• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      長(zhǎng)穗偃麥草谷蛋白改良小麥品質(zhì)的研究進(jìn)展

      2018-06-21 11:30:54王紅日劉愛(ài)峰李豪圣翟勝男曹新有劉成劉建軍趙振東宋健民郭軍
      山東農(nóng)業(yè)科學(xué) 2018年4期
      關(guān)鍵詞:小麥

      王紅日 劉愛(ài)峰 李豪圣 翟勝男 曹新有 劉成 劉建軍 趙振東 宋健民 郭軍

      摘要:我國(guó)小麥優(yōu)質(zhì)基因源較單一,品種間同質(zhì)化高問(wèn)題日趨突出,亟需挖掘和利用攜帶新基因的優(yōu)異育種資源。長(zhǎng)穗偃麥草具有生長(zhǎng)繁茂、種子蛋白質(zhì)含量高、抗旱、抗寒、抗病、耐鹽堿等優(yōu)異性狀,是小麥性狀改良的重要基因庫(kù)。本文從長(zhǎng)穗偃麥草種屬及基因組構(gòu)成、長(zhǎng)穗偃麥草高分子量谷蛋白(HMW-GS)在小麥遺傳改良中的應(yīng)用和長(zhǎng)穗偃麥草HMW-GS與小麥HMW-GS的遺傳關(guān)系三個(gè)方面進(jìn)行了綜述,并對(duì)其進(jìn)行了展望,以期為長(zhǎng)穗偃麥草HMW-GS在小麥遺傳改良中的應(yīng)用奠定基礎(chǔ)。

      關(guān)鍵詞:小麥;長(zhǎng)穗偃麥草;高分子量谷蛋白亞基;遺傳改良

      中圖分類(lèi)號(hào):S512.103.2文獻(xiàn)標(biāo)識(shí)號(hào):A文章編號(hào):1001-4942(2018)04-0154-06

      Abstract The sources of high quality genes in wheat are more singleness and the problem of homogenization between varieties is becoming more and more serious in China. Therefore, it is necessary to excavate and utilize excellent breeding resources carrying new genes. Thinopyrum elongatum with many excellent characteristics, such as grow prolifically, high seed protein content and drought, cold, disease and saline-alkaline resistances, is the important gene pool for wheat improvement. We summarized and prospected three parts in this paper including genome composition of Thinopyrum elongatum and its species, the application of HMW-GS from Thinopyrum elongatum in wheat improvement and the genetic relationship between HMW-GS genes from Thinopyrum elongatum and wheat respectively. It was hoped that the results could lay foundations for wheat improvement by HMW-GS from Thinopyrum elongatum.

      Keywords Wheat; Thinopyrum elongatum; High molecular weight glutenin subunits (HMW-GS); Genetic improvement

      小麥面粉能夠制作成面條、饅頭、面包、糕點(diǎn)等多種食品,滿(mǎn)足不同地區(qū)、不同民族的消費(fèi)需求,這主要是由儲(chǔ)藏蛋白決定的。小麥儲(chǔ)藏蛋白由醇溶蛋白和谷蛋白組成,谷蛋白由高分子量谷蛋白亞基(high molecular weight glutenin subunits,HMW-GS)和低分子量谷蛋白亞基(low molecular weight glutenin subunits,LMW-GS)構(gòu)成,高分子量谷蛋白亞基在面包烘烤品質(zhì)中起著重要作用。因此,挖掘、利用優(yōu)異的高分子量谷蛋白亞基基因和創(chuàng)制優(yōu)質(zhì)小麥種質(zhì)資源,對(duì)于高產(chǎn)優(yōu)質(zhì)小麥新品種培育具有重要意義。

      普通小麥包含眾多近緣植物,如偃麥草、黑麥、山羊草、斯卑爾脫小麥、西藏半野生小麥、瑪卡小麥等,這些物種中含有豐富的HMW-GS基因[1,2]。從小麥近緣植物中,如長(zhǎng)穗偃麥草,挖掘和轉(zhuǎn)移利用這些HMW-GS基因是改良小麥品質(zhì)的重要途徑之一[3-6]。本研究從長(zhǎng)穗偃麥草種屬及基因組構(gòu)成、長(zhǎng)穗偃麥草HMW-GS在小麥遺傳改良中的應(yīng)用和長(zhǎng)穗偃麥草HMW-GS與小麥HMW-GS的遺傳關(guān)系三個(gè)方面進(jìn)行了綜述,并對(duì)其在小麥遺傳改良中的應(yīng)用進(jìn)行了展望。

