• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of blade shape on hydraulic performance and vortex structure of vortex pumps *

    2018-07-06 10:01:58YapingJu琚亞平SiLiu劉思ChuhuaZhang張楚華
    關(guān)鍵詞:亞平

    Ya-ping Ju (琚亞平), Si Liu (劉思), Chu-hua Zhang (張楚華)

    1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

    2. Shanghai Turbine Works, Shanghai Electric Power Generation Equipment Co. Ltd., Shanghai 200240, China

    Introduction

    The vortex pumps, also known as the regenerative or peripheral pumps, are capable of developing a high head at a low flow rate within a single stage. As a kind of blade pumps, the vortex pump primarily consists of a casing, an impeller, an inlet pipe, an outlet pipe and a stripper. As shown in Fig. 1(a), the casing forms an annular side channel and the impeller has a number of blades at the periphery of its rotating disc. The stripper is inserted downstream the outlet pipe to prevent the fluid leakage from the outlet pipe to the internal passage. As the impeller rotates, the fluid enters the pump through an inlet pipe, passes through the channel in a helical way, and then discharges out of the pump through an outlet pipe (Fig.1(b)). The helical flow pattern involves complicated vortex structures such as longitudinal, radial and axial vortices, allowing the fluid particles to circulate in a repeated or regenerative way between the side channel and the rotating impeller (Fig. 1(c)). These repeated vortex structures enable a single-stage vortex pump to develop a head 2-4 times higher in comparison with that developed by a single-stage centrifugal pump at the same tip speed[1-2]. In addition to this hydrodynamic merit, the vortex pump also has a compact size and is easy to manufacture with a low cost. Therefore,the vortex pump has increasingly become an important alternative or supplement to the centrifugal pump[3], the positive displacement pump and even the diffusion pump[4], and found successful applications in industrial fields such as the chemical engineering, the refrigeration, the fuel cell, the aerospace, the vacuum and the medical devices.

    Compared with the other types of blade pumps such as the axial-flow and centrifugal pumps, the vortex pumps are. however, not well studied. Historically, diverse theories were put forward to interpret the working mechanisms of the vortex pump, among which the momentum exchange theories were found to be more precise, as presented by Song et al.[5], Yoo et al.[6]and Meakhail et al.[7]. According to the momentum exchange theories, some 1-D analytical models and flow loss models were developed by Quail et al.[8,9]and Liu[10]to predict the hydraulic performance of the vortex pumps, and were also extended by Badami and Mura[11]and Song et al.[12]to predict the aerodynamic performance of the vortex blowers and compressors. However, since these simplified models rely heavily on empirical correlations, or experimental and CFD data, they fail to reveal the 3-D internal flow field and are only limited to the stage of the preliminary design of the vortex pumps.

    To develop more advanced vortex pumps via the modern design optimization tools[13-16], an important step is to understand how the blade geometry affects the hydraulic performance as well as the internal flow of the vortex pump. The computational fluid dynamics(CFD) method based on the 3-D fully viscous flow model offers a more precise way to not only predict the performance, but also reveal the detailed flow structures in the vortex pumps[17-18]. Furthermore, the CFD results can be used to validate or revise the 1-D simplified models, and to supplement or interpret the experimental measurements[19]. However, to our best knowledge, most CFD studies of the vortex pumps were limited to the cases of 2-D radial straight blades,and the studies of the vortex pumps with twisted blades or 3-D blades[7,20]were few, which are,however, important issues for further improvements of the hydraulic performance of the vortex pumps, and therefore for the technological advancements and the wide applications of the vortex pumps.

    In the present study, two types of new blades,namely 2-D and 3-D corner blades, are introduced to the design of the vortex pump. Primary efforts are devoted to numerically investigating the effect of different blade shapes on the hydraulic performance and the vortex structures of the vortex pumps. This work is expected to provide a theoretical basis for the future design optimization of advanced vortex pumps.

    1. Methodology

    1.1 Concept of corner blades

    The baseline vortex pump under consideration is provided by Daikin LTD, with a rectangular crosssection for its annular side channel and traditional 2-D radial straight blades. Important dimensions and operating conditions of this baseline pump are listed in Table 1.

    To improve the hydraulic performance of this vortex pump, two types of new blades, namely 2-D and 3-D corner blades, are proposed and investigated in this study. Here the term corner means that both sides of the impeller blade form a corner shape rather than a straight shape at the symmetric line of the impeller, as illustrated in Fig. 2. In Fig. 2(a), two parameters, β and γ, are introduced to define the blade setting angles at the hub and the tip, respectively.Accordingly, the traditional 2-D radial straight blade is characterized by β = γ = 90°, the 2-D corner blade by β = γ ≠90°, and the 3-D corner blade by β≠γ,i.e., a kind of twisted blades. Note that here the 3D corner blade is as in a ruled surface of straight lines joining corresponding points on the hub and tip contours. For either the 2-D or 3-D corner blade, it is defined to beforward if γ>90° and backward if γ < 90°.

    Fig. 1 (Color online) Schematic diagrams of the vortex pump

    Table 1 Main parameters of the baseline vortex pump

    In this study, the hydraulic performances of 13 vortex pumps with different corner blades (β=γ=60°, 80°, 100°, 110°, 120°, 130° and 140° for 2-D corner blades, and β=90°,γ= 60°, 80°, 100°, 110°,120° and 130° for 3-D corner blades) are numerically investigated and compared with that of the baseline pump with radial straight blades (β = γ = 90°). In all these cases, the hub and casing profiles, the clearances,the blade number and the blade thickness are kept unchanged.

