• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      結(jié)合全局信息的LIF模型圖像分割方法

      2018-06-27 07:53:16李丙春張宗虎
      關(guān)鍵詞:輪廓全局局部

      劉 晨,池 濤,李丙春,張宗虎

      (1.喀什大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院,新疆 喀什 844006; 2.上海海洋大學(xué)信息學(xué)院,上海 200030)

      0 引言

      圖像分割是圖像處理和計(jì)算機(jī)視覺領(lǐng)域的基礎(chǔ)性工作.近年來,具有良好理論基礎(chǔ)和較好分割結(jié)果的水平集方法[1]得到研究學(xué)者的廣泛關(guān)注.

      水平集方法在能量泛函極小化理論框架下可以引入圖像信息,使其具有很強(qiáng)的適應(yīng)性.水平集方法一般分為基于邊緣和基于區(qū)域的2種類型.它們分別利用邊緣信息和區(qū)域的統(tǒng)計(jì)特性驅(qū)動活動輪廓向目標(biāo)邊界靠近.本文研究模型屬于后一種類型.文獻(xiàn)[2]提出CV模型,利用圖像的全局區(qū)域信息,使用全局二值分段常數(shù)驅(qū)動活動輪廓向目標(biāo)邊緣逼近;文獻(xiàn)[3]利用圖像局部鄰域信息擬合局部能量,提出局部二值擬合LBF模型;文獻(xiàn)[4]提出LIF模型,利用局部圖像擬合能量提取局部圖像信息達(dá)到分割圖像的目的;文獻(xiàn)[5]結(jié)合CV和LBF模型,提出一種融合圖像局部和全局信息的線性擬合模型;文獻(xiàn)[6]先利用退化的CV模型得到圖像粗分割,在粗分割的基礎(chǔ)上利用圖像局部信息得到圖像的最終分割結(jié)果;文獻(xiàn)[7]將圖像分割看成聚類進(jìn)行處理,在處理過程中引入相關(guān)熵準(zhǔn)則,從而提出基于局部相關(guān)熵LCK模型;文獻(xiàn)[8]使用加權(quán)的核映射函數(shù)將離散化圖像數(shù)據(jù)映射到高維空間,從而提出基于粗糙集和新能量公式的水平集方法.

      LIF模型利用圖像局部信息構(gòu)造局部圖像擬合函數(shù),但該模型對初始輪廓的大小和位置敏感,只有在合適的初始輪廓下才能得到正確的的分割結(jié)果.文獻(xiàn)[9]首先構(gòu)造全局圖像擬合GIF模型,然后線性組合LIF和GIF模型,從而形成LIF-GIF模型;文獻(xiàn)[10]通過利用CV模型的全局?jǐn)M合函數(shù)和LIF模型的局部擬合函數(shù)線性組合,提出CV-LIF模型.2種模型對初始輪廓的敏感性有一定抑制,但2種模型抗噪性不強(qiáng),分割結(jié)果易受噪聲影響.

      CV模型利用圖像全局信息,用二值分段常數(shù)函數(shù)逼近圖像目標(biāo)輪廓,對初始輪廓具有較強(qiáng)的魯棒性.我們提出一種結(jié)合圖像全局信息的LIF模型水平集方法,先利用圖像全局信息得到目標(biāo)的粗分割輪廓,在此基礎(chǔ)上利用局部信息得到最終精確分割結(jié)果.

      CV模型和LIF模型中的擬合函數(shù)是對活動輪廓內(nèi)外部區(qū)域的灰度全局和局部加權(quán)平均,相當(dāng)于在活動輪廓的內(nèi)外進(jìn)行均值濾波,所以2種模型對高斯噪聲有一定的抗噪性,但是對椒鹽噪聲不能取得令人滿意的分割結(jié)果,中值濾波可以較好地去除椒鹽噪聲,本文在原有的CV模型和LIF模型的能量函數(shù)基礎(chǔ)上新增加一個(gè)擬合項(xiàng),提高對椒鹽噪聲的抗噪性.并且利用一種新的邊緣檢測算子,進(jìn)一步提高模型對噪聲圖像分割的抗噪性.

      1 CV和LIF模型

      1.1 CV模型

      CV模型使用圖像的全局信息建立能量泛函,定義為

      ECV(c1,c2,φ)=λ1?|I-c1|2dxdy+λ2?|I-c2|2dxdy.