      1 長(zhǎng)穗偃麥草種屬、基因組構(gòu)成及其進(jìn)化研究長(zhǎng)穗偃麥草[Elytrigia elongata (Host) Nevski=Agropyron elongatum (Host) Beanv = Thinopyrum elongatum (Host) D. R. Dewey]是小麥的近緣植物之一,包括二倍體長(zhǎng)穗偃麥草(Th. elongatum)、四倍體長(zhǎng)穗偃麥草(Th. scirpeum)、十倍體長(zhǎng)穗偃麥草(Th. ponticum),具有生長(zhǎng)繁茂、種子蛋白質(zhì)含量高、多花多實(shí)、抗旱、抗寒、抗病、耐鹽堿等優(yōu)異性狀,是小麥性狀改良的重要基因庫(kù)[7-11, 47]。

      減數(shù)分裂期染色體配對(duì)觀察、原位雜交技術(shù)和分子標(biāo)記技術(shù)已經(jīng)廣泛應(yīng)用于禾本科作物的遺傳關(guān)系和進(jìn)化關(guān)系研究[11-17]。長(zhǎng)穗偃麥草的基因組構(gòu)成基本單位包括Ee或J(二倍體長(zhǎng)穗偃麥草Th. elongatum)、Eb或J(百薩拉比偃麥草Th. bessarabicum)和St(假鵝觀草Pseudoroegneria strigosa),因此二倍體長(zhǎng)穗偃麥草基因組為Ee、四倍體長(zhǎng)穗偃麥草基因組為J1J2或E1E2、十倍體長(zhǎng)穗偃麥草基因組為EeEbExStSt或JJJStSt[8, 18,19, 51]。

      自然界中偃麥草是如何進(jìn)化的這個(gè)問(wèn)題目前尚沒(méi)有科學(xué)的定論,但從前人的研究中,能夠推斷其可能的進(jìn)化過(guò)程。偃麥草的進(jìn)化與普通小麥的進(jìn)化類(lèi)似,也經(jīng)歷了多次種間雜交和染色體自然加倍。偃麥草的進(jìn)化史包括以下3個(gè)過(guò)程:首先,二倍體物種間天然雜交,后經(jīng)染色體自然加倍產(chǎn)生四倍體偃麥草[20, 21]。其次,四倍體偃麥草與二倍體物種發(fā)生天然雜交,后經(jīng)染色體自然加倍,產(chǎn)生六倍體偃麥草。最后,六倍體偃麥草與四倍體偃麥草間發(fā)生天然雜交,后經(jīng)染色體自然加倍,產(chǎn)生十倍體長(zhǎng)穗偃麥草[22]。偃麥草的一般進(jìn)化史如圖1所示。

