• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      時變磁化等離子體的LTJEC-FDTD方法研究

      2018-07-11 03:21:58席陽紅謝國大黃志祥吳先良王麗華
      發(fā)光學(xué)報 2018年7期
      關(guān)鍵詞:磁化赫茲時變

      席陽紅,謝國大,徐 輝,黃志祥,吳先良,王麗華

      (安徽大學(xué)電子信息工程學(xué)院,安徽合肥 230601)

      1 引 言

      等離子體是物質(zhì)的第4種狀態(tài),具有許多獨特的物理化學(xué)特性,是宇宙間絕大部分物質(zhì)存在的狀態(tài)。自1879年發(fā)現(xiàn)以來,等離子體的研究一直是學(xué)者們關(guān)注的焦點,其在微電子、金屬、聚合物、污染治理等諸多領(lǐng)域都有著重要的應(yīng)用價值[1-2]。然而現(xiàn)實中等離子體頻率會隨周圍溫度、時間、空間、外加磁場的變化而變化。外加磁場下的時變磁化等離子體更是一種復(fù)雜的各向異性色散介質(zhì),對入射電磁波有折射、碰撞吸收、共振吸收等特性,這些特性使得時變磁化等離子體可運用在很多的實際應(yīng)用中,如等離子體濾波器和隱身技術(shù)等方面。同時,時變磁化等離子體也是一種產(chǎn)生太赫茲波源的方法。雖然目前該方法并未被實際應(yīng)用,但是具有非常大的發(fā)展?jié)摿ΑD壳皩τ诘入x子體的研究主要是局限于時變等離子體或者磁化等離子體,對于將兩種情況結(jié)合起來的時變磁化等離子體的研究并不多。因此研究時變磁化等離子的特性以及時變磁化等離子體產(chǎn)生太赫茲波源的可行性尤為重要。

      目前研究磁化等離子體介質(zhì)電磁特性的時域數(shù)值方法主要為時域有限差分(Finite difference time domain,F(xiàn)DTD)方法,這是由于FDTD方法一次時域計算后用傅里葉變換就能得到整個頻域電磁散射,非常適合寬頻計算。遞歸卷積算法、分段線性電流密度遞推卷積算法、電流密度遞推卷積時域有限差分(JEC-FDTD)、電流密度拉普拉斯時域有限差分(CDLT-FDTD)算法以及基于拉普拉斯變換的電流密度卷積時域有限差分(LTJECFDTD)是目前比較廣泛用于磁化等離子體介質(zhì)的FDTD 算法[3-4]。其中,LTJEC-FDTD 算法是一種將CDLT-FDTD和JEC-FDTD結(jié)合并改進(jìn)的FDTD算法。該算法并沒有規(guī)避掉復(fù)雜的卷積,而是將電流密度卷積簡化處理并與拉普拉斯變換完美結(jié)合[5-6],同時迭代公式也較為簡潔,在編程上計算效率更高。1997年,Steven A Cummer分析了非磁化等離子體的FDTD算法[7]。2009年,Kalluri應(yīng)用CDLT-FDTD算法研究電磁波在一維時變磁化等離子體中的傳播特性[8]。2015年,楊利霞應(yīng)用LTJEC-FDTD算法分析了磁化等離子體電磁波傳播特性,但未進(jìn)一步分析利用時變磁化等離子體產(chǎn)生太赫茲波[5]。

      本文應(yīng)用LTJEC-FDTD算法,對一維時變磁化等離子體進(jìn)行分析。首先介紹了LTJEC-FDTD算法的基本原理,并模擬了調(diào)制的微分高斯脈沖垂直入射磁化等離子體層。通過對比LTJEC-FDTD和CDLT-FDTD兩種算法下的反射系數(shù)及編程上的運行時間,驗證了LTJEC-FDTD算法的正確性及高計算效率性。然后研究了Whistler波在一維時變磁化等離子體中的傳播特性。結(jié)果表明,當(dāng)離子體頻率隨時間指數(shù)衰減后,Whistler波的頻率上升、極化方式不變,同時電場加強(qiáng)、磁場減弱。最后通過優(yōu)化后的等離子體碰撞頻率、等離子體頻率、以及電子回旋頻率,進(jìn)一步提升了Whistler波的輸出頻率并得到頻率為300 GHz的圓極化太赫茲波,為磁化等離子體產(chǎn)生太赫茲波提供了一定的理論依據(jù)。