      (1)

      利用梯度下降法得到CV模型的演化方程為

      (2)

      (2)式中c1=?IH(φ)dxdy/?H(φ)dxdy,c2=?I(1-H(φ))dxdy/?(1-H(φ))dxdy.

      1.2 LIF模型

      給定圖像I,在圖像區(qū)域Ω中C表示閉合曲線,將區(qū)域Ω分成2部Ω1=outside(C),Ω2=inside(C).則曲線C就可以看成目標(biāo)圖像的輪廓,LIF模型能量函數(shù)定義為

      (3)

      (3)式中ILIF=m1H(φ)+m2(1-H(φ)).m1和m2分別定義為:

      m1(x)=mean(I∈({x∈Ω|φ(x)<0}∩K(x)));
      m2(x)=mean(I∈({x∈Ω|φ(x)>0}∩K(x))).

      (4)

      利用變分法和梯度下降法,(3)式的梯度下降流為

      (5)

      使用一個(gè)高斯核函數(shù)規(guī)則化水平集函數(shù),即φ=φ*Gξ.

      2 本文模型

      2.1 提出的擬合項(xiàng)

      在CV模型中,根據(jù)計(jì)算公式c1和c2分別是活動輪廓內(nèi)外部區(qū)域的圖像灰度均值,在LIF模型中,從擬合函數(shù)m1(x)和m2(x)公式可知:m1(x)和m2(x)分別表示以x為中心,活動輪廓內(nèi)外區(qū)域的局部灰度加權(quán)均值.從CV和LIF 2種模型公式中可以看出,其等價(jià)于對圖像進(jìn)行了全局和局部均值濾波.所以2種模型對高斯噪聲有一定的抗噪性,但對椒鹽噪聲污染的圖像不能得到滿意的分割結(jié)果.中值濾波對椒鹽噪聲具有較好的抑制作用.

      mg1=med{I(x,y):(x,y)∈φ,φ(x,y)>0},mg2=med{I(x,y):(x,y)∈φ,φ(x,y)<0};

      (6)

      (7)

      med是中值算子,*表示卷積運(yùn)算.從而定義新的擬合能量項(xiàng):

      (8)

      其中ILMD=ml1H(φ)+ml2(1-H(φ)).

      2.2 測地弧長正則項(xiàng)

      通常將活動輪廓C的弧長作為正則項(xiàng)引入到能量函數(shù)中,則在水平集方程演化過程中可以保持輪廓的平滑,活動輪廓弧長能量函數(shù)定義為

      (9)

      梯度下降流方程為

      (10)

      (10)式可能會使得水平集函數(shù)過度平滑,根據(jù)文獻(xiàn)[12]可知,使用活動輪廓測地弧長來解決這個(gè)問題.測地弧長能量函數(shù)定義為

      (11)

      (12)

      g=1/(1+|N(Gσ×I)|2).

      (13)

      2.3 懲罰能量

      水平集函數(shù)需要在演化過程中保持為符號距離函數(shù),使得活動輪廓在演化過程保持穩(wěn)定,在數(shù)值計(jì)算中需要不斷重新初始化水平集函數(shù)為符號距離函數(shù),但重新初始化的計(jì)算量大,分割速度慢.文獻(xiàn)[14]提出了一種符號距離懲罰能量函數(shù),定義為

      (14)

      2.4 本文構(gòu)建的模型

      結(jié)合CV模型和LIF模型中全局?jǐn)M合能量ECV、局部擬合能量項(xiàng)ELIF、測地弧長能量項(xiàng)El、懲罰能量項(xiàng)Ep和本文新提出的擬合能量項(xiàng)Egn與Eln,得到能量函數(shù)

      E=a(α1ECV+β1Egn)+b(α2ELIF+β2Eln+κEl+μEp).

