謝梅香,張展羽※,張平倉(cāng),徐金鑫,林慶明
?
紫色土坡耕地硝態(tài)氮的遷移流失規(guī)律及其數(shù)值模擬
謝梅香1,張展羽1※,張平倉(cāng)2,徐金鑫2,林慶明2
(1. 河海大學(xué)水利水電學(xué)院,南京 210098;2. 長(zhǎng)江科學(xué)院水土保持研究所,武漢 430010)
為探究紫色土坡耕地硝態(tài)氮遷移流失過(guò)程,通過(guò)室內(nèi)模擬試驗(yàn),并結(jié)合數(shù)學(xué)模型,研究在不同雨強(qiáng)(0.4,1.0,1.8 mm/min)和坡度(5°,15°,20°)下硝態(tài)氮分別隨地表徑流和壤中流遷移而流失的特征。結(jié)果表明:隨地表徑流和壤中流遷移的硝態(tài)氮流失濃度隨時(shí)間分別呈現(xiàn)指數(shù)下降和線(xiàn)性上升趨勢(shì);隨壤中流流失的濃度是地表徑流攜帶的19~72倍,在小雨強(qiáng)下壤中流攜帶流失負(fù)荷大于隨地表徑流流失負(fù)荷,但隨雨強(qiáng)增大,硝態(tài)氮流失負(fù)荷通過(guò)地表徑流流失的比例由17.3%增大至66.0%,大雨強(qiáng)下硝態(tài)氮主要通過(guò)地表徑流流失;與實(shí)測(cè)數(shù)據(jù)比較分析,有效混合深度模型在隨地表徑流流失的硝態(tài)氮模擬中精度評(píng)價(jià)指標(biāo)Nash-Suttcliffe系數(shù)NS和決定系數(shù)2達(dá)到0.590和0.826 7,而對(duì)流彌散方程在壤中流攜帶硝氮流失的過(guò)程模擬中NS和2達(dá)到0.792和0.842 6,取得較好的模擬結(jié)果。該研究為紫色土坡耕地硝態(tài)氮遷移流失機(jī)理研究提供依據(jù)和參考。
硝態(tài)氮;徑流;模型;壤中流;濃度;負(fù)荷;有效混合深度;對(duì)流彌散
山地丘陵約占到了中國(guó)國(guó)土面積的2/3[1],因此坡耕地在中國(guó)農(nóng)業(yè)生產(chǎn)活動(dòng)中占據(jù)了十分重要的地位,其中紫色土坡耕地在三峽庫(kù)區(qū)耕地面積中占據(jù)了70%以上[2]。伴隨著農(nóng)業(yè)耕作中大量施用的肥料,加之坡地突出的水土流失問(wèn)題,污染物的大量遷移流失造成了坡耕地臨近水域嚴(yán)重的面源污染問(wèn)題[3-5]。降雨和地形是影響污染物遷移和流失的重要因素[6-7],因此降雨強(qiáng)度和坡度作為變量已被廣泛地用于坡耕地氮素流失的研究中[8-10]。其中,硝態(tài)氮因其易溶于水和強(qiáng)流動(dòng)性的特點(diǎn)而發(fā)生流失得到了更多關(guān)注。Jia等[11]通過(guò)徑流小區(qū)試驗(yàn)發(fā)現(xiàn)紫色土坡耕地壤中流是硝態(tài)氮主要的流失方式,流失比重達(dá)到90%以上。汪濤等[12]研究表明徑流過(guò)程對(duì)硝酸鹽淋失有明顯影響,壤中流過(guò)程中的硝態(tài)氮淋失量達(dá)到了施肥量的22.34%,而地表徑流攜帶的流失負(fù)荷只占到了0.62%。研究者們對(duì)坡耕地硝態(tài)氮的流失著重于流失負(fù)荷總量的比較,對(duì)于硝態(tài)氮隨地表徑流(surface flow,SF)和壤中流(subsurface flow,SSF)遷移流失過(guò)程中的濃度和負(fù)荷動(dòng)態(tài)變化過(guò)程的研究較為少見(jiàn)。