      2 長(zhǎng)穗偃麥草HMW-GS在小麥遺傳改良中的應(yīng)用研究十倍體長(zhǎng)穗偃麥草具有種子蛋白質(zhì)含量高、大穗多花等優(yōu)良性狀,是小麥遺傳改良應(yīng)用最多的小麥近緣物種之一。與普通小麥類(lèi)似,長(zhǎng)穗偃麥草的高分子量谷蛋白是由第一同源群染色體控制編碼的[1, 23, 24, 50],如圖2所示。早在1935年,美國(guó)科學(xué)家就獲得了小麥與長(zhǎng)穗偃麥草的雜種,并對(duì)雜種后代進(jìn)行了細(xì)胞遺傳學(xué)研究[25, 26],獲得了一系列小麥-長(zhǎng)穗偃麥草雙二倍體,如Agrotana、OK7211542、PWM706、ORRPX、PWM III、PWM 209和BE-1等[16, 27, 28, 48],其中BE-1不僅種子蛋白質(zhì)含量高,而且還抗小麥葉銹病和白粉病,是小麥遺傳改良的重要基因源。相比之下,我國(guó)開(kāi)展這一工作相對(duì)較晚,20世紀(jì)50年代,我國(guó)科學(xué)家開(kāi)始進(jìn)行普通小麥與十倍體長(zhǎng)穗偃麥草的雜交育種工作,并獲得了一系列小偃麥,如小偃7631、小偃759、小偃22、SN20、SN122等[7, 29-31]。雖然開(kāi)展的較晚,但是我國(guó)在利用十倍體長(zhǎng)穗偃麥草改良小麥方面取得了舉世矚目的成績(jī),如1981年育成第一個(gè)小麥-十倍體長(zhǎng)穗偃麥草小麥新品種—小偃6號(hào),該品種不僅表現(xiàn)高產(chǎn)廣適,而且還表現(xiàn)優(yōu)質(zhì)多抗,在陜西關(guān)中等地大面積推廣20多年,累計(jì)推廣1.0×107 hm2,最大年推廣面積超過(guò)6.7×105 hm2,1985獲國(guó)家發(fā)明一等獎(jiǎng),該品種現(xiàn)已成為我國(guó)小麥育種的重要骨干親本之一[32-34]。另外,我國(guó)科學(xué)家在國(guó)際上率先創(chuàng)立了小麥體細(xì)胞雜交轉(zhuǎn)移異源染色體小片段的新技術(shù),通過(guò)體細(xì)胞融合的方法,成功創(chuàng)制了一系列小麥-十倍體長(zhǎng)穗偃麥草細(xì)胞融合系,如Ⅰ-4、Ⅱ-12(籽粒蛋白質(zhì)含量高)和山融3號(hào)(耐鹽)[35,36],其中山融3號(hào)于2004年通過(guò)新品種審定,平均公頃產(chǎn)量3 487 kg,為進(jìn)一步在鹽堿地和旱肥地大面積推廣奠定了基礎(chǔ),2006年被列為山東省主推品種。劉樹(shù)偉[37]、吳衛(wèi)東[38]和Gao[39]等對(duì)小麥-十倍體長(zhǎng)穗偃麥草細(xì)胞融合后代進(jìn)行谷蛋白基因分析,發(fā)現(xiàn)雜種株系具有新亞基的比例非常高,進(jìn)一步分析發(fā)現(xiàn)這些新亞基有3個(gè)來(lái)源:(1)直接來(lái)自十倍體長(zhǎng)穗偃麥草,但是有個(gè)別堿基發(fā)生突變;(2)來(lái)自親本小麥,但產(chǎn)生了大量堿基突變或重復(fù)單元的突變和重復(fù);(3)來(lái)自普通小麥和十倍體長(zhǎng)穗偃麥草HMW-GS基因的融合。

      相比之下,四倍體長(zhǎng)穗偃麥草和二倍體長(zhǎng)穗偃麥草HMW-GS在小麥遺傳改良中的應(yīng)用研究較少。二倍體長(zhǎng)穗偃麥草含有品質(zhì)、抗旱、耐鹽和抗赤霉病等優(yōu)異基因,是小麥遺傳改良的三級(jí)基因庫(kù)[1, 40-43, 49]。二倍體長(zhǎng)穗偃麥草的高分子量谷蛋白是由1Ee染色體(暫命名為Glu-Ee1)控制編碼的,且二倍體長(zhǎng)穗偃麥草1Ee染色體高分子量谷蛋白的表達(dá)模式與普通小麥類(lèi)似,即同時(shí)編碼兩個(gè)亞基(x亞基和y亞基,分別命名為Glu-Ee1x和Glu-Ee1y)[1, 24]。研究表明,與中國(guó)春相比,小麥-二倍體長(zhǎng)穗偃麥草染色體異附加系(DAL1E)的SDS沉降值更大(圖3),峰值更高,帶更寬[44],這說(shuō)明二倍體長(zhǎng)穗偃麥草HMW-GS能夠用來(lái)改良普通小麥的品質(zhì)。然而,這些基因或遺傳資源目前絕大多數(shù)還處于理論研究或種質(zhì)資源開(kāi)發(fā)創(chuàng)制階段,并未在小麥遺傳改良中進(jìn)行廣泛的應(yīng)用,究其原因是因?yàn)槠胀ㄐ←溔旧w與二倍體長(zhǎng)穗偃麥草染色體不能自由進(jìn)行重組,限制了其在小麥育種上的應(yīng)用。