    Fig. 2 Geometry descriptions of the blade

    1.2 CFD model

    The hydraulic performance of the vortex pump is obtained by the numerical solution of the 3-D steady incompressible Reynolds-averaged Navier-Stokes equations through a finite-volume method solver, the Fluent 6.3. The S-A turbulence model is adopted to close the turbulence terms. The convection terms of the governing equations are discretized by the secondorder upwind scheme and the diffusion terms by the second-order central scheme. The pressure-based SIMPLE algorithm is employed to treat the flow velocity-pressure coupling.

    The impeller region is set to be rotational while the other flow domains are set to be stationary. The rotor-stator interfaces are modeled by the multiple reference frame (MRF) approach or the frozen rotor technique. This rotor-stator treatment technique was recently applied to study the vortex pumps[9]and the

    vortex blowers[11]with acceptable accuracy for the performance and the flow patterns. At the inlet, the total pressure is fixed to be 1 107 kPa and the flow direction is specified to be normal to the boundary. At the outlet, the static pressure is given and adjusted within the range from 1 207 kPa to 2 507 kPa for different flow rates. Nonslip conditions are applied to the solid walls. The efficiency of the vortex pump in this study is defined as follows

    whereQis the volumetric flow rate,His the pump head andPis the pump input power.

    The multi-block structured grids are generated in the computational region (Fig. 3). To better capture the boundary layer, the area-averaged+yof the first inner nodes close to the solid surface of the passage is generally kept below 5.0. The grid independence is examined for the baseline pump via successively increasing the grid number until the pump head and efficiency are essentially no longer changed. As shown in Table 2, three sets of grids are evaluated and the grid independence is achieved when the grid number is 1 129 785. Hereafter, the grid numbers of all the vortex pumps to be investigated in this study are kept around 1 130 000.

    Fig. 3 Computational grids

    Figure 4 shows the comparison of the pump efficiency η between the CFD results and the Daikin LDT measurements. As can be seen, the variation trend of the predicted efficiency curve is well consistent with the measurement data. The predicted value is slightly larger than the measurement data, which is reasonable and can be explained by the absence of the leakage flow, the disk resistances and the mechanical losses in the CFD simulation. Overally,the above CFD method is considered to be reliable in predicting the hydrodynamic performance of the vortex pump.

    Table 2 Examination of grid independence

    Fig. 4 Comparison of the pump efficiency between CFD results and experimental data

    2. Results and discussions

    2.1 2-D corner blades

    2.1.1 Hydraulic performance

    Figure 5 shows the calculated hydraulic performance curves of the vortex pumps with different 2-D blade shapes. In particular, the headHand the efficiency η of each vortex pump at the design point are listed in Table 3. In comparison with the radial straight blade, the 2-D forward corner blades are found to enjoy a better hydraulic performance in terms of the pump efficiency and head, while the 2-D backward ones show a worse hydraulic performance.In addition, the pump head is found to increase with the increase of the blade angle. At the blade angle of 130° (β = γ = 130°), the efficiency of the 2-D-blade vortex pump reaches the highest, i.e., 36.72%.

    2.1.2 Vortex structure

    For an insight into the performance improvement or deterioration of the above vortex pumps, the flows in three typical vortex pumps with the 2-D forward 130° blade, the straight blade and the 2-D backward 60° blade are analyzed, respectively. Hereafter, all flow fields investigated are within the impeller blade passage opposite to the pump stripper, which is considered in the developed flow region of the vortex pump. The flow fields in different planes within that passage, as illustrated in Fig. 6, are primarily examined in this study. As can be seen, Plane B-B is equivalent with the meridional plane while Planes A-A and C-C are perpendicular to the axial and radial directions, respectively.

    Fig. 5 Hydraulic performance curves of 2-D-blade vortex pumps

    Table 3 Designpointperformanceof2-D-bladevortex pumps

    Figure 7 shows the flow velocity vectors in the meridional plane (Plane B-B in Fig. 6), from which the longitudinal vortices in the vortex pumps can be clearly observed. In Fig. 7(a), the 2-D forward 130°blade is observed to have a pair of well-organized and strong longitudinal vortices with their centers approximately on the border line between the blade and the side channel. In that case, most of the fluids discharge from the blade tip rather than from the blade side.According to the momentum exchange theory presented by Song et al.[5], this allows a substantial centrifugal force to be imparted to the fluids and creates a large discharge tangential momentum to be transferred for the high head. In Fig. 7(c), the 2-D backward 60° blade is observed to have double pairs of longitudinal vortices. The pair of the primary vortices (downside) has a much weaker vortex intensity with their centers obviously inside the impeller blade passage. Consequently, most of the fluids leave the blade passage from the blade side rather than from the blade tip. Worse still, the pair of the secondary vortices (upside) near the blade tip induces the fluids to enter the impeller through the blade tip and to flow centripetally just as within a radial turbine. Such a turbine-like flow pattern is supposed to have a negative effect on the energy transfer from the impeller to the fluids. This explains why the vortex pump with the backward blade has a much lower head.As for the radial straight blade in Fig. 7(b), the longitudinal vortex flow is similar to, but obviously weaker than that in the forward corner blade.