溶質(zhì)在降雨條件下隨地表徑流遷移規(guī)律的數(shù)值模擬已經(jīng)較為成熟[13-16]。20世紀(jì)80年代,Ahuja[13]就地表徑流攜帶的溶質(zhì)濃度提出了有效混合深度的概念并建立了溶質(zhì)遷移至地表徑流的有效混合深度模型。王全九和王輝[17]在此基礎(chǔ)上,將土壤入滲考慮在內(nèi),在有效混合深度模型中嵌套Philip入滲公式[18],建立了黃土坡面上溶質(zhì)遷移至地表的完全和不完全混合深度模型。這些模型的驗(yàn)證都是以溴化物作為溶質(zhì)樣本,且對(duì)實(shí)際污染物氮磷遷移的應(yīng)用較為廣泛,但在紫色土坡耕地區(qū)域的應(yīng)用研究較為少見(jiàn)。由于壤中流復(fù)雜的產(chǎn)流過(guò)程和機(jī)理,對(duì)于坡耕地壤中流攜帶的硝態(tài)氮流失過(guò)程的數(shù)值模擬更是少見(jiàn),僅DNDC(DeNitrification-DeComposion)模型[19]被改進(jìn)應(yīng)用于坡耕地壤中流硝態(tài)氮淋失通量的模擬[7, 20]。因此,本文著重研究坡耕地硝態(tài)氮在降雨過(guò)程中分別遷移至地表和地下隨地表徑流和壤中流而流失的動(dòng)態(tài)過(guò)程,改進(jìn)了隨地表遷移流失的有效混合深度模型以應(yīng)用于紫色土坡耕地硝態(tài)氮流失的模擬,并結(jié)合對(duì)流彌散數(shù)學(xué)模型對(duì)遷移至地下隨壤中流流失過(guò)程進(jìn)行數(shù)值模擬,旨在為建立完整統(tǒng)一的坡耕地硝態(tài)氮流失機(jī)制提供參考。
試驗(yàn)用土采集自湖北省秭歸縣王家橋小流域坡耕地中距地表0~40 cm處土層,土壤粒徑分布為,砂粒(>0.05 mm)占54.72%,粉粒(0.002~0.05 mm)占40.19%,黏粒(<0.002)占5.09%。根據(jù)中國(guó)制土壤質(zhì)地分類(lèi)法,該土壤分類(lèi)屬于紫色壤土,是一種具有大孔隙和強(qiáng)入滲能力質(zhì)地疏松的土壤,由紫色頁(yè)巖風(fēng)化而覆蓋在巖石上形成獨(dú)特“巖土二元結(jié)構(gòu)”,導(dǎo)致其壤中流極為發(fā)育[3]。王家橋流域地處長(zhǎng)江三峽庫(kù)區(qū),坡耕地資源豐富,屬于典型的亞熱帶季風(fēng)氣候,夏季高溫多雨,且多為歷時(shí)短的強(qiáng)降雨,年均降雨量達(dá)到1 100 mm, 年平均蒸發(fā)量794.6 mm。采集的土樣經(jīng)風(fēng)干后過(guò)10 mm篩,裝好備用。
試驗(yàn)于湖北省長(zhǎng)江科學(xué)院水土流失實(shí)驗(yàn)室內(nèi)進(jìn)行,采用室內(nèi)固定的模擬降雨器進(jìn)行降雨模擬,降雨強(qiáng)度由終端控制臺(tái)設(shè)定,試驗(yàn)前進(jìn)行雨強(qiáng)的率定,降雨均勻度達(dá)到80%。降雨器通過(guò)泵抽取蓄水池的自來(lái)水(氨氮0.073 mg/L,硝氮1.174 mg/L和總氮7.125 mg/L)進(jìn)行降雨噴灑,降雨高度為9 m。降雨器下放置移動(dòng)式鋼制土槽,土槽長(zhǎng)200 cm,寬50 cm,深50 cm,坡度通過(guò)液壓裝置調(diào)整。