      3 長(zhǎng)穗偃麥草HMW-GS與小麥HMW-GS間的遺傳關(guān)系目前,NCBI已經(jīng)收錄的長(zhǎng)穗偃麥草HMW-GS基因至少有27個(gè),而涉及小麥和山羊草的HMW-GS基因則分別多達(dá)200余個(gè)和91余個(gè)。然而,關(guān)于長(zhǎng)穗偃麥草HMW-GS基因與小麥HMW-GS基因關(guān)系的研究較少,且缺乏系統(tǒng)性的研究[35, 36, 44]。筆者從NCBI網(wǎng)站下載了11個(gè)普通小麥HMW-GS基因、26個(gè)長(zhǎng)穗偃麥草HMW-GS基因、6個(gè)提莫菲維小麥HMW-GS基因和24個(gè)山羊草屬HMW-GS基因序列,利用Mega 6.0軟件,在Jones-Taylor-Thornton (JTT) 模式下,構(gòu)建了長(zhǎng)穗偃麥草和小麥HMW-GS基因間的Neighbor-jointing進(jìn)化樹(shù),從圖4可以看出,小麥屬和偃麥草屬間HMW-GS基因遺傳關(guān)系進(jìn)化樹(shù)分為Ⅰ和Ⅱ兩個(gè)大類(lèi)。其中,第一個(gè)大類(lèi)又分為3個(gè)亞類(lèi),即Ⅰ-1(山羊草屬x型HMW-GS基因)、Ⅰ-2(山羊草屬y型HMW-GS基因)和Ⅰ-3(小麥、中間偃麥草、二倍體長(zhǎng)穗偃麥草和十倍體長(zhǎng)穗偃麥草x型HMW-GS基因);第二個(gè)大類(lèi)包括2個(gè)亞類(lèi),即Ⅱ-1(小麥屬、二倍體長(zhǎng)穗偃麥草和燈芯偃麥草y型HMW-GS基因)和Ⅱ-2(小麥屬和偃麥草屬x型HMW-GS基因)。這更能反映多倍體偃麥草屬基因組的復(fù)雜性。

      4 展望

      4.1 小麥-近緣植物Glu-1位點(diǎn)易位系種質(zhì)資源創(chuàng)制

      小麥-偃麥草短片段易位系創(chuàng)制工作較難,一方面是由于小麥染色體與長(zhǎng)穗偃麥草染色體間不能自由進(jìn)行重組,另一方面即使有重組后代但是傳統(tǒng)細(xì)胞學(xué)鑒定效率較低,很難篩選到含目的基因的短片段易位系。為解決以上問(wèn)題,研究人員將分子標(biāo)記技術(shù)與原位雜交技術(shù)相結(jié)合,顯著地提高了短片段易位系的創(chuàng)制效率[45,46],該程序包括兩步:首先,利用中國(guó)春Ph1b突變體誘導(dǎo)小麥與偃麥草染色體部分同源重組,提高重組率;其次,開(kāi)發(fā)偃麥草染色體特異分子標(biāo)記,并根據(jù)小麥分子標(biāo)記物理圖譜/遺傳圖譜,對(duì)小麥-偃麥草染色體重組后代進(jìn)行預(yù)篩選/輔助篩選,淘汰非易位系株系/非重組株系,提高細(xì)胞學(xué)鑒定效率。

      鑒于普通小麥1A染色體編碼的有效HMW-GS類(lèi)型較少(僅有Ax1和Ax2*亞基),且小麥優(yōu)質(zhì)基因源比較單一,品種間同質(zhì)化高問(wèn)題日趨突出,急需挖掘和創(chuàng)制新的優(yōu)質(zhì)基因資源。研究顯示,小麥近緣植物(二倍體長(zhǎng)穗偃麥草、卵穗山羊草、高大山羊草、中間偃麥草和西爾斯山羊草)Glu-1位點(diǎn)可以顯著提高籽粒SDS沉降值,說(shuō)明小麥近緣植物Glu-1位點(diǎn)可以用于小麥品質(zhì)遺傳改良。因此,在今后的研究中,應(yīng)把重點(diǎn)放在小麥-近緣種染色體高分子量谷蛋白亞基易位系創(chuàng)制工作上,即通過(guò)分子染色體工程(X射線(xiàn)、ph1b誘導(dǎo)部分同源重組等)將近緣植物Glu-1位點(diǎn)轉(zhuǎn)移到普通小麥1AL染色體上,創(chuàng)制近緣植物Glu-1位點(diǎn)易位系,豐富優(yōu)質(zhì)小麥育種資源,對(duì)于小麥品質(zhì)改良具有重要意義。