    Fig. 6 A schematic diagram of different planes in the pump passage

    Figure 8 shows the relative flow velocity vectors in Plane C-C, which is close to the hub side where the flow incidences in the entry region of the blade passage can be observed. Due to the different blade angles (β) at the hub, the flow incidences are found to be different for those of the vortex pumps with different blade types. As can be seen, the 2-D forward 130° blade enables a good match between the blade shape and the relative flow, leading to relatively small incidence losses and hence a high efficiency of the vortex pump. In Fig. 8(b), the match between the blade and the relative flow is observed to become worse. For the 2-D backward 60° blade in Fig. 8(c),this match is further deteriorated with an even poorer flow guidance at the hub, with the largest incidence losses, which is adverse to the pump efficiency.

    Fig. 7 Longitudinal vortices in 2-D-blade vortex pumps

    Fig. 8 Hub-side relative flow velocities in 2-D-blade vortex pumps

    2.2 3-D corner blades

    2.2.1 Hydraulic performance

    For the 3-D-blade vortex pumps in this study, as previously mentioned, the blade angle β is fixed to be 90° at the hub while the angle γ varies from 60°to 130° at the tip. The calculated hydraulic performance curves of the vortex pumps with different 3-D corner blades are shown in Fig. 9. Table 4 lists the head and the efficiency of each vortex pump at the design point. As can be seen, the 3-D-blade vortex pumps have similar performance variation trends as the 2-D-blade vortex pumps. The 3-D forward corner blades are found to outperform the radial straight blade in terms of both the efficiency and the head,while the 3-D backward blades show poorer performance. In addition, compared with the 2-D-blade vortex pumps, the 3-D-blade vortex pumps generally show a higher pump efficiency and a lower head,except for the case of the 3-D backward 60° blade,which achieves a higher head than the 2-D backward 60° blade. The highest efficiency (38.49%) of the 3D-blade vortex pump at the design point is achieved at =120γ°.

    Fig. 9 Hydraulic performance curvesof 3-D-bladevortex pumps

    2.2.2 Vortex structure

    The flow fields in the three typical pumps with the 3-D forward 120° blade, the straight blade and the 3-D backward 60° blade are examined and analyzed as follows.

    Figure 10 shows the flow velocity vectors in the meridional plane (Plane B-B). Similar to the 2-D blades in Fig. 7, the 3-D forward 120° blade performs the best while the 3-D backward 60° blade performs the worst owing to the structure of the longitudinal vortices. Compared with the 2-D corner blade, the 3-D forward blade is observed to have weaker longitudinal vortices and the fluids discharge from both the blade tip and the blade side (Fig. 10(a)). According to the momentum exchange theory[5], the 3-D forward corner blade can develop a smaller discharge tangential momentum and thus a smaller pump head than the corresponding 2-D forward corner blade. For the 3-D backward 60° blade in Fig. 10(c), although the negative secondary vortices (upside) at the blade tip are stronger than those of the 2-D backward 60° blade shown in Fig. 7(c), due to stronger primary vortices(downside) with their centers moving closer to the blade side, more fluids are allowed to be discharged for the momentum exchange. This explains why the 3-D backward 60° blade yields a higher pump head than the 2-D backward 60° blade.

    Table 4 Designpointperformanceof3-D-blade vortex pumps

    Fig. 11 Axial vortices in 3-D-blade vortex pumps

    Fig. 12 Radial vortices in 3-D-blade vortex pumps

    Since the investigated 3-D corner blades share the same blade angles at the hub (β= 90°), no significant differences are observed for the flow incidences near the entry region. Attention is thus directed towards the relative velocities in Plane C-C located at 50 percent point of the blade height, as shown in Fig.11. In this figure, the axial vortices within the impeller blade passage and the tip clearance vortices can be observed. Since the axial vortices are bounded by the blade surfaces and the impeller hub, they make small contributions to the momentum exchange of the fluids between the side channel and the impeller blade passage. Instead, the presence of the axial vortices disturbs the flow, with increased flow losses within the pump. Among the three blade types, the 3-D forward 120° blade is found to have the smallest axial vortex region, which helps to maintain a high pump efficiency. The tip clearance flow, driven from the blade pressure surface to the suction surface by the pressure difference, implies that the forward blade induces a smaller relative flow velocity and thus a larger absolute flow velocity in the tip clearance. This explains the relatively large design flow rate for the 3-D forward 120° blade as listed in Table 4. Figure 12 shows the relative velocities in Plane A-A of the three pumps, from which the structures of the radial vortices can be observed. Being bounded by the blade surfaces and the impeller disc, the radial vortices also contribute little to the momentum exchange but with flow losses, especially in the case of the 3-D backward 60°blade. Overally, the 3-D backward blade induces larger axial and radial vortices, with larger flow losses and thus a lower pump efficiency in comparison with the 3-D forward blade.

    To sum up, the longitudinal vortices are mainly responsible for the head of the vortex pump while the pump efficiency is closely related to the flow incidences at the hub as well as the axial and radial vortices. A high-performance vortex pump should be characterized by well-organized longitudinal vortices,minimized flow incidences at the hub as well as minimized axial and radial vortices within the impeller blade passage.