本次試驗(yàn)共設(shè)置3個(gè)雨強(qiáng),分別為0.4,1.0,1.8 mm/min,降雨時(shí)長(zhǎng)為60 min;3個(gè)坡度,分別為5°,15°,20°,雨強(qiáng)和坡度兩兩組合,共9個(gè)處理,每個(gè)處理重復(fù)2次。在土槽底部設(shè)置10 cm厚的相對(duì)不透水層(圖1),來(lái)模擬紫色土坡耕地壤中流的形成機(jī)理,在槽內(nèi)壁鋪塑料紗網(wǎng)防止邊界效應(yīng)。然后將供試土樣分層裝入土槽,每5 cm為一層進(jìn)行壓實(shí),控制容重為1.35 g/cm3,并將每層表面打毛,以防止分層,共裝土40 cm。為保證初始土壤養(yǎng)分含量和含水率基本一致,試驗(yàn)開(kāi)始之前給土壤表面均勻灌溉10 mm尿素濃度為500 mg/L的自來(lái)水。土槽中均勻設(shè)置觀測(cè)點(diǎn),在灌水后利用TDR和土壤溶液采集器分別進(jìn)行土壤含水量率和土壤養(yǎng)分測(cè)定,當(dāng)測(cè)定結(jié)果顯示各觀測(cè)點(diǎn)的土壤含水率和養(yǎng)分含量大體一致后,開(kāi)始降雨試驗(yàn)。在土槽坡腳處設(shè)兩處V形集流槽,分別位于距地表0和40 cm處,用于收集地表徑流和壤中流。
對(duì)于地表徑流,產(chǎn)流初期每2 min接1次樣,產(chǎn)流穩(wěn)定后每5 min接1次樣。對(duì)于壤中流,從產(chǎn)流開(kāi)始到結(jié)束每隔6~10 min接1次樣。記錄接樣時(shí)間并讀取接好的樣品體積,帶回實(shí)驗(yàn)室,將樣品靜置,取上層清液倒入干凈的聚乙烯瓶中,放入冰箱內(nèi)于4 ℃保存,在48 h內(nèi)完成硝態(tài)氮濃度的分析。硝態(tài)氮濃度采用化學(xué)間斷分析儀(SmartChem 200, Alliance, France)進(jìn)行測(cè)定。流失負(fù)荷的計(jì)算根據(jù)公式為
流失濃度及負(fù)荷相關(guān)值利用Excel進(jìn)行計(jì)算,用Origin繪制數(shù)據(jù)圖,用SPSS軟件中的LSD方法對(duì)地表徑流和壤中流攜帶流失的硝態(tài)氮在95%的置信區(qū)間(< 0.05)進(jìn)行顯著性分析。
注:R為降雨強(qiáng)度,mm×min-1;CSF為地表徑流攜帶的溶質(zhì)濃度,mg×L-1;CSSF為壤中流攜帶的溶質(zhì)濃度,mg×L-1;hm為有效混合深度,cm;JU和JD分別表示土壤層向上和向下遷移的通量,mg×cm-2·min-1;a為坡度,(°)。
本文根據(jù)試驗(yàn)數(shù)據(jù)進(jìn)行數(shù)學(xué)模型的構(gòu)建和評(píng)估,數(shù)值模擬主要由土壤表層中溶質(zhì)向上遷移至地表徑流和溶質(zhì)向下遷移至下層土壤隨壤中流發(fā)生流失2部分組成。
2.1.1 硝態(tài)氮隨地表徑流流失模型
對(duì)于紫色土坡耕地硝態(tài)氮隨地表徑流遷移流失的數(shù)值模擬,采用有效混合深度模型
式中h為有效混合深度,cm;為流失溶質(zhì)濃度,mg/L;0為初始遷移至地表徑流的溶質(zhì)濃度,mg/L;θ為飽和含水率,cm3/cm3;ρ為土壤容重,g/cm3;為土壤吸附系數(shù),cm3/g;為降雨強(qiáng)度,cm/min;為降雨時(shí)刻,min;t為地表產(chǎn)流時(shí)刻,min。