      4.2 基于Glu-1基因序列信息構(gòu)建小麥屬和近緣種屬間的進(jìn)化樹(shù)

      編碼高分子量谷蛋白亞基的基因在小麥近緣植物間具有高度的保守性,通過(guò)克隆不同小麥近緣植物的HMG-GS基因,通過(guò)聚類(lèi)分析可以用于研究HMG-GS基因在二倍體、四倍體和六倍體小麥近緣種間的進(jìn)化關(guān)系,同時(shí)通過(guò)轉(zhuǎn)基因手段研究外源HMW-GS對(duì)小麥品質(zhì)的影響,為小麥品質(zhì)遺傳改良提供更為廣泛的基因源。

      參 考 文 獻(xiàn):

      [1] 唐朝暉, 劉守斌, 尤明山, 等. 普通小麥背景中長(zhǎng)穗偃麥草高分子量麥谷蛋白基因的表達(dá)、染色體定位與分子標(biāo)記[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2003, 11(1):34-39.

      [2] 王海燕, 王秀娥, 陳佩度, 等. 云南、西藏與新疆小麥高分子量谷蛋白亞基組成及遺傳多樣性分析[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2005, 38(2):228-233.

      [3] 陳國(guó)躍, 李立會(huì). 人工合成六倍體小麥的高分子量谷蛋白亞基組成分析[J]. 麥類(lèi)作物學(xué)報(bào), 2005, 25(1):94-97.

      [4] Allaby R G, Banerjee M, Brown T A. Evolution of the high molecular weight glutenin loci of the A, B, D, and G genomes of wheat [J]. Genome, 1999, 42:296-307.

      [5] Yan Y, Slk H, Yu J, et al. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis [J]. Euphytica, 2003, 130:377-385.

      [6] Xu L L, Li W, Wei Y M, et al. Genetic diversity of HMW glutenin subunits in diploid, tetraploid and hexaploid Triticum species [J]. Genetic Resources and Crop Evolution, 2009, 56:377-391.

      [7] 李振聲, 陳漱陽(yáng), 張楷. 普通小麥與長(zhǎng)穗偃麥草的雜交育種及其遺傳分析[J]. 遺傳學(xué)報(bào), 1977, 4(4):283-293.

      [8] Colmer T D, Flowers T J, Munns R. Use of wild relatives to improve salt tolerance in wheat [J]. Journal of Experimental Botany, 2006, 57:1059.

      [9] Hajjar R, Hodgkin T. The use of wild relatives in crop improvement: a survey of developments over the last 20 years [J]. Euphytica,2007, 156:1-13.

      [10]Li H, Wang X. Thinopyrum ponticumm and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat [J]. Journal of Genetics and Genomics, 2009, 36:557-565.

      [11]Guo J, He F, Cai J J, et al. Molecular and cytological comparisons of chromosomes 7el1, 7el2, 7Ee, and 7Ei derived from Thinopyrum [J]. Cytogenetic and Genome Research, 2015, 145:68-74.

      [12]Wang R R C. Genome analysis of Thinopyrum bessarabicum and T. elongatum[J]. Genome, 2011, 27:722-728.

      [13]Hsiao C, Chatterton N J, Asay K H, et al. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences [J]. Genome,1995, 38:211-223.

      [14]Jauhar P P. Meiosis and fertility of F1 hybrids between hexaploid bread wheat and decaploid tall wheatgrass (Thinopyrum ponticumm) [J]. Theoretical and Applied Genetics, 1995, 90:865-871.

      [15]Cai X, Jones S. Direct evidence for high level of autosyndetic pairing in hybrids of Thinopyrum intermedium and Th. ponticum with Triticum aestivum [J]. Theoretical and Applied Genetics, 1997, 95:568-572.

      [16]Chen Q, Conner R L, Laroche A, et al. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticumm using genomic in situ hybridization [J]. Genome, 1998, 41:580.

      [17]Guo J, Yu X, Yin H, et al. Phylogenetic relationships of Thinopyrum and Triticum species revealed by SCoT and CDDP markers [J]. Plant Systematics and Evolution, 2016, 302:1-9.

      [18]郭軍. 長(zhǎng)穗偃麥草抗赤霉病基因Fhb7遺傳圖譜的加密及其標(biāo)記輔助轉(zhuǎn)移[D]. 泰安:山東農(nóng)業(yè)大學(xué), 2015.