    3. Conclusions

    A new design concept, namely the corner blade,is proposed for the vortex pump. Compared with the traditional radial straight blade, the 2-D and 3-D forward corner blades can be used to improve the hydraulic performance of the vortex pump in terms of efficiency and head while both 2-D and 3-D backward corner blades show a degraded hydraulic performance.

    The pump head can be increased by strengthening the well-organized longitudinal vortices to drive more fluids to leave from the blade tip rather than from the blade side. The pump efficiency can be increased by reducing the incidence angle at the hub and by weakening the axial and radial vortices within the impeller blade passage.

    The above findings are useful for improving the hydraulic performance of vortex pumps. Future work will take advantage of the modern design optimization methods to develop advanced vortex pumps.

    [1] Tan P., Sha Y., Bai X. et al. A Performance test and internal flow field simulation of a vortex pump [J].Applied Sciences, 2017, 7(12):1273.

    [2] Sha Y. Experiments on performance and internal flow of a vortex pump [J].Transactions of the Chinese Society of Agriculture Engineering, 2011, 27(4): 141-146.

    [3] Mihalic T., Guzovic Z., Predin A. Performances and flow analysis in the centrifugal vortex pump [J].Journal of Fluid Engineering, 2013, 135(1): 011107.

    [4] Shirinov A., Oberbeck S. High vacuum side channel pump working against atmosphere [J].Vacuum, 2011, 85(12):1174-1177.

    [5] Song J. W., Engeda A., Chung M. K. A modified theory for the flow mechanism in regenerative flow pump [J].Proceedings of the Institution of Mechanical Engineers,Part A: Journal of Power and Energy, 2003, 217(3):311-321.

    [6] Yoo I. S., Park M. R., Chung M. K. Improved momentum exchange theory for incompressible regenerative turbomachines [J].Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2005,219(7): 567-581.

    [7] Meakhail T., Park S. O. An improved theory for regenerative pump performance [J].Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2005, 219(3): 213-222.

    [8] Quail F. J., Stickland M. T., Scanlon T. J. Design optimisation of a regenerative pump using numerical and experimental techniques [J].International Journal of Numerical Methods for Heat and Fluid Flow, 2011, 21(1):95-111.

    [9] Quail F. J., Scanlon T. J., Baumgartner A. Design study of a regenerative pump using one-dimensional and threedimensional numerical techniques [J].European Journal of Mechanics-B/Fluids,2012, 31: 181-187.

    [10] Liu S. Investigation on performance prediction and design methods for vortex pumps [D]. Master Thesis, Xi’an,China: Xi’an Jiaotong University, 2013(in Chinese).

    [11] Badami M., Mura M. Comparison between 3D and 1D simulations of a regenerative blower for fuel cell applications [J].Energy Conversion and Management,2012, 55: 93-100.

    [12] Song J. W., Raheel M., Engeda A. A compressible flow theory for regenerative compressors with aerofoil blades[J].Proceedings of Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science, 2003,217(7): 1241-1257.

    [13] Ju Y., Qin R., Kipouros T. et al. A high-dimensional design optimisation method for centrifugal impellers [J].Proceedings of Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2016, 230(3): 272-288.

    [14] Ju Y. P., Zhang C. H. Multi-point and multi-objective optimization design method for industrial axial compressor cascades [J].Proceedings of Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225(6): 1481-1493.

    [15] Ju Y. P., Zhang C. H., Chi X. L. Optimization of centrifugal impellers for uniform discharge flow and wide operating range [J].AIAAJournal of Propulsion and Power, 2012, 28(5): 888-899.

    [16] Jiang D. L., Lu J. X., Dai L. et al. A numerical simulation of and experimental research on optimum efficiency of vortex pumps [J].China Rural Water and Hydropower,2012, 4: 92-98.

    [17] Kang S. H., Rye S. H. Reynolds number effects on the performance characteristics of a small regenerative pump[J].Journal of Fluid Engineering, 2009, 131(6): 061104.

    [18] Karanth K. V., Manjunath M. S., Kumar S. et al. Numerical study of a self priming regenerative pump for improved performance using geometric modifications [J].International Journal of Current Engineering and Technology, 2015, 5(1): 104-109.

    [19] Quail F. J., Stickland M., Scanlon T. Numerical and experimental design study of a regenerative pump [C].World Congress on Engineering 2009, London, UK, 2009.

    [20] Angela G., Paul U. T., Sebastian W. et al. Design parameters of vortex pumps: a meta-analysis of experimental studies [J].Energies, 2017, 10(1): 58.