Ahuja[21]在研究中表明有效混合深度會(huì)隨著時(shí)間而變大,且增大速度會(huì)隨時(shí)間而減小。在之前的研究中,Ahuja等[13,22]在利用32P元素和溴化物進(jìn)行試驗(yàn)時(shí)得到混合層深度變化的趨勢(shì),混合深度隨著雨滴不斷地?fù)舸蛲寥辣砻娑饾u增大,當(dāng)雨水在土壤表面形成穩(wěn)定的徑流時(shí)在土壤表面形成一層密封水層,阻礙了混合深度增大,故增大速率變小。因此,本文中我們將有效混合深度進(jìn)行改進(jìn),建立符合Ahuja[21]提出的變化的有效混合深度 模型
式中′為降雨時(shí)長(zhǎng),min;0為初始混合深度,cm;h為基本混合參數(shù),cm。將式(3)代入式(2)中得到本文修正的隨地表徑流遷移流失的溶質(zhì)濃度模型
2.1.2 硝態(tài)氮隨壤中流流失模型
對(duì)于溶質(zhì)在土壤中的遷移過(guò)程,本文根據(jù)傳統(tǒng)的對(duì)流彌散數(shù)學(xué)模型進(jìn)行數(shù)值模擬
式中為土壤體積含水率,cm3/cm3;為降雨時(shí)刻,min;D為彌散系數(shù),cm2/min;為土壤中硝態(tài)氮溶液質(zhì)量濃度,mg/cm3;q為水流通量,cm/min;r為空間坐標(biāo),=1,2,1,2,11=D,12=D。
對(duì)式(5)偏微分方程的求解,在HYDRUS-2D[23]軟件中通過(guò)構(gòu)建和試驗(yàn)規(guī)模一致的有限單元網(wǎng)格,利用HYDRUS-2D嵌套的物理化學(xué)平衡傳輸模塊對(duì)硝態(tài)氮在土壤中遷移的對(duì)流彌散方程進(jìn)行數(shù)值計(jì)算,在模型的壤中流出口處設(shè)置相應(yīng)的觀測(cè)點(diǎn)得到壤中流中攜帶的溶質(zhì)濃度。計(jì)算過(guò)程中的參數(shù)取值如表1所示,ρ的數(shù)值采用裝土?xí)r的容重1.35 g/cm3;θ和θ的值根據(jù)實(shí)測(cè)的土壤粒徑分布由Rosetta模型賦予初值,在模擬過(guò)程中進(jìn)行調(diào)整修正;值由線(xiàn)性等溫吸附法進(jìn)行確定;D和D分別是硝態(tài)氮的縱向彌散度和在自由水中的擴(kuò)散系數(shù),在數(shù)值模擬過(guò)程中根據(jù)模擬結(jié)果反向推導(dǎo)確定。
除了通過(guò)實(shí)測(cè)值與模擬值的圖形直觀對(duì)比外,本文還采用平均絕對(duì)誤差(mean absolute error,MAE),均方根誤差(root mean square error,RMSE),Nash-Suttcliffe系數(shù)NS3個(gè)精度指標(biāo)來(lái)進(jìn)行模型模擬結(jié)果精度的評(píng)估,其表達(dá)式分別為
表1 數(shù)值模擬中的參數(shù)
注:ρ為土壤容重,θ為飽和含水率,θ為剩余含水率,為土壤吸附系數(shù),D為硝態(tài)氮縱向彌散度,D為硝態(tài)氮自由水中的擴(kuò)散系數(shù)。
Note:ρis soil bulk density,θis saturated water content,θis residual saturated water content,is the soil adsorption rate,Dis longitudinal dispersity of nitrate,Dis molecular diffusion coefficient in free water of nitrate.