      2 LTJEC-FDTD算法

      2.1  LTJEC-FDTD算法基本原理

      在各向異性等離子體介質(zhì)中,相關(guān)的本構(gòu)方程如下[9-11]:

      式中,E為電場強(qiáng)度;J為電流體密度;ε0和μ0分別為真空中的介電常數(shù)和導(dǎo)磁率;ν為電子碰撞頻率;ωp(r,t)表示時變等離子體頻率;ωb=(eB0/me)為電子回旋頻率,B0為外部靜態(tài)磁場,e和me分別為電子電量和電子質(zhì)量。對于一維的TEM波,式(1)可寫成矩陣形式:

      2.2 數(shù)值驗證

      LTJEC-FDTD和CDLT-FDTD兩種算法下模擬TEM波垂直入射到磁化等離子體中的電磁傳播,入射波采用調(diào)制的微分高斯脈沖[12],傳播模型如圖1所示??臻g網(wǎng)格總數(shù)為600,磁化等離子體層由網(wǎng)格數(shù)200~400構(gòu)成。計算空間步長Δz為7.5μm,時間步長為Δt為1.25 ps[13-15]。此外在計算空間的兩端各設(shè)10個網(wǎng)格的PML吸收邊界用于吸收截斷邊界產(chǎn)生的反射[16-18],其余網(wǎng)格為自由空間。磁化等離子體頻率ωp=30×2πGrad/s,電子回旋頻率ωb=10 Grad/s,電子碰撞頻率 ν=5 Grad/s。

      圖2(a)、(b)分別為右旋圓極化(RCP)波和左旋圓極化(LCP)波穿過磁化等離子體層的反射系數(shù)。結(jié)果表明,LTJEC-FDTD和CDLT-FDTD兩種算法下的反射系數(shù)基本吻合,驗證了該算法的正確性。圖2(c)為兩種算法的FDTD計算效率對比。為了更明顯地看出兩種算法的計算效率,圖2(c)的縱坐標(biāo)采用10t,其中t為FDTD的計算時間。從對比中可以看出,在相同的時間步長下,LTJEC-FDTD算法運行所用的時間要明顯小于CDLT-FDTD算法所用的時間,計算效率更高。

      圖1 等離子體平板傳播模型

      圖2 反射系數(shù)圖。(a)RCP波反射系數(shù)振幅圖;(b)LCP波反射系數(shù)振幅圖;(c)計算效率。

      3 一維時變磁化等離子體的電磁特性

      圖3為填充時變磁化等離子體的一維矩形金屬諧振腔,電磁波傳輸方向與外加磁場的方向均為+z方向。這部分中LTJEC-FDTD的計算空間步長Δz為0.012 cm,時間步長 Δt為 0.000 2 ns。在等離子體變化之前(t<0),內(nèi)加RCP駐波如下:

      其中m=1;0為相位角;d為金屬板的距離,與波源頻率ω0有如下關(guān)系:

      圖3 一維矩形金屬諧振腔計算模型

      εp為磁化等離子體中的相對介電常數(shù)[19]:

      3.1  LTJEC-FDTD在時變磁化等離子體中的正確性驗證

      采用圖3的計算模型,進(jìn)一步驗證LTJEC-FDTD在時變磁化等離子體中的正確性。磁化等離子體隨時間變化規(guī)律如下:

      其中ωp0和ωb0分別為等離子頻率和電子回旋頻率的初始值,b為衰減系數(shù),T為RCP波的周期。選取駐波源頻率ω0=2π×10 Grad/s,磁化等離子體頻率ωp0=2π ×17.32 Grad/s,電子回旋頻率 ωb=2π ×10 Grad/s,電子碰撞頻率ν=0,衰減系數(shù)b=100。