    猜你喜歡
    亞平
    航天員王亞平的太空生活
    軍事文摘(2023年10期)2023-06-09 09:14:20
    一起完成想象作文
    王亞平講述出艙:“伸手摘星”的夢想實(shí)現(xiàn)了?。ㄉ希?/a>
    軍事文摘(2022年20期)2023-01-10 07:19:44
    Optical scheme to demonstrate state-independent quantum contextuality
    探討超聲檢查在甲狀腺腫塊良惡性鑒別中的診斷價(jià)值
    減刑、假釋的目的探究與制度完善*——兼與張亞平博士商榷
    刑法論叢(2018年2期)2018-10-10 03:31:58
    孔亞平和她的三個(gè)夢
    中國公路(2017年14期)2017-09-26 11:51:37
    平拋運(yùn)動(dòng)潛能知識(shí)測試題
    機(jī)械能潛能知識(shí)訓(xùn)練試題
    南海隨筆
    草原(2016年1期)2016-01-31 21:21:51
    亚洲国产欧洲综合997久久,| 亚洲av成人av| АⅤ资源中文在线天堂| 成人午夜高清在线视频| 简卡轻食公司| 高清毛片免费看| 啦啦啦韩国在线观看视频| 亚洲国产精品合色在线| 国产三级中文精品| 国产国拍精品亚洲av在线观看| 18禁在线播放成人免费| 久久精品夜色国产| 国产欧美日韩精品一区二区| 夜夜看夜夜爽夜夜摸| 欧美日韩在线观看h| 国产av不卡久久| 亚洲婷婷狠狠爱综合网| 欧美高清性xxxxhd video| 搡老熟女国产l中国老女人| 在线观看免费视频日本深夜| 婷婷色综合大香蕉| 91久久精品国产一区二区三区| 国产亚洲av嫩草精品影院| 精品日产1卡2卡| 人人妻人人看人人澡| av.在线天堂| 一a级毛片在线观看| 舔av片在线| 麻豆成人午夜福利视频| 亚洲三级黄色毛片| 全区人妻精品视频| 97超视频在线观看视频| 亚洲精品影视一区二区三区av| 久久久国产成人精品二区| 日本三级黄在线观看| 久久久久久久亚洲中文字幕| 欧美性猛交黑人性爽| 1024手机看黄色片| 日本免费a在线| 九九热线精品视视频播放| 天堂√8在线中文| 色综合亚洲欧美另类图片| 97人妻精品一区二区三区麻豆| 婷婷精品国产亚洲av在线| 亚洲精品在线观看二区| 久久精品人妻少妇| 日产精品乱码卡一卡2卡三| 国产爱豆传媒在线观看| 夜夜看夜夜爽夜夜摸| 身体一侧抽搐| 国产精品一区二区三区四区久久| 国产亚洲av嫩草精品影院| 国产在视频线在精品| 久久久久久久久久成人| 精品人妻视频免费看| 听说在线观看完整版免费高清| 亚洲欧美日韩高清专用| 亚洲中文日韩欧美视频| 国产三级在线视频| 精品免费久久久久久久清纯| 成熟少妇高潮喷水视频| 黄色日韩在线| 久久久久久久久大av| 国产成人a∨麻豆精品| 国产v大片淫在线免费观看| 免费av观看视频| 中文字幕av成人在线电影| 少妇的逼好多水| 国产淫片久久久久久久久| 啦啦啦观看免费观看视频高清| 国产精品一区二区性色av| 国产欧美日韩精品亚洲av| 一本一本综合久久| 日韩一区二区视频免费看| 91久久精品电影网| 欧美日韩乱码在线| 欧美国产日韩亚洲一区| 亚洲欧美精品自产自拍| 97在线视频观看| 欧美xxxx性猛交bbbb| 国产在线男女| 深夜a级毛片| 日日干狠狠操夜夜爽| 欧美另类亚洲清纯唯美| 亚洲电影在线观看av| 麻豆久久精品国产亚洲av| av国产免费在线观看| 成人综合一区亚洲| 成人高潮视频无遮挡免费网站| 中文字幕av成人在线电影| 22中文网久久字幕| 一本一本综合久久| 性欧美人与动物交配| 国产大屁股一区二区在线视频| 欧美极品一区二区三区四区| av在线老鸭窝| 男人舔奶头视频| 久久久精品94久久精品| 免费看日本二区| 国产成人freesex在线 | 国产成人一区二区在线| 99国产极品粉嫩在线观看| 全区人妻精品视频| АⅤ资源中文在线天堂| 久久韩国三级中文字幕| 久久久精品大字幕| 国产精品一区二区性色av| 99久久精品热视频| av视频在线观看入口| 可以在线观看的亚洲视频| 51国产日韩欧美| 午夜精品国产一区二区电影 | 欧美激情在线99| 国产精品一区www在线观看| 亚洲国产精品久久男人天堂| 国产伦一二天堂av在线观看| 男人舔奶头视频| 一个人免费在线观看电影| 亚洲人与动物交配视频| 真人做人爱边吃奶动态| 在线观看av片永久免费下载| 少妇的逼好多水| 国产精华一区二区三区| 国产在视频线在精品| 麻豆久久精品国产亚洲av| 国产精品,欧美在线| 