      [19]Wang R R C, Lu B. Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses [J]. Journal of Systematics and Evolution, 2014, 52:697-705.

      [20]Yu H, Fan X, Zhang C, et al. Phylogenetic relationships of species in Pseudoroegneria (Poaceae: Triticeae) and related genera inferred from nuclear rDNA ITS (internal transcribed spacer) sequences[J]. Biologia, 2008, 63: 498-505.

      [21]Yen C, Yang J, Yen Y. Hitoshi Kihara, skell Lve and the modern genetic concept of the genera in the tribe Triticeae (Poaceae) [J]. Acta Phytotax Sin, 2005, 43 : 82-93.

      [22]陸坤, 徐柱, 劉朝, 等. St基因組中的CRW 同源序列在偃麥草中的FISH分析[J]. 遺傳, 2009, 31(11): 1141-1148.

      [23]李娜, 王獻(xiàn)平, 曹雙河, 等. 四倍體長(zhǎng)穗偃麥草(Agropyron elongatumm 4x)染色體組構(gòu)成的生化和SSR標(biāo)記分析[J]. 遺傳學(xué)報(bào), 2005,32(6):571-578.

      [24]Lawrence G J, Shepherd K W. Chromosomal location of genes controlling seed proteins in species related to wheat [J]. Theoretical and Applied Genetics, 1981, 59:25-31.

      [25]Armstrong J M. Hybridization of Triticum and Agropyron: Ⅰ. Crossing results and description of the first generation hybrids [J]. Canadian Journal of Research, 1936, 14:190-202.

      [26]Peto F H. Hybridization of Triticum and Agropyron:Ⅱ. Cytology of the male parents and F1 generation [J]. Canadian Journal of Research, 1936, 14:203-214.

      [27]Szalay D.Fajés nemzetséghibridek felhasználása a búzanemesítésben(Use of interspecific and intergenomic hybrids in wheat breeding) [J]. A búza jelene és jvje (The present and future of wheat), 1979: 61-66.

      [28]Sepsi A, Molnár I, Szalay D, et al. Characterization of a leaf rust-resistant wheat-Thinopyrum ponticumm partial amphiploid BE-1, using sequential multicolor GISH and FISH [J]. Theoretical and Applied Genetics, 2008, 116:825-834.

      [29]李振聲, 陳潄陽(yáng), 李容玲, 等. 小麥—偃麥草雜種夭亡與不孕問(wèn)題的探討——小麥與偃麥草雜交的研究(二) [J]. 作物學(xué)報(bào), 1962, 1(1):19-26.

      [30]崔淑佳, 盧虹, 崔雨, 等. 小麥-長(zhǎng)穗偃麥草矮稈種質(zhì)系的鑒定及遺傳分析 [J]. 核農(nóng)學(xué)報(bào), 2015, 29(3):435-441.

      [31]He F, Xu J, Qi X, et al. Molecular cytogenetic characterization of two partial wheat Elytrigia elongata amphiploids resistant to powdery mildew [J]. Plant Breeding, 2013, 132:553-557.

      [32]李振聲. 小麥遠(yuǎn)緣雜交新品種——小偃6號(hào) [J]. 山西農(nóng)業(yè)科學(xué),1986(5):18.

      [33]董玉琛. 小麥遠(yuǎn)緣雜交育種[C]//小麥遺傳育種國(guó)際學(xué)術(shù)討論會(huì), 2001.

      [34]張愛(ài)民, 童依平, 王道文. 小麥遺傳育種學(xué)家李振聲[J]. 遺傳, 2008, 30(10):1239-1240.

      [35]Wang M C, Peng Z Y, Li C L, et al. Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticumm [J]. Proteomics, 2008, 8:1470-1489.

      [36]Liu H, Liu S W, Xia G M. Generation of high frequency of novel alleles of the high molecular weight glutenin in somatic hybridization between bread wheat and tall wheatgrass [J]. Theoretical and Applied Genetics, 2009, 118:1193-1198.

      [37]劉樹(shù)偉. 小麥/長(zhǎng)穗偃麥草體細(xì)胞雜種漸滲系基因組變異研究[D]. 濟(jì)南:山東大學(xué), 2007.

      [38]吳衛(wèi)東, 石壘, 李淑芳, 等. 小麥體細(xì)胞雜種漸滲系F6代的高分子量谷蛋白亞基組成與位點(diǎn)變異[J]. 麥類(lèi)作物學(xué)報(bào), 2010, 30(5):926-929.