      圖4 時變磁化等離子體中z=d/2處電場抽樣FDTD結(jié)果。(a)等離子體頻率隨時間變化圖;(b)加入時變磁化等離子體前后金屬矩陣腔體的諧振頻率。

      圖4(a)為時變磁化等離子體隨時間變化圖。如圖所示,在t<0時等離子體頻率ωp0=0,即腔體內(nèi)為真空;t>0后等離子頻率隨時間指數(shù)增長,增長系數(shù)為b=100。圖4(b)為在z=d/2處抽樣的電場值隨等離子體變化前后的頻域結(jié)果。如圖所示,當(dāng)?shù)入x子體頻率增長后諧振腔內(nèi)出現(xiàn)了 3 個諧振頻率,分別為 f1=2.4,17,24.6 GHz。這3個諧振頻率與文獻(xiàn)[5]中的理論值一致,從而驗證了LTJEC-FDTD方法計算時變磁化等離子體的正確性。

      3.2 W histler波在時變磁化等離子體中的傳播特性

      對于式(9),當(dāng) ω0ωb、ωp02ω0ωb0時,相對介電常數(shù)εp可以近似為:

      這樣的右旋極化波叫做Whistler波[20]。

      時變磁化等離子體頻率在時域上從穩(wěn)定不變到隨時間指數(shù)衰減,變化規(guī)律如下:

      其中ωp0和ωb0分別為等離子頻率和電子回旋頻率的初始值,b為衰減系數(shù),T為RCP波的周期。取頻率為ω0=1 Grad/s的Whistler波作為入射波,研究其在時變磁化等離子體中傳播的傳播特性。磁化等離子體頻率ωp0=200 Grad/s,電子回旋頻率ωb0=100 Grad/s,電子碰撞頻率ν=0。

      在z=d/2和z≈0處分別對電場和磁場進(jìn)行抽樣,LTJEC-FDTD的抽樣結(jié)果如圖5所示。圖5(a)為衰減系數(shù)b=10的等離子體頻率時域變化情況,由穩(wěn)定不變到指數(shù)衰減。圖5(b)和圖5(c)分別為z=d/2處電場以及z≈0處磁場的時域抽樣結(jié)果。由圖可知,電場頻率和磁場頻率在磁化等離子體頻率衰減后均有所上升,頻率由原來的1 Grad/s增為20 Grad/s,該頻率增長系數(shù)與磁化等離子體中的折射率nR=(εp)1/2一致;同時電場的振幅增大到原來的15倍,而磁場的振幅略有減小。圖4(d)和圖4(e)分別為電場及磁場的極化方式變化情況,由圖可知,Whistler波極化方式不變,仍為圓極化螺旋形式。通常情況下電磁波在靜態(tài)場下的等離子體中傳播時,波的極化是不斷變化的。但是當(dāng)外部磁場的方向垂直波的傳播方向(橫向模式)或沿著波的傳播方向(縱向模式)時,波的極化就會穩(wěn)定不變[21]。圖5(f)為電場的頻域結(jié)果,從中可以更清楚地看出電場的頻率由1 Grad/s提升到了20 Grad/s并且振幅增大為原來的15倍。

      從能量的角度分析上述結(jié)果,衰減的磁化等離子體會引起等離子體中電流的消失,消失電流的磁能轉(zhuǎn)化為波的電能和磁能,這些改變使波源的頻率上升,并增強(qiáng)了電場和能量密度[22-23]。

      3.3 時變磁化等離子體產(chǎn)生太赫茲波的分析

      時變磁化等離子體中頻率上升的關(guān)鍵條件就是折射率nR>1。當(dāng)ω0與ωp0近似,即在諧振頻率附近時,頻率上升的更大。此外電子回旋頻率ν也有著不可忽視的影響。我們在3.2的基礎(chǔ)上進(jìn)一步提升輸出波的頻率,研究時變磁化等離子體產(chǎn)生太赫茲波。這里減小ωb0/ω0的比率放寬公式(13)的第一條件,同時增大ωp0的值加強(qiáng)第二條件:

      取輸入波的頻率為ω0=10 Grad/s,電子回旋頻率ωb0=50 Grad/s,磁化等離子體頻率 ωp0=600 Grad/s。此外增加電子碰撞頻率的影響,取ν=0.01ωp0。