由圖2可以看出,不同雨強(qiáng)及坡度條件下隨地表徑流遷移的硝態(tài)氮濃度隨時(shí)間都呈明顯的指數(shù)型下降趨勢(shì),在產(chǎn)流初期流失濃度急劇下降,而后逐漸趨于穩(wěn)定。同一雨強(qiáng)下,坡度越大,硝態(tài)氮濃度衰減速率越大;同一坡度下,雨強(qiáng)越大,硝態(tài)氮濃度衰減速率越大。
由圖3可見(jiàn),壤中流攜帶的硝態(tài)氮濃度實(shí)測(cè)數(shù)據(jù)的誤差值要遠(yuǎn)遠(yuǎn)大于圖2中誤差值,由此可見(jiàn)壤中流過(guò)程的復(fù)雜性和不確定性。除了在小坡度(5°)小雨強(qiáng)(0.4 mm/min)下,其他處理下隨壤中流流失的硝態(tài)氮濃度隨時(shí)間大致都呈增長(zhǎng)的趨勢(shì)。對(duì)比地表徑流和壤中流攜帶的硝態(tài)氮濃度,如表2所示,同一處理下壤中流攜帶的硝態(tài)氮濃度要顯著(<0.05)大于隨地表徑流流失的硝態(tài)氮濃度。各個(gè)處理下,隨壤中流流失的濃度是地表徑流攜帶的硝態(tài)氮濃度的19~72倍。除此之外,雨強(qiáng)越小,壤中流攜帶的硝態(tài)氮濃度越大。
圖4可以看出隨地表徑流和地下壤中流發(fā)生的累積硝態(tài)氮流失負(fù)荷隨時(shí)間都呈現(xiàn)出線(xiàn)性增長(zhǎng)的趨勢(shì)。雨強(qiáng)越大,地表硝態(tài)氮流失速度越大,但隨壤中流流失的硝態(tài)氮負(fù)荷在小雨強(qiáng)0.4 mm/min時(shí)表現(xiàn)出最大的增長(zhǎng)速度。再結(jié)合表2中各處理下的流失負(fù)荷均值,硝態(tài)氮在小雨強(qiáng)時(shí)通過(guò)地下流失的負(fù)荷要大于通過(guò)地表流失的負(fù)荷,且差異顯著(<0.05);當(dāng)雨強(qiáng)達(dá)到1.0 mm/min時(shí),分別通過(guò)地表和地下流失的負(fù)荷相近,差異不顯著;當(dāng)雨強(qiáng)達(dá)到最大1.8 mm/min時(shí),由地下流失負(fù)荷小于由地表流失負(fù)荷,差異顯著(<0.05)。在小雨強(qiáng)下壤中流攜帶流失負(fù)荷大于隨地表徑流流失負(fù)荷,但隨雨強(qiáng)增大,硝態(tài)氮流失負(fù)荷通過(guò)地表徑流流失的比例由17.3%增大至66.0%,大雨強(qiáng)下硝態(tài)氮主要通過(guò)地表徑流流失。
圖2 隨地表徑流流失的硝態(tài)氮濃度實(shí)測(cè)值與模擬值對(duì)比
圖3 隨壤中流流失的硝態(tài)氮濃度實(shí)測(cè)值與模擬值對(duì)比
表2 各處理下硝態(tài)氮的流失濃度及負(fù)荷
注:不同的字母代表地表徑流和壤中流在0.05水平上存在顯著差異。
Note: Different letters indicate significant difference at 0.05 level between surface and subsurface flow.