      (15)

      其中a,b,α,β,κ,μ為正的實(shí)數(shù),α和β是調(diào)整全局?jǐn)M合能量ECV、局部擬合能量項(xiàng)ELIF和本文新提出的擬合能量項(xiàng)Egn與Eln的權(quán)重.本文固定取α=1,β=0.01,最終的能量函數(shù)為

      (16)

      利用變分法和梯度下降法,關(guān)于水平集φ的梯度下降流為

      (17)

      (17)式中窗口尺寸大小以高斯核參數(shù)為標(biāo)準(zhǔn),取2σ+1.選取K為核函數(shù),高斯核函數(shù)定義為

      (18)

      其中σ為尺度參數(shù),本文取σ=5.在原LIF模型中的Gξ也是一個(gè)高斯核函數(shù),在本文中依據(jù)噪聲的不同,ξ取不同值,取值范圍為0.5~3.5,低噪聲取0.5,高噪聲取2.5.公式中采用正則化Heaviside和Dirac函數(shù),分別定義為:

      (19)

      本文選取ε=1.

      在F(I,φ)的作用下,經(jīng)過有限次迭代后水平集函數(shù)會達(dá)到一個(gè)穩(wěn)態(tài)解.根據(jù)上述討論,本文提出結(jié)合圖像全局信息的LIF模型水平集方法為2個(gè)階段.

      第1階段.使用圖像的全局信息得到圖像的粗分割輪廓,此過程只利用了圖像的全局信息,令a=1,b=0.設(shè)置初始階段的迭代次數(shù)為10,此時(shí)演化方程為

      (20)

      為了簡化計(jì)算過程,令λ1=λ2=1.

      第2階段.在第1階段得到的粗分割的基礎(chǔ)上,使用圖像的局部信息分割得到圖像最終精確輪廓.令a=0,b=1,此時(shí)演化方程為

      (21)

      并使用高斯核函數(shù)規(guī)則化水平集函數(shù).

      3 實(shí)驗(yàn)結(jié)果及分析

      本文在不同噪聲污染的圖像上驗(yàn)證提出模型的有效性,并且和CV模型[2]、LIF模型[4]、Chen模型[9]、Qi模型[6]進(jìn)行對比實(shí)驗(yàn).實(shí)驗(yàn)中初始化水平集函數(shù)φ0(x,y)=1∶(x,y)∈in(C),φ0(x,y)=-1∶(x,y)∈out(C),α1=α2=1,β1=β2= 0.01,時(shí)間步長取Δt=0.1,空間步長Δx=Δy=1.參數(shù)κ取0.01×255×255,參數(shù)μ取2.0.CV模型、LIF模型、Chen模型和Qi模型參數(shù)見具體參考文獻(xiàn).實(shí)驗(yàn)圖像來自LIF模型作者提供.

      本文采用2個(gè)指標(biāo)對分割結(jié)果做量化評價(jià),分別是Jaccard相似系數(shù)(Jaccard Coefficient,JC)和骰子相似系數(shù)(Dice Similarity Coefficient,DSC),定義為:

      (22)

      其中R1和R2分別表示基準(zhǔn)前景區(qū)域和采用分割方法分割得到的前景區(qū)域,N(R)表示區(qū)域R內(nèi)像素點(diǎn)的個(gè)數(shù).JC和DSC取值范圍為[0,1],取值越大表明分割結(jié)果越精確.

      實(shí)驗(yàn)1針對LIF模型對初始水平集函數(shù)位置大小的敏感性驗(yàn)證.圖1(a1,b1)方框是初始水平集函數(shù).圖1(a2,b2)是對應(yīng)不同初始水平函數(shù)的分割結(jié)果,從實(shí)驗(yàn)結(jié)果上可以看出,LIF模型對演化曲線的初始位置和大小非常敏感.