丝袜美腿在线中文| 精品99又大又爽又粗少妇毛片| 真人做人爱边吃奶动态| 国产乱人视频| 国产精品精品国产色婷婷| 国产男人的电影天堂91| 69人妻影院| 欧美色欧美亚洲另类二区| 99久久精品一区二区三区| 波多野结衣高清无吗| 国产精品国产三级国产av玫瑰| 最近在线观看免费完整版| 国产aⅴ精品一区二区三区波| 国产毛片a区久久久久| 亚洲成人精品中文字幕电影| 波多野结衣高清作品| 麻豆成人午夜福利视频| 久久久久久久久中文| 全区人妻精品视频| 国产 一区精品| 赤兔流量卡办理| 两个人视频免费观看高清| 亚洲国产欧美人成| 日韩 亚洲 欧美在线| 啦啦啦观看免费观看视频高清| av.在线天堂| 午夜影院日韩av| 此物有八面人人有两片| 成人性生交大片免费视频hd| 亚洲成人久久爱视频| 三级毛片av免费| 日本爱情动作片www.在线观看 | 最新中文字幕久久久久| 有码 亚洲区| 午夜福利视频1000在线观看| 成人欧美大片| 亚洲精品亚洲一区二区| 国产一区二区在线av高清观看| 桃色一区二区三区在线观看| 日本熟妇午夜| 精品乱码久久久久久99久播| 男插女下体视频免费在线播放| 久久久久久久久久久丰满| 国产成人a区在线观看| 久久久久久久久久成人| 亚洲自拍偷在线| 男女视频在线观看网站免费| 国产大屁股一区二区在线视频| 久久精品国产亚洲av涩爱 | 欧美日本亚洲视频在线播放| 毛片女人毛片| 观看免费一级毛片| 寂寞人妻少妇视频99o| 日日撸夜夜添| 最后的刺客免费高清国语| 九九爱精品视频在线观看| 看免费成人av毛片| 精品一区二区免费观看| 老司机影院成人| av在线老鸭窝| 免费看a级黄色片| 一个人免费在线观看电影| 久久人人爽人人片av| 国产av麻豆久久久久久久| 亚洲成人精品中文字幕电影| 亚洲av第一区精品v没综合| 99久国产av精品| 国产精品99久久久久久久久| 成人三级黄色视频| 美女内射精品一级片tv| 麻豆精品久久久久久蜜桃| 精品久久久久久久久久久久久| 全区人妻精品视频| 国产欧美日韩精品亚洲av| 麻豆国产av国片精品| 韩国av在线不卡| 又黄又爽又免费观看的视频| 国产精品久久久久久精品电影| 色播亚洲综合网| 久久久久久久亚洲中文字幕| av在线蜜桃| 国产精品女同一区二区软件| 人妻丰满熟妇av一区二区三区| 老熟妇仑乱视频hdxx| 69av精品久久久久久| 精品99又大又爽又粗少妇毛片| 网址你懂的国产日韩在线| 久久亚洲精品不卡| 久久久色成人| 婷婷亚洲欧美| 国产精品,欧美在线| 色视频www国产| 久久久久免费精品人妻一区二区| 精品午夜福利在线看| 国产真实乱freesex| 精品久久久久久久人妻蜜臀av| 精华霜和精华液先用哪个| 日日干狠狠操夜夜爽| av黄色大香蕉| 久久欧美精品欧美久久欧美| 久久精品综合一区二区三区| 人妻久久中文字幕网| 亚洲人成网站在线播放欧美日韩| av免费在线看不卡| 中文字幕精品亚洲无线码一区| 亚洲人成网站在线观看播放| 婷婷色综合大香蕉| 欧美xxxx性猛交bbbb| 中国美白少妇内射xxxbb| 欧美又色又爽又黄视频| 亚洲婷婷狠狠爱综合网| 赤兔流量卡办理| 国产精品久久久久久精品电影| 国产日本99.免费观看| 国产熟女欧美一区二区| 一个人观看的视频www高清免费观看| 成人美女网站在线观看视频| 国产精品无大码| 久久九九热精品免费| 久久久久久久久中文| 看免费成人av毛片| 久久久久久国产a免费观看| 麻豆乱淫一区二区| 亚洲成人久久性| 亚洲无线在线观看| 观看免费一级毛片| 22中文网久久字幕| 有码 亚洲区| 色视频www国产| 午夜精品一区二区三区免费看| 亚洲成人久久性| 六月丁香七月| 日韩在线高清观看一区二区三区| 日韩人妻高清精品专区| 嫩草影院入口| 美女被艹到高潮喷水动态| 国内少妇人妻偷人精品xxx网站| 欧美在线一区亚洲| av专区在线播放| 亚洲综合色惰| 久久久久性生活片| .国产精品久久| АⅤ资源中文在线天堂| 欧美极品一区二区三区四区| 国产av在哪里看| 成人午夜高清在线视频| 日韩在线高清观看一区二区三区| 国产精品久久久久久精品电影| 亚洲最大成人手机在线| 黄色配什么色好看| 99热只有精品国产| 51国产日韩欧美| 国产 一区 欧美 日韩| 丝袜美腿在线中文| 一区二区三区四区激情视频 | 国产毛片a区久久久久| 人妻夜夜爽99麻豆av| 我的老师免费观看完整版| 少妇熟女aⅴ在线视频| 国产精品一区二区三区四区免费观看 | 国产精品99久久久久久久久| 永久网站在线| 日产精品乱码卡一卡2卡三| 高清日韩中文字幕在线| 少妇熟女欧美另类| 国产精品乱码一区二三区的特点| 