劉鵬成 徐湛
摘 要: 正交頻分復用(OFDM)是一種多載波技術(shù),但其信號存在較高的峰均比(PAPR)問題,通過發(fā)送端功率放大器時需要較高的線性工作范圍。研究一種新的低復雜度部分傳輸序列(PTS)峰均比抑制方法,該方法在時域?qū)Σ煌纸M子載波相移,尋找低PAPR的OFDM信號傳輸。通過傳遞少量相移信息,可以在接收端對基帶信號逆向移位操作恢復原始基帶信號。仿真結(jié)果表明,所提方法在低復雜度下可以有效降低PAPR,同時保持較好的誤比特率性能。
關(guān)鍵詞: OFDM; 多載波技術(shù); PAPR; PTS; 峰均比抑制; 子載波相移
中圖分類號: TN919.3?34 文獻標識碼: A 文章編號: 1004?373X(2018)17?0015?05
Abstract: The orthogonal frequency division multiplexing (OFDM) is a kind of multicarrier technique. Its signal has high peak?to?average power ratio (PAPR), so it requires higher linear operating range while transmitting through the power amplifier of transmitter. A new kind of partial transmit sequence (PTS) PAPR suppression method with low complexity is proposed, with which the phase shift of the different grouped subcarriers is permormed in the time domain to find the OFDM signal transmission with low PAPR. By transferring a small amount of phase shift information, the reverse shift operation is carried out for the baseband signal in the receiving terminal to restore to the original baseband signal. The simulation results show that the proposed method can effectively reduce the PAPR in low complexity while maintaining the perfect bit error rate performance.
Keywords: OFDM; multicarrier technique; PAPR; PTS; PAPR suppression; subcarrier phase shift
正交頻分復用(OFDM)具有抗多徑干擾、頻譜利用率高、支持大容量信息傳輸?shù)葍?yōu)點,已廣泛應用于移動通信系統(tǒng)。OFDM時域信號由多個獨立且相互正交的子載波疊加而成,具有較高的峰值平均功率比(PAPR)。當PAPR過高的OFDM信號通過功率放大器等器件時容易進入其非線性區(qū),致使信號發(fā)生畸變,影響系統(tǒng)的誤比特率性能[1]。常用的PAPR抑制技術(shù)主要分為三類,即預畸變技術(shù)[2]、信號編碼技術(shù)[3?4]、概率類技術(shù)[5?6]。預畸變技術(shù)是一種有效降低峰均比的技術(shù),但會對OFDM信號造成非線性失真,導致嚴重的帶內(nèi)干擾、帶外噪聲,從而降低整個系統(tǒng)的誤比特率性能和頻譜效率。編碼類技術(shù)可用于傳輸?shù)男盘柎a字集合,只有較低幅度峰值的碼字才會被選擇用于傳輸信息,但該技術(shù)會產(chǎn)生編碼冗余度。概率類技術(shù)可以降低OFDM信號高峰值出現(xiàn)的概率,在接收端采用相反的方法恢復原始信號?,F(xiàn)有的概率類技術(shù)包括選擇性映射(SLM)、部分傳輸序列(PTS)等。文獻[7?11]研究基于SLM方法的峰均比抑制技術(shù),文獻[12?14]研究基于PTS方法的峰均比抑制技術(shù),但這些方法在選擇低PAPR的OFDM信號時均存在高復雜度問題。
針對以上問題,本文研究一種基于PTS算法的低復雜度峰均比抑制方法,該方法是對傳統(tǒng)PTS算法的改進,且與文獻[15]中MPTS算法相比,可同時采用相鄰隨機分組方式,分組子載波劃分更靈活,備選序列個數(shù)增加。
OFDM通信系統(tǒng)模型如圖1所示,在IFFT與循環(huán)前綴之間插入峰值檢測和子載波相移模塊,在接收端對基帶信號逆向移位操作恢復原始基帶信號。
本節(jié)對所提算法綜合性能進行仿真驗證,統(tǒng)計OFDM信號分組子載波相移PAPR的CCDF和BER特性。以下仿真采用等效基帶,且接收端已知子載波相移信息。限幅門限設(shè)置為信號平均幅值-1.5 dB,以方便統(tǒng)計該方法PAPR的CCDF性能。采用相鄰均勻分組方式。OFDM信號采用4倍過采樣可接近模擬信號的PAPR CCDF性能,接收端采用奈奎斯特速率接收,仿真參數(shù)設(shè)置如表2所示。
4分組,相移16次,不同步長PAPR的CCDF統(tǒng)計特性如圖4所示。步長高于8時PAPR的CCDF性能基本相同,但與步長2相比有明顯改善。當采用4倍過采樣,相鄰4個采樣點具有相關(guān)性,所以步長為2時,性能有損失。
步進為32,相移16次,不同分組數(shù)PAPR的CCDF統(tǒng)計特性如圖5所示。分組數(shù)高于4時PAPR的CCDF性能基本相同,但與2分組數(shù)相比有所改善。
4分組,步進為32,不同相移次數(shù)PAPR的CCDF統(tǒng)計特性如圖6所示。相移次數(shù)對PAPR的CCDF性能影響最大,相移次數(shù)為4和32在PAPR的CCDF值為[10-3]時,峰均比相差1 dB。步長和分組數(shù)對PAPR的CCDF作用不大。
設(shè)置4分組,步進為32,相移64次,得到修改的PTS與傳統(tǒng)4分組64個備選信號PAPR的CCDF曲線如圖7所示,修改的PTS較CPTS有更好的PPAR CCDF性能。
設(shè)置4分組,步進為32,相移9次,OFDM信號在高斯白噪聲信道條件下,得到誤比特率如圖8所示。與未限幅信號相比,誤比特率增大。
本文提出一種新的峰均比抑制方法,對超過峰值門限值的OFDM信號分組子載波相移,尋找低PAPR的OFDM信號。仿真結(jié)果證明,時域子載波相移方法有效改善了OFDM信號峰均比,實現(xiàn)復雜度低,且通過傳遞少量相移信息,可以在接收端對基帶信號逆向移位操作恢復原始基帶信號。該方法不會破壞OFDM信號子載波的正交性且不會產(chǎn)生帶外輻射,保持了較好的誤比特性能。
參考文獻
[1] 郝喜國.正交頻分復用系統(tǒng)中降低PAPR的算法研究[D].太原:太原理工大學,2016.