      圖1 不同初始位置LIF分割結(jié)果

      實(shí)驗(yàn)2針對無噪聲和添加不同噪聲類型與噪聲水平的簡單圖像,使用CV模型、LIF模型、Chen模型、Qi模型和提出的模型進(jìn)行實(shí)驗(yàn)對比.圖2(a—e)分別是無噪聲圖像,添加均值為0、方差為0.01(高斯噪聲),均值為0、方差為0.06(高斯噪聲),噪聲密度為0.01(椒鹽噪聲),噪聲密度為0.1(椒鹽噪聲)分割結(jié)果.包括實(shí)驗(yàn)2以后的所有實(shí)驗(yàn)、所有方法的水平集初始輪廓為上下左右距離10像素的矩形框,文中不再額外標(biāo)注.圖2(a1—a5)使用CV模型,圖2(b1—b5)使用LIF模型,圖2(c1—c5)使用Chen模型,圖2(d1—d5)使用Qi模型,圖2(e1—e5)是本文提出模型的實(shí)驗(yàn)結(jié)果.從實(shí)驗(yàn)結(jié)果上看出,除了Chen模型,其他模型在無噪聲情況下都取得正確的分割結(jié)果,Chen模型是在LIF模型基礎(chǔ)上,將局部信息換成CV模型的全局信息進(jìn)行簡單的線性組合,并沒有邏輯證明,故在無噪聲簡單圖像分割出現(xiàn)了錯(cuò)誤分割結(jié)果.在不同噪聲污染下也得不到正確的分割結(jié)果,并且隨著噪聲水平的增強(qiáng),分割錯(cuò)誤率顯著增大.經(jīng)典的CV模型和LIF隨著噪聲水平的增大,分割錯(cuò)誤率也隨著增大.Qi模型在無噪聲和低噪聲水平下能得到正確的分割結(jié)果,但隨著噪聲水平的增強(qiáng),也會出現(xiàn)錯(cuò)誤的分割結(jié)果.本文提出模型在無噪聲、不同噪聲以及不同噪聲強(qiáng)度下,都能得到正確的分割結(jié)果.顯示提出模型對噪聲具有良好的抑制能力,突出了模型的優(yōu)越性.

      實(shí)驗(yàn)3針對圖2(a,c,e)無噪聲和受到高強(qiáng)度高斯噪聲和椒鹽噪聲污染圖像的情況,對不同模型的分割精度做了定量分析,結(jié)果如表1所示.從JC和DSC 2個(gè)量化指標(biāo)結(jié)果可以看出,在無噪聲環(huán)境下,本文模型分割結(jié)果高于LIF、Chen、Qi模型,稍微低于CV模型.在高強(qiáng)度的高斯噪聲和椒鹽噪聲環(huán)境下,本文模型分割結(jié)果數(shù)據(jù)大致相同,在同一個(gè)數(shù)量級上.而CV、LIF、Chen模型的分割精度陡然下降,Qi模型分割結(jié)果數(shù)據(jù)也大致相同,但本文模型分割精度要高于Qi模型.從量化指標(biāo)的數(shù)據(jù)結(jié)果分析可以得出本文模型的有效性和適應(yīng)性.

      表1 不同模型實(shí)驗(yàn)結(jié)果的JC與DSC比較

      圖2無噪聲、不同噪聲圖像以及不同模型分割結(jié)果比較

      實(shí)驗(yàn)4在不同初始輪廓(圖中淺色方框)、不同噪聲以及不同噪聲水平下,本文提出模型都能得到正確的分割結(jié)果(圖中深色色方框)(如圖3所示).

      (a)在方差為0.01(高斯噪聲)時(shí)本文模型不同初始輪廓分割結(jié)果

      (b)在密度為0.06(椒鹽噪聲)時(shí)本文模型不同初始輪廓分割結(jié)果

      實(shí)驗(yàn)5針對不同圖像類型,包括弱邊緣和復(fù)雜場景圖像,在不同強(qiáng)噪聲類型下的不同模型的分割結(jié)果比較.從實(shí)驗(yàn)結(jié)果可以看出本文模型的適應(yīng)性,如圖4—6所示.

      圖4 血管的不同噪聲圖像以及不同模型分割結(jié)果比較

      圖5 手的不同噪聲圖像以及不同模型分割結(jié)果比較

      圖6 飛機(jī)的不同噪聲圖像以及不同模型分割結(jié)果比較

      實(shí)驗(yàn)6在分割過程中第1階段使用全局信息得到粗分割結(jié)果,以粗分割結(jié)果為下一階段的零水平集得到的最終分割,驗(yàn)證了提出模型的有效性,如圖7所示.

      圖7 噪聲圖像(6b,6c)粗分割輪廓以及不同迭代次數(shù)分割結(jié)果

      4 結(jié)論

      提出一種結(jié)合圖像全局信息的改進(jìn)LIF水平集模型.在原有CV模型和LIF模型能量函數(shù)基礎(chǔ)上,各自構(gòu)建一個(gè)新的能量擬合項(xiàng),增強(qiáng)對不同噪聲以及不同噪聲水平的抗噪性.使用圖像的全局信息得到圖像的粗分割輪廓.以粗分割輪廓作為改進(jìn)LIF模型的零水平集,使用圖像局部信息對圖像進(jìn)行精確分割.本文使用一種新的邊緣檢測算子,重新定義邊緣停止函數(shù),進(jìn)一步提高模型的抗噪性.本文模型比CV模型、LIF模型、Chen模型和Qi模型對無噪聲和不同噪聲污染的圖像能得到更好的分割結(jié)果,但在分割結(jié)果中出現(xiàn)了鋸齒狀的分割邊界,這是后續(xù)工作中需要解決的問題.