圖4 不同處理下硝態(tài)氮累積流失負(fù)荷
3.2.1 地表流失模擬
由圖2可以直觀地看出,隨地表徑流遷移的硝態(tài)氮濃度的模擬值與實(shí)測(cè)值在小雨強(qiáng)時(shí)顯示出十分吻合的變化過(guò)程,2分別達(dá)到了0.955 5,0.920 9和0.954 9,在表3中,Nash-Suttcliffe系數(shù)NS在小雨強(qiáng)時(shí),5°,15°和20°坡度下分別達(dá)到了0.832,0.690和0.919,說(shuō)明模擬結(jié)果好,MAE和RMSE值也在較為合理的范圍之內(nèi)。當(dāng)雨強(qiáng)增大,模擬結(jié)果精度也隨之下降,主要原因在于,大雨強(qiáng)下初始流失濃度的實(shí)測(cè)值較小,且硝態(tài)氮濃度迅速下降至穩(wěn)定值,實(shí)測(cè)濃度衰減過(guò)程不明顯,因此模型模擬的指數(shù)型下降趨勢(shì)與實(shí)測(cè)值之間存在較大誤差。當(dāng)NS值為負(fù)值時(shí),說(shuō)明模擬效果較差,但NS僅是評(píng)估模擬結(jié)果中的一個(gè)組成部分,結(jié)合MAE和RMSE值以及2,在雨強(qiáng)為1.0和1.8 mm/min時(shí),MAE和RMSE值都接近最優(yōu)值0,而2也分別到達(dá)0.8和0.5上下,模擬結(jié)果可以接受。圖5a中,對(duì)于地表流失濃度的模擬值和實(shí)測(cè)值的散點(diǎn)圖,經(jīng)過(guò)線(xiàn)性回歸,兩者之間的線(xiàn)性擬合關(guān)系線(xiàn)= 0.999 6-0.267 5,2為0.826 7,與1∶1線(xiàn)十分接近,且MAE、RMSE、NS分別為0.872 mg/L、1.009 mg/L、0.590,總體來(lái)說(shuō),修正的有效混合深度模型在紫色土坡耕地硝態(tài)氮隨地表徑流遷移流失的模擬中顯示出了較好的模擬結(jié)果。
圖5 硝態(tài)氮流失濃度的模擬值與實(shí)測(cè)值散點(diǎn)圖
3.2.2 地下流失模擬
由圖3可以看出對(duì)于各處理下壤中流攜帶的硝態(tài)氮濃度流失過(guò)程的模擬與實(shí)測(cè)值變化趨勢(shì)大體一致,但2最大值為0.870 1,最小值為0.116 1,波動(dòng)較大,這一方面與實(shí)測(cè)值存在較大誤差有關(guān),另一方面也與模擬過(guò)程中參數(shù)的取值有關(guān)。表3中顯示的NS值在各雨強(qiáng)各坡度下也表現(xiàn)出正負(fù)值的波動(dòng)性,表明壤中流攜帶流失的硝氮濃度的模擬結(jié)果與其實(shí)際流失過(guò)程一樣具備復(fù)雜性和不確定性。圖5b顯示的壤中流攜帶的硝態(tài)氮濃度的模擬值與實(shí)測(cè)值的散點(diǎn)圖進(jìn)行線(xiàn)性回歸后,得到= 0.991 5+3.786 3,2為0.842 6,與1:1線(xiàn)也十分接近,且MAE、RMSE、NS分別為9.889 mg/L、13.084 mg/L、0.792,說(shuō)明擬合結(jié)果較好。雖然地下流失模擬結(jié)果的MAE,RMSE值是地表流失模擬結(jié)果的10倍以上,但是因?yàn)榈叵铝魇У南鯌B(tài)氮濃度是地表流失濃度的19~72倍,所以表3中各處理下的誤差值都在允許范圍之內(nèi)。對(duì)比硝態(tài)氮隨地表徑流流失和壤中流流失的模擬結(jié)果,針對(duì)不同雨強(qiáng)和坡度,地表的模擬精度隨雨強(qiáng)增大而減小,而地下的模擬精度則呈現(xiàn)出波動(dòng)和不確定性,但總體上來(lái)看模擬精度都是滿(mǎn)足要求的。
表3 硝態(tài)氮流失過(guò)程數(shù)值模擬精度評(píng)價(jià)