天堂动漫精品| 嫩草影院入口| 国产午夜精品论理片| 久久这里只有精品中国| 97热精品久久久久久| 老师上课跳d突然被开到最大视频| 无遮挡黄片免费观看| 男女视频在线观看网站免费| 国产在线男女| 九九久久精品国产亚洲av麻豆| 久久久国产成人免费| 在线播放国产精品三级| 色噜噜av男人的天堂激情| 亚洲四区av| 国产精品99久久久久久久久| 久久人人爽人人爽人人片va| 男人狂女人下面高潮的视频| 人妻久久中文字幕网| 日本免费一区二区三区高清不卡| 欧美xxxx黑人xx丫x性爽| 亚洲三级黄色毛片| 男女做爰动态图高潮gif福利片| 亚洲成a人片在线一区二区| 国产白丝娇喘喷水9色精品| 九色成人免费人妻av| 国产91av在线免费观看| 日韩人妻高清精品专区| 国产美女午夜福利| 国产高清不卡午夜福利| 欧美日韩乱码在线| 日韩欧美国产在线观看| 3wmmmm亚洲av在线观看| 中文字幕精品亚洲无线码一区| 久久鲁丝午夜福利片| 免费看美女性在线毛片视频| 久久久久久久久中文| 18禁黄网站禁片免费观看直播| 欧美色欧美亚洲另类二区| 女同久久另类99精品国产91| 男女视频在线观看网站免费| 亚洲欧美成人精品一区二区| 有码 亚洲区| 中文字幕免费在线视频6| 久久久久久久亚洲中文字幕| 国产爱豆传媒在线观看| 麻豆国产av国片精品| 亚洲,欧美,日韩| 激情 狠狠 欧美| 国产单亲对白刺激| 亚洲国产精品久久男人天堂| 夜夜爽天天搞| 直男gayav资源| 中文字幕av成人在线电影| 最新中文字幕久久久久| 一级毛片久久久久久久久女| 如何舔出高潮| 免费av观看视频| 亚洲欧美精品自产自拍| 亚洲精品日韩av片在线观看| 国产男人的电影天堂91| 性色avwww在线观看| 十八禁国产超污无遮挡网站| 久久久久国产网址| 无遮挡黄片免费观看| 欧美一区二区国产精品久久精品| 欧美性猛交黑人性爽| 久久人人爽人人片av| 最近最新中文字幕大全电影3| 伦理电影大哥的女人| 有码 亚洲区| 99热精品在线国产| 亚洲av.av天堂| 毛片女人毛片| 亚洲欧美精品自产自拍| 免费看美女性在线毛片视频| 国产精品不卡视频一区二区| 波多野结衣高清作品| 三级毛片av免费| 国产探花极品一区二区| 久久久久久大精品| 黄色欧美视频在线观看| 亚洲国产欧洲综合997久久,| 老司机午夜福利在线观看视频| 午夜福利高清视频| 亚洲最大成人手机在线| 一进一出抽搐gif免费好疼| videossex国产| 日韩欧美在线乱码| 久久精品人妻少妇| 免费不卡的大黄色大毛片视频在线观看 | 在线播放无遮挡| 国产精品综合久久久久久久免费| 色吧在线观看| 午夜免费激情av| 丝袜喷水一区| 男女啪啪激烈高潮av片| 97在线视频观看| 99热全是精品| 伦精品一区二区三区| 久久人人精品亚洲av| 国产黄片美女视频| 99国产极品粉嫩在线观看| 淫秽高清视频在线观看| 美女内射精品一级片tv| 一级黄片播放器| 99久久成人亚洲精品观看| 三级经典国产精品| 国产欧美日韩精品亚洲av| 色尼玛亚洲综合影院| 国产一区二区三区av在线 | 激情 狠狠 欧美| 精品久久久久久久久久久久久| 亚洲成人中文字幕在线播放| 能在线免费观看的黄片| 在线观看免费视频日本深夜| 18禁在线无遮挡免费观看视频 | 日本爱情动作片www.在线观看 | 国产一区二区在线观看日韩| 久99久视频精品免费| 一区二区三区高清视频在线| 激情 狠狠 欧美| 亚洲在线自拍视频| 日韩欧美一区二区三区在线观看| 成人二区视频| 神马国产精品三级电影在线观看| 3wmmmm亚洲av在线观看| 夜夜看夜夜爽夜夜摸| 亚洲天堂国产精品一区在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲熟妇中文字幕五十中出| 97热精品久久久久久| 久久精品国产亚洲av天美| 你懂的网址亚洲精品在线观看 | 色av中文字幕| 村上凉子中文字幕在线| aaaaa片日本免费| 亚洲欧美精品自产自拍| 国产成人福利小说| 日韩在线高清观看一区二区三区| 噜噜噜噜噜久久久久久91| 久久久久久久亚洲中文字幕| 久久精品国产亚洲av香蕉五月| 国产精品一二三区在线看| 自拍偷自拍亚洲精品老妇| 国产黄色视频一区二区在线观看 | 精品无人区乱码1区二区| 国产高清三级在线| 精品一区二区免费观看| 精品午夜福利视频在线观看一区| 在线天堂最新版资源| 免费搜索国产男女视频| av.在线天堂| 卡戴珊不雅视频在线播放| 成年av动漫网址| 精品国产三级普通话版| 老司机午夜福利在线观看视频| 精品国产三级普通话版| 成年av动漫网址| 免费不卡的大黄色大毛片视频在线观看 | 禁无遮挡网站| 波野结衣二区三区在线| 亚洲高清免费不卡视频| 夜夜看夜夜爽夜夜摸| 午夜免费激情av| 国产精品1区2区在线观看.