HAO Xiguo. Research on PAPR reduction algorithm in orthogonal frequency division multiplexing system [D]. Taiyuan: Taiyuan University of Technology, 2016.
[2] 張春蕾,張亮,馬志程,等.聯(lián)合改進法降低OFDM?PON系統(tǒng)的峰均比[J].光通信技術(shù),2015,39(1):8?10.
ZHANG Chunlei, ZHANG Liang, MA Zhicheng, et al. Joint improvement method to reduce peak?to?average ratio of OFDM?PON system [J]. Optical communication technology, 2015, 39(1): 8?10.
[3] QU Daiming, LI Li, JIANG Tao, et al. Invertible subset LDPC code for PAPR reduction in OFDM systems with low complexity [J]. IEEE transactions on wireless communications, 2014, 13(4): 2204?2213.
[4] HASAN M M. A new PAPR reduction technique in OFDM systems using linear predictive coding [J]. International journal of wireless personal communications, 2014, 75(1): 707?721.
[5] DUANMU Chunjiang, CHEN Hongtao. Reduction of the PAPR in OFDM systems by intelligently applying both PTS and SLM algorithms [J]. International journal of wireless personal communications, 2014, 74(2): 849?863.
[6] WOO J Y, JOO H S, KIM K H, et al. PAPR analysis of class?III SLM scheme based on variance of correlation of alternative OFDM signal sequences [J]. IEEE communications letters, 2015, 19(6): 989?992.
[7] JI Jinwei, REN Guangliang, ZHANG Huining, et al. A semi?blind SLM scheme for PAPR reduction in OFDM systems with low?complexity transceiver [J]. IEEE transactions on vehicular technology, 2015, 64(6): 2698?2703.
[8] EL?MAHALLAWY M S, HAGRAS E A A, FATHY S A. Genetic algorithm for PAPR reduction in SLM wavelet?OFDM systems [C]// 2014 IEEE International Conference on Computer, Control, Informatics and Its Applications. Bandung: IEEE, 2014: 136?140.
[9] LUO Renze, LI Rui, DANG Yupu, et al. Two improved SLM methods for PAPR and BER reduction in OFDM?ROF systems [J]. Optical fiber technology, 2015, 21(1): 26?33.
[10] LIANG H Y. Integrating CE and modified SLM to reduce the PAPR of OFDM systems [J]. International journal of wireless personal communications, 2015, 80(2): 709?722.
[11] PYLA S, PADMA R K, BALASUBRAHMANYAM N. Improvement of PAPR in OFDM systems using SLM technique and digital modulation schemes [M]. India: Springer, 2014.
[12] KU S J. Low?complexity PTS?based schemes for PAPR reduction in SFBC MIMO?OFDM systems [J]. IEEE transactions on broadcasting, 2014, 60(4): 650?658.
[13] IBRAHEEM Z T, RAHMAN M M, YAAKOB S N, et al. Effect of partition length variability on the performance of adjacent partitioing PTS in PAPR reduction of OFDM systems [C]// 2014 IEEE International Symposium on Computer Applications and Industrial Electronics. Penang: IEEE, 2014: 24?28.
[14] WANG Zhongpeng, CHEN Shoufa. Reduction PAPR of OFDM signals by combining grouped DCT precoding with PTS [J]. Journal of signal and information processing, 2014, 5(4): 135?142.
[15] 何向東,楊霖.OFDM系統(tǒng)中基于時域信號部分循環(huán)移位的低復雜度PTS算法[J].系統(tǒng)工程與電子技術(shù),2015,37(9):2135?2140.
HE Xiangdong, YANG Lin. Low complexity PTS algorithm based on partial cyclic shift of time domain signals in OFDM system [J]. Systems engineering and electronics, 2015, 37(9): 2135?2140.