      [39]Gao X, Liu S W, Sun Q, et al. High frequency of HMW-GS sequence variation through somatic hybridization between Agropyron elongatumm and common wheat [J]. Planta, 2010, 231:245-250.

      [40]Shen X, Kong L, Ohm H. Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers [J]. Theoretical and Applied Genetics, 2004, 108:808-813.

      [41]Dwivedi S L, Upadhyaya H D, Thomas S H, et al. Enhancing crop gene pools with beneficial traits using wild relatives[J]. Plant Breeding Reviews, 2008, 30: 179-230.

      [42]Mullan D J, Mirzaghaderi G, Walker E, et al. Development of wheat-Lophopyrum elongatum recombinant lines for enhanced sodium ‘exclusion during salinity stress [J]. Theoretical and Applied Genetics, 2009, 119:1313-1323.

      [43]Fu S, Lv Z, Bao Q, et al. Molecular cytogenetic characterization of wheat-Thinopyrum elongatumum addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium head blight [J]. Journal of Genetics and Genomics, 2012, 39:103-110.

      [44]Garg M, Tanaka H, Tsujimoto H, et al. Exploration of Triticeae seed storage proteins for improvement of wheat end-product quality [J]. Breeding Science, 2009, 59:519-528.

      [45]Niu Z, Klindworth D L, Friesen T L, et al. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering [J]. Genetics, 2011, 187(4): 1011-1021.

      [46]Guo J, Zhang X, Hou Y, et al. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticumm and its pyramiding with Fhb1 by marker-assisted selection [J]. Theoretical and Applied Genetics, 2015, 128:2301-2316.

      [47]彭遠(yuǎn)英, 彭正松, 宋會(huì)興. 小麥中國(guó)春背景下長(zhǎng)穗偃麥草光合作用相關(guān)基因的染色體定位[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2005, 38(11):2182-2188.

      [48]Chen Q, Conner R L, Ahmad F, et al. Molecular characterization of the genome composition of partial amphiploids derived from Triticum aestivum × Thinopyrum ponticumm and T. aestivum×Th. intermedium as sources of resistance to wheat streak mosaic virus and its vector, Aceria tosichella[J]. Theoretical and Applied Genetics, 1998, 97:1-8.

      [49]Monika G, Hiroyuki T, Naoyuki I, et al. Agropyron elongatumm HMW-glutenins have a potential to improve wheat end-product quality through targeted chromosome introgression [J]. Journal of Cereal Science, 2009, 50:358-363.

      [50]Shewry P R, Halford N G, Lafiandra D. Genetics of wheat gluten proteins [J]. Advances in Genetics, 2003, 49:111-184.

      [51]Wang R R C. Genome analysis of Thinopyrum bessarabicum and T. elongatum[J]. Genome, 2011, 27:722-728.

      猜你喜歡
      小麥
      主產(chǎn)區(qū)小麥?zhǔn)召?gòu)進(jìn)度過(guò)七成
      小麥測(cè)產(chǎn)迎豐收
      小麥春季化控要掌握關(guān)鍵技術(shù)
      小麥常見(jiàn)三種病害咋防治
      孔令讓的“小麥育種夢(mèng)”
      金橋(2021年10期)2021-11-05 07:23:28
      葉面施肥實(shí)現(xiàn)小麥畝增產(chǎn)83.8千克
      小麥高產(chǎn)栽培技術(shù)探討
      種植流翔高鈣小麥 促進(jìn)農(nóng)民增收致富
      哭娃小麥
      新季小麥?zhǔn)袌?chǎng)運(yùn)行的變與不變
      福清市| 南澳县| 澄江县| 扎兰屯市| 桂东县| 乐陵市| 苏尼特右旗| 抚松县| 汾西县| 平武县| 海原县| 灌南县| 英德市| 尚义县| 宜宾市| 巴马| 旅游| 庆元县| 孝感市| 文安县| 青岛市| 灵璧县| 肥西县| 斗六市| 长阳| 曲麻莱县| 墨玉县| 雅江县| 海城市| 南汇区| 棋牌| 昌图县| 云霄县| 灯塔市| 灵寿县| 和龙市| 邵阳市| 沙坪坝区| 施甸县| 城固县| 淮北市|