| 给我免费播放毛片高清在线观看| 国产精品综合久久久久久久免费| 婷婷六月久久综合丁香| 亚洲欧美日韩高清专用| 午夜免费男女啪啪视频观看 | 高清日韩中文字幕在线| 性色avwww在线观看| 亚洲欧美日韩高清在线视频| 日韩欧美 国产精品| 亚洲av成人av| 18禁裸乳无遮挡免费网站照片| 国产色婷婷99| 国产不卡一卡二| 99在线视频只有这里精品首页| 成人二区视频| 精品福利观看| 亚洲性夜色夜夜综合| 晚上一个人看的免费电影| 日韩欧美精品v在线| 特大巨黑吊av在线直播| 婷婷色综合大香蕉| 真实男女啪啪啪动态图| 免费电影在线观看免费观看| 亚洲三级黄色毛片| 99在线人妻在线中文字幕| 国产精品人妻久久久久久| 亚洲最大成人av| 99久久九九国产精品国产免费| 99国产精品一区二区蜜桃av| 精品熟女少妇av免费看| 国产成人影院久久av| 成人av一区二区三区在线看| 少妇人妻精品综合一区二区 | 可以在线观看毛片的网站| 噜噜噜噜噜久久久久久91| 国产在线男女| 欧美zozozo另类| 老熟妇乱子伦视频在线观看| 亚洲最大成人av| 日本熟妇午夜| 日日摸夜夜添夜夜爱| 午夜福利在线观看免费完整高清在 | 22中文网久久字幕| 啦啦啦啦在线视频资源| www日本黄色视频网| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区三区av在线 | 国产aⅴ精品一区二区三区波| 日韩制服骚丝袜av| 欧美丝袜亚洲另类| 日本黄大片高清| 最近手机中文字幕大全| 夜夜看夜夜爽夜夜摸| 一本久久中文字幕| 国产成人精品久久久久久| 色视频www国产| 国产av在哪里看| 少妇人妻精品综合一区二区 | 午夜免费男女啪啪视频观看 | 国产v大片淫在线免费观看| 亚洲一级一片aⅴ在线观看| 99热6这里只有精品| 日本 av在线| 91精品国产九色| 国产精品久久久久久精品电影| 少妇人妻精品综合一区二区 | 美女被艹到高潮喷水动态| 黑人高潮一二区| 天堂网av新在线| 欧美日韩在线观看h| 国产 一区 欧美 日韩| 亚洲18禁久久av| 国产在视频线在精品| 激情 狠狠 欧美| 精品久久久久久久人妻蜜臀av| 丰满人妻一区二区三区视频av| 黄色欧美视频在线观看| 五月玫瑰六月丁香| 国产免费男女视频| 国产精品久久久久久av不卡| 三级男女做爰猛烈吃奶摸视频| 欧美一区二区国产精品久久精品| 亚洲不卡免费看| avwww免费| 国产精品永久免费网站| 丰满的人妻完整版| 亚洲成人久久爱视频| 色哟哟哟哟哟哟| 狠狠狠狠99中文字幕| 中文在线观看免费www的网站| 97碰自拍视频| 99热全是精品| 免费观看在线日韩| 激情 狠狠 欧美| 日本一本二区三区精品| 久久久久久久久久黄片| 国产日本99.免费观看| 欧美一区二区精品小视频在线| 亚洲高清免费不卡视频| 赤兔流量卡办理| 亚洲欧美成人综合另类久久久 | 亚洲精品456在线播放app| 久久精品久久久久久噜噜老黄 | 人人妻人人澡欧美一区二区| 免费看日本二区| 少妇丰满av| 久久人人爽人人片av| 久久精品国产亚洲av香蕉五月| 成人美女网站在线观看视频| 麻豆国产97在线/欧美| 真人做人爱边吃奶动态| 97热精品久久久久久| 国产女主播在线喷水免费视频网站 | 黄色视频,在线免费观看| 国产精品亚洲美女久久久| 两个人视频免费观看高清| 精品福利观看| 一级毛片我不卡| 日本-黄色视频高清免费观看| 久久久色成人| 热99在线观看视频| 成人综合一区亚洲| 乱人视频在线观看| 熟女电影av网| 国产淫片久久久久久久久| av中文乱码字幕在线| 国产精品伦人一区二区| 亚洲内射少妇av| 色5月婷婷丁香| av在线播放精品| 亚洲国产精品合色在线| 18禁在线无遮挡免费观看视频 | 亚洲精品亚洲一区二区| 国产成人aa在线观看| 日本色播在线视频| 精品久久久久久成人av| 波多野结衣高清作品| 少妇高潮的动态图| 男人和女人高潮做爰伦理| 欧美日韩在线观看h| 乱人视频在线观看| 国产免费男女视频| 中国美女看黄片| 全区人妻精品视频| 亚洲一区高清亚洲精品| 久久精品国产亚洲av香蕉五月| 久久久久久久亚洲中文字幕| 日日摸夜夜添夜夜爱| 国产午夜福利久久久久久| 秋霞在线观看毛片| 精品午夜福利在线看| 午夜日韩欧美国产| 国产伦精品一区二区三区视频9| 国产在视频线在精品| 亚洲国产欧洲综合997久久,| 日日摸夜夜添夜夜添av毛片| 日本爱情动作片www.在线观看 | 国产男人的电影天堂91|