周勇鹍
(襄陽汽車職業(yè)技術(shù)學(xué)院,湖北 襄陽 441021)
啟停技術(shù)為汽車電子帶來了一些獨特的工程挑戰(zhàn),因為當(dāng)發(fā)動機重新啟動時,電池電壓可能降到6.0 V甚至更低。此外,典型電子模塊包含反極性二極管,用以在汽車跳接啟動而跳接線纜反向的事件中保護電子電路。二極管導(dǎo)致電池電壓又下降0.7 V,使下游電路的電壓僅為5.3 V或更低。由于許多模塊仍要求5 V供電,此時電源就沒有足夠的余量來恰當(dāng)工作。如何解決此類問題呢?
升壓電源接受較低得輸入電壓,并在輸出端產(chǎn)生較高的電壓。將審視設(shè)計人員可用于這些啟動/停止系統(tǒng)的不同方案,包括低壓降(LDO)穩(wěn)壓器、電池反向保護方案,以及各種升壓選擇。如果電池電壓在輸入端僅降至6 V,那么,首選及最簡單的方案就是探尋僅要求<0.3 V余量的極低壓降線性穩(wěn)壓器。這種方案適用于電流要求較低的模塊,但對于需要更大電流的模塊而言,設(shè)計人員就需要更多的選擇了。
肖特基二極管的正向壓降約為標(biāo)準整流器的一半,因此,它增添了零點幾伏的電壓余量。改用肖特基二極管足夠簡單直接,但P溝道MOSFET(簡稱P-FET)要求變更PCB,還要求一些額外電路。
圖1顯示了要求使用的3個元件,包括P-FET、齊納二極管及電阻。需要選擇恰當(dāng)大小的P-FET,使其可以處理施加在模塊輸入端的電壓,以及所要求的負載電流。此外,顧及系統(tǒng)散熱要求很重要,因為FET的功率耗散等于電流的平方乘以FET的導(dǎo)通電阻。齊納二極管保護MOSFET的柵極氧化物免受由過壓條件導(dǎo)致的操作。大多數(shù)P-FET的柵極至源極連接能夠處理15~20 V電壓,故齊納二極管必須設(shè)定為在此點之前鉗位。電阻將柵極下拉至地電平以導(dǎo)通P-FET,但也必須恰當(dāng)選擇電阻的大小。電阻的阻抗不能太低,因為阻抗太低的情況下會讓過大電流渡過齊納二極管,因而滋生齊納二極管的功率耗散問題。然而,如果電阻的阻抗太大,在此情況下P-FET的導(dǎo)通可能不會如所傾向般牢靠,而這方案的構(gòu)思是希望降低由漏極至源極兩端的電壓。
圖1 采用P溝道MOSFET提供電池反向保護
但如果輸入電壓實際降到5 V以下,會發(fā)生什么情況?某些制造商在審視冷車啟動(cold cranking)條件下輸入電壓會否降至4.5 V。三種最常見的開關(guān)穩(wěn)壓器就是升壓電壓電源、降壓/升壓電源以及單端初級電感轉(zhuǎn)換器(SEPIC)電源。
圖2 不同升壓電源拓撲結(jié)構(gòu)
升壓電源使用1個電感、1個N溝道MOSFET(即NFET)、1個二極管及1個電容。它的設(shè)計最簡單,但也有一些缺點。如果輸出短路,就沒有辦法來保護它,因為輸入與輸出之間存在直接通道。此外,當(dāng)輸入電壓上升至高于輸出電壓設(shè)定點時,就沒有辦法來避免輸出電壓也上升,因為輸入電壓會恰好經(jīng)過電感和二極管,到達輸出 。
另一種可能的開關(guān)穩(wěn)壓器選擇就是非反向(noninverting)降壓/升壓設(shè)計。此設(shè)計僅使用1個電感和1個電容,但要求使用2個開關(guān)和2個二極管。但此方案確實使設(shè)計人員能夠在輸入電壓升高至高于輸出電壓時避免輸出電壓上升。它還能夠使用第一個開關(guān)(FET1)開路來提供輸出短路保護。此設(shè)計的不足就在于其能效。
在啟動/停止交流發(fā)電機系統(tǒng)設(shè)計方面,要顧及的問題有很多。本文僅探討了電子模塊的電源問題,但也還有其它問題需要予以應(yīng)對。內(nèi)部照明閃爍問題也很惱人卻又并非至關(guān)重要,而剎車燈及前照燈影響安全性,因此電源需要使這些汽車內(nèi)/外照明維持亮度并持續(xù)工作。有利的是,如今市場上有解決這些問題的方案。