; TP301 文獻標識碼: A 文章編號: 1004?373X(2018)12?0083?04
Abstract: The traditional two?order feature estimation method has the problems of unobvious key feature evaluation effect of multi?feature intelligent big data and big error accumulation quantity of evaluation results when it is used to estimate the variance of big data and predict the key features of intelligent big data in the large?scale teaching system. Therefore, a key feature estimation method for intelligent big data in the large?scale teaching system is proposed. The weights of big data features are obtained by using the key feature estimation method Relief to accomplish the popular learning of intelligent big data features. The unsupervised learning and low?dimensional embedding are performed for data space after feature weight selection, so as to realize the feature estimation of multi?feature intelligent big data. On the basis of the key feature estimation results of big data, the model order of big data features is calculated by using the rolling time series estimation method and [AR(p)] model. According to the order, real?time data is introduced to the rolling AR algorithm to resolve the accumulated error problem caused by unsynchronization of evaluation results in big data feature evaluation, so that accurate key feature prediction of intelligent big data can be realized. The experimental results show that the proposed method can improve the estimation precision and effect of key features.
Keywords: large scale teaching system; intelligent big data; key feature; Relief; time series estimation; accumulated error
教學系統(tǒng)中包含許多智能的大數(shù)據(jù),如何對其中關鍵的特征進行準確估計成為目前研究的熱點之一,專家和學者根據(jù)不同教學系統(tǒng)的數(shù)據(jù)特點已經(jīng)有一些研究成果[1],但研究還處于初級階段,傳統(tǒng)二階特征估計法在對大型教學系統(tǒng)中的智能大數(shù)據(jù)關鍵特征估計時,存在特征估計效果不明顯、特征估計誤差累計量大的問題。因此,本文研究大型教育系統(tǒng)的智能大數(shù)據(jù)關鍵特征估計方法,來提高關鍵特征估計結果的精度和效果。
1 智能大數(shù)據(jù)關鍵特征估計方法
1.1 Relief關鍵特征估計方法
針對大型教學系統(tǒng)中的智能大數(shù)據(jù),采取Relief特征估計方法對教學系統(tǒng)中的智能大數(shù)據(jù)的關鍵特征的權重進行估計[2],Relief方法用于數(shù)據(jù)關鍵特征的估計是因為其可以檢測一些在統(tǒng)計上與目標屬性不相關的關鍵特征。
3 結 論
本文提出的大型教學系統(tǒng)的智能大數(shù)據(jù)關鍵特征估計方法,可有效提高智能大數(shù)據(jù)的關鍵特征估計精度,增強特征估計效果。
參考文獻
[1] SU H, YANG H, ZHENG S. The large?scale crowd density estimation based on effective region feature extraction method [J]. Lecture notes in computer science, 2010, 6494: 302?313.
[2] 張凱鋒,楊國強,陳漢一,等.基于數(shù)據(jù)特征提取的風電功率預測誤差估計方法[J].電力系統(tǒng)自動化,2014,38(16):22?27.
ZHANG Kaifeng, YANG Guoqiang, CHEN Hanyi, et al. An estimation method for wind power forecast errors based on numerical feature extraction [J]. Automation of electric power systems, 2014, 38(16): 22?27.
[3] 李炳乾.對等P2P網(wǎng)絡中大數(shù)據(jù)關鍵特征挖掘模型仿真[J].計算機仿真,2014,31(11):294?296.
LI Bingqian. Model simulation of big data key characteristics mining for peer?to?peer networks [J]. Computer simulation, 2014, 31(11): 294?296.
[4] 張招亮,陳海明,黃庭培,等.無線網(wǎng)絡的差異化比特錯誤率估計方法[J].計算機研究與發(fā)展,2014,51(1):138?150.
ZHANG Zhaoliang, CHEN Haiming, HUANG Tingpei, et al. Differentiated bit error rate estimation for wireless networks [J]. Journal of computer research and development, 2014, 51(1): 138?150.
[5] 樊源泉,伍衛(wèi)國,許云龍,等.MapReduce環(huán)境中的性能特征能耗估計方法[J].西安交通大學學報,2015,49(2):14?19.
FAN Yuanquan, WU Weiguo, XU Yunlong, et al. A power estimation method based on performance features in MapReduce environments [J]. Journal of Xian Jiaotong University, 2015, 49(2): 14?19.
[6] 梁勝杰,張志華,高紹忠,等.基于變點分析思想的高維機械噪聲數(shù)據(jù)本征維估計方法[J].船舶力學,2016,20(11):1485?1493.
LIANG Shengjie, ZHANG Zhihua, GAO Shaozhong, et al. A method of latent characteristic variables dimensionality evaluating of high?dimensional mechanical noise data based change?point analysis [J]. Journal of ship mechanics, 2016, 20(11): 1485?1493.
[7] 唐建生,靳云姬,江向東.目標機動時刻估計的聲特征變化顯著性檢驗方法[J].系統(tǒng)工程與電子技術,2016,38(2):270?273.
TANG Jiansheng, JIN Yunji, JIANG Xiangdong. Target maneuver onset time estimation via significance test of acoustic feature variation [J]. Systems engineering and electronics, 2016, 38(2): 270?273.
[8] BI T, NI Y, SHEN C M, et al. An on?line distributed intelligent fault section estimation system for large?scale power networks [J]. Electric power systems research, 2002, 62(3): 173?182.
[9] 徐子偉,王鵬,陳宗海.一種基于Fisher比率和預測風險準則的電信客戶流失預測分步特征選擇方法[J].中國科學技術大學學報,2017,47(8):686?694.
XU Ziwei, WANG Peng, CHEN Zonghai. A two?stage feature selection method based on Fisher′s ratio and prediction risk for telecom customer churn prediction [J]. Journal of University of Science and Technology of China, 2017, 47(8): 686?694.
[10] SHOJI S, KOYAMA A. A fast classification method of isomorphic polygons in design data of large scale integrated circuit [C]// Proceedings of 10th International Conference on Complex, Intelligent, and Software Intensive Systems. Fukuoka: IEEE, 2016: 204?209.