綜合降雨試驗(yàn)實(shí)測(cè)數(shù)據(jù)和數(shù)值模擬結(jié)果可以發(fā)現(xiàn),坡耕地隨地表徑流遷移的硝態(tài)氮濃度隨時(shí)間呈指數(shù)型趨勢(shì)下降,說(shuō)明從徑流發(fā)生到穩(wěn)定的過(guò)程中,其攜帶的硝態(tài)氮濃度在減小并趨于穩(wěn)定。主要原因在于降雨在坡面形成徑流的過(guò)程中,初始階段土壤表面未到達(dá)飽和,徑流較大程度地在混合深度內(nèi)攜帶土壤中溶質(zhì)發(fā)生流失;等地表徑流達(dá)到穩(wěn)定,土壤表面含水量達(dá)到飽和,徑流與地表之間形成了一層封閉隔離層[24],減弱了土壤表層混合深度內(nèi)溶質(zhì)向地表徑流遷移,與王全九[17]、Yang等[25]的研究結(jié)果相近。坡度越大,降雨在土壤表面停留的時(shí)間越短,從而徑流攜帶的溶質(zhì)濃度就會(huì)越小。雨強(qiáng)越大,雨水就會(huì)更快速地充滿(mǎn)土壤表面的凹陷并在土壤表面形成一層密封水層,從而阻礙了混合深度中的溶質(zhì)向地表徑流遷移。對(duì)于紫色土坡耕地硝態(tài)氮隨地表徑流遷移的數(shù)值模擬,在前人的研究基礎(chǔ)上[16-17, 21]構(gòu)建了隨時(shí)間增長(zhǎng)的有效混合深度模型,結(jié)果表明模擬結(jié)果能較好地?cái)M合實(shí)測(cè)數(shù)據(jù)。Armstrong等[4]通過(guò)土槽試驗(yàn)研究地表徑流中的氮素遷移的動(dòng)力學(xué)特征時(shí)發(fā)現(xiàn),硝態(tài)氮的濃度變化過(guò)程在重復(fù)處理之間的誤差明顯小于其他氮素,類(lèi)似地,在本研究中地表徑流中硝態(tài)氮濃度誤差值十分小,同時(shí)也增強(qiáng)了數(shù)值模擬結(jié)果的可靠性。Yang等[25]在他們的研究中表明有效混合深度模型對(duì)于硝態(tài)氮的模擬結(jié)果要差于鉀和磷元素的模擬,硝態(tài)氮模擬值與觀測(cè)數(shù)據(jù)的決定系數(shù)只達(dá)到了0.57,差于本研究中的模擬結(jié)果(2= 0.826 7)。
相較于地表徑流攜帶的硝態(tài)氮流失過(guò)程,隨壤中流流失的硝態(tài)氮濃度在重復(fù)處理之間表現(xiàn)出較大的差異,且未隨雨強(qiáng)及坡度大小呈現(xiàn)統(tǒng)一規(guī)律,原因在于壤中流產(chǎn)流過(guò)程的復(fù)雜性以及降雨在坡耕地中入滲遷移的不確定性[26-27]。在本次試驗(yàn)中,除了在雨強(qiáng)0.4 mm/min和坡度5°下硝態(tài)氮濃度隨時(shí)間呈現(xiàn)出明顯下降的趨勢(shì),其余處理下硝態(tài)氮濃度都大致呈現(xiàn)出增長(zhǎng)的態(tài)勢(shì),說(shuō)明硝態(tài)氮在土壤中隨水遷移累積而發(fā)生流失,一方面是因?yàn)橄跛猁}的可溶性和極強(qiáng)的流動(dòng)性[11, 28],另一方面降雨在土壤中逐漸入滲淋洗土壤中的硝態(tài)氮,使得硝態(tài)氮濃度在地下出流中的濃度逐漸增大。在雨強(qiáng)0.4 mm/min和坡度5°時(shí),由于硝態(tài)氮初始濃度較大,降低了后續(xù)出流濃度的增長(zhǎng)趨勢(shì)。在壤中流攜帶硝態(tài)氮流失過(guò)程的數(shù)值模擬中,利用傳統(tǒng)研究溶質(zhì)運(yùn)移的對(duì)流彌散方程進(jìn)行模擬并用HYDRUS-2D軟件進(jìn)行求解,模擬結(jié)果相較于地表的模擬結(jié)果較差,這與實(shí)際觀測(cè)到的數(shù)據(jù)存在誤差有關(guān),其次,在模擬過(guò)程中一些分子擴(kuò)散系數(shù)等參數(shù)無(wú)法通過(guò)實(shí)際測(cè)量得到,需要根據(jù)模擬結(jié)果來(lái)反向推導(dǎo)較為適合的參數(shù)值[29-30],但總體上模擬結(jié)果能滿(mǎn)足基本流失規(guī)律的描述。