      圖6(a)表示衰減系數(shù)b=1 000時的等離子體密度的變化情況,實質(zhì)上波源頻率的上升與等離子體消失的快慢并無關(guān)系[24]。圖6(b)和圖6(c)分別為z=d/2處電場以及z≈0處磁場的時域抽樣結(jié)果。由圖可知,通過減小 ωb/ω0的比率,增大ωp和ν的值,輸出波的頻率在等離子體頻率衰減后有了進(jìn)一步的提升,由原來的10 Grad/s上升為300 Grad/s,頻率增長系數(shù)為30。圖6(d)為電磁的極化方式的變化。由圖可知,輸出波仍為右旋圓極化波。圖6(e)和圖6(f)分別為電場和磁場在頻域上的變化情況,從圖中可以更明顯地看出Whistler波的輸出頻率為300 Grad/s,并且磁場的幅值進(jìn)一步衰減。這部分結(jié)果表明,優(yōu)化后的時變磁化等離子體參數(shù)進(jìn)一步提高了輸出波的頻率,最后得到了頻率為300 Grad/s的圓極化太赫茲波,從而在理論上驗證了時變磁化等離子體可產(chǎn)生太赫茲波。這部分中的時變磁化等離子體參數(shù)參考了文獻(xiàn)[25]中所做的相關(guān)實驗,證明了該理論方法在實驗上的可行性。

      圖6 時變磁化等離子體中z=d/2處電場和z≈0處磁場的抽樣FDTD結(jié)果。(a)等離子體頻率隨時間變化圖;(b)電場時域變化圖;(c)磁場時域變化圖;(d)電場極化方式變化圖;(e)磁場極化方式變化圖;(f)電場頻域變化圖。

      4 結(jié) 論

      本文應(yīng)用LTJEC-FDTD算法從頻域和時域上分析了時變磁化等離子體的電磁特性。首先模擬了調(diào)制的高斯脈沖在磁化等離子體中的頻域的電磁反射系數(shù),從頻域角度驗證了LTJEC-FDTD算法的準(zhǔn)確性和高效性.然后研究了Whistler駐波在一維時變磁化等離子體中的傳播特性以及太赫茲波的產(chǎn)生。仿真結(jié)果表明,時變磁化等離子體相當(dāng)于頻率轉(zhuǎn)換器,提升了輸入波的頻率,同時加強(qiáng)電場減弱磁場。等離子體頻率、電子回旋頻率、電子碰撞頻率及衰減系數(shù)都是輸出波的影響因素。最后通過優(yōu)化后的參數(shù)得到了頻率為300 GHz的太赫茲波,從理論上驗證了時變磁化等離子體可產(chǎn)生太赫茲波,這些理論結(jié)果對變頻系統(tǒng)的發(fā)展及太赫茲源的產(chǎn)生具有一定的指導(dǎo)意義。

      猜你喜歡
      磁化赫茲時變
      雙色球磁化炭基復(fù)合肥
      東北豐磁化炭基復(fù)合肥
      基于雙頻聯(lián)合處理的太赫茲InISAR成像方法
      太赫茲低頻段隨機(jī)粗糙金屬板散射特性研究
      太赫茲信息超材料與超表面
      基于時變Copula的股票市場相關(guān)性分析
      智富時代(2017年4期)2017-04-27 17:08:47
      煙氣輪機(jī)復(fù)合故障時變退化特征提取
      基于磁化能量的鋰電池串模塊化均衡方法
      基于MEP法的在役橋梁時變可靠度研究
      超強(qiáng)磁場下簡并電子氣體的磁化
      宽甸| 柘荣县| 洛浦县| 芜湖市| 绥宁县| 理塘县| 彭阳县| 陆河县| 连江县| 岚皋县| 钟山县| 治县。| 香格里拉县| 康乐县| 郧西县| 芒康县| 桃江县| 安义县| 郧西县| 睢宁县| 涪陵区| 横山县| 从化市| 洪洞县| 时尚| 乃东县| 隆子县| 赞皇县| 信阳市| 大足县| 固镇县| 富蕴县| 南昌市| 涞源县| 昔阳县| 林芝县| 阳西县| 洞口县| 深州市| 井冈山市| 启东市|