      [參 考 文 獻(xiàn)]

      [1] 張倩穎,吳紀(jì)桃,謝曉振.改進(jìn)K-means活動輪廓模型[J].中國圖象圖形學(xué)報(bào),2015,12(2):1612-1618.

      [2] CHAN F T,VESA L A.Active contours without edges[J].IEEE Trans Image Process,2001,10(2):266-277.

      [3] LI C M,KAO C.Minimization of region scalable fitting energy for image segmentation[J].IEEE Trans Image Process,2008,17(10):1940-1949.

      [4] ZHANG K H,SONG H H,ZHANG L.Active contours driven by local image fitting energy[J].Pattern Recognition,2010,43(4):1199-1206.

      [5] WANG L,LI C M.Active contours driven by local and global intensity fitting energy with application to MR image segmentation[J].Computerized Medical Imaging and Graphics,2009,33(7):520-531.

      [6] 戚世樂,王美清.結(jié)合全局和局部信息的“兩階段”活動輪廓模型[J].中國圖象圖形學(xué)學(xué)報(bào),2014,11(3):421-427.

      [7] WANG L,PAN C. Robust level set image segmentation via a local correntropy-based K-means clustering[J].Pattern Recognition,2014,47(5):1917-1925.

      [8] 張迎春,郭禾.基于粗糙集和新能量公式的水平集圖像分割[J].自動化學(xué)報(bào),2015,41(11):1913-1925.

      [9] 陳書貞,甄延海.融入圖像全局信息的局部圖像擬合模型[J].光學(xué)技術(shù),2013,39(5):466-471.

      [10] 劉瑞娟,何傳江.融合局部和全局圖像信息的活動輪廓模型[J].計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào),2012,24(3):364-371.

      [11] 唐利明,方壯.結(jié)合L1擬合項(xiàng)的Chan-Vese模型[J].計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào),2015,27(9):1707-1715.

      [12] XU H Y,LIU T T.Hybrid geodesic region-based active contours for image segmentation[J].Computers & Electrical Engineering,2014,40(3):858-869.

      [13] CHEN Q,MONTESINOS P,SUN Q.Adaptive total variation denoising based on difference curvature[J].Image and Vision Computing,2010,28(3):298-306.

      [14] LI C M,XU C Y.Level set evolution without re-initialization:a new variational formulation[C] //2005 IEEE Conference on Computer Vision and Pattern Recognition.Newyork:IEEE Computer Society Press,2005:430-436.

      [15] YUAN Y,HE C J.Adaptive active contours without edges[J].Mathematical and Computer Modeling,2012,55:1705-1721.

      猜你喜歡
      輪廓全局局部
      Cahn-Hilliard-Brinkman系統(tǒng)的全局吸引子
      量子Navier-Stokes方程弱解的全局存在性
      局部分解 巧妙求值
      非局部AB-NLS方程的雙線性B?cklund和Darboux變換與非線性波
      OPENCV輪廓識別研究與實(shí)踐
      基于實(shí)時(shí)輪廓誤差估算的數(shù)控系統(tǒng)輪廓控制
      落子山東,意在全局
      金橋(2018年4期)2018-09-26 02:24:54
      局部遮光器
      吳觀真漆畫作品選
      在線學(xué)習(xí)機(jī)制下的Snake輪廓跟蹤
      饶阳县| 东阳市| 湖州市| 桂林市| 乌兰察布市| 永善县| 吉首市| 张家口市| 灵山县| 九龙坡区| 甘泉县| 凉城县| 商都县| 社旗县| 汨罗市| 莱阳市| 唐河县| 尚义县| 桃园县| 滕州市| 南澳县| 瑞安市| 乌拉特后旗| 华坪县| 杭锦旗| 崇礼县| 永德县| 卓资县| 辽宁省| 瓮安县| 宜丰县| 手游| 海原县| 安阳市| 五台县| 建湖县| 原平市| 江西省| 柏乡县| 五常市| 鄂托克前旗|