在本次試驗(yàn)中,坡度對(duì)硝態(tài)氮流失的影響沒(méi)有統(tǒng)一的規(guī)律,這與前人的研究結(jié)果相似[8-9, 31]。對(duì)于隨地表徑流和壤中流流失硝態(tài)氮的差異,與地表徑流和壤中流產(chǎn)流特點(diǎn)存在一定的關(guān)系,地表徑流的流速要明顯大于壤中流,因此相同時(shí)間內(nèi)地表徑流的產(chǎn)流量就會(huì)顯著大于壤中流,從而對(duì)地表溶質(zhì)濃度起到了一個(gè)稀釋作用[32],造成地表徑流攜帶的硝態(tài)氮濃度要遠(yuǎn)小于壤中流攜帶的濃度。就壤中流而言,流量小,攜帶的氮濃度高,不存在稀釋效應(yīng),而流失的硝態(tài)氮主要依靠土壤中的水運(yùn)移攜帶而發(fā)生。前人研究[9, 11]表明坡耕地壤中流在小雨強(qiáng)下更為發(fā)育,因此小雨強(qiáng)下壤中流攜帶流失的硝態(tài)氮濃度就會(huì)大于大雨強(qiáng)下流失的濃度。小雨強(qiáng)下地表徑流流速小,流量少,攜帶的總的硝態(tài)氮負(fù)荷就會(huì)少且流失速度也變小,但壤中流在小雨強(qiáng)下的流速大,攜帶的硝態(tài)氮濃度高,流失負(fù)荷和流失速率就相應(yīng)增大。因此,對(duì)于地表發(fā)生的硝態(tài)氮流失負(fù)荷主要受地表徑流量控制,而壤中流攜帶流失的硝態(tài)氮負(fù)荷主要取決于其流失濃度的大小。
1)紫色土坡耕地的硝態(tài)氮隨地表徑流遷移流失濃度隨時(shí)間呈指數(shù)型下降趨勢(shì),徑流初期急劇下降,而后趨于穩(wěn)定;而對(duì)于隨壤中流流失的硝態(tài)氮,除小雨強(qiáng)小坡度(0.4 mm/min和5°)外,硝態(tài)氮濃度隨時(shí)間大體呈增長(zhǎng)趨勢(shì),且重復(fù)間誤差較大;由壤中流流失的硝態(tài)氮的濃度是隨地表徑流流失濃度的19~72倍,硝態(tài)氮通過(guò)地表和地下流失的負(fù)荷隨時(shí)間都呈現(xiàn)線(xiàn)性增長(zhǎng)趨勢(shì)。
2)隨著雨強(qiáng)和坡度增大,隨地表徑流流失的硝態(tài)氮的濃度的衰減速度隨之增加,小雨強(qiáng)下硝態(tài)氮主要通過(guò)壤中流發(fā)生流失,而大雨強(qiáng)下則主要通過(guò)地表徑流流失,而坡度對(duì)硝態(tài)氮流失的影響無(wú)統(tǒng)一的規(guī)律。
3)有效混合深度模型在紫色土硝態(tài)氮隨地表徑流流失的數(shù)值模擬中的平均絕對(duì)誤差、均方根誤差、Nash- Suttcliffe系數(shù)和決定系數(shù)2分別為0.872 mg/L,1.009 mg/L,0.590,0.826 7;對(duì)流彌散方程在模擬紫色土壤中流攜帶硝態(tài)氮濃度的變化過(guò)程中平均絕對(duì)誤差、均方根誤差、Nash-Suttcliffe系數(shù)和決定系數(shù)2分別為9.889 mg/L,13.084 mg/L,0.792,0.842 6,總體上均取得較好的模擬結(jié)果。
在本研究中,對(duì)于隨地表徑流和壤中流遷移流失的硝態(tài)氮濃度變化過(guò)程分別進(jìn)行了數(shù)值模擬,但是該數(shù)值模型無(wú)法對(duì)地表徑流和壤中流產(chǎn)流過(guò)程進(jìn)行模擬,使得養(yǎng)分流失負(fù)荷無(wú)法得到數(shù)值模擬和驗(yàn)證,同時(shí),對(duì)于地表和地下養(yǎng)分流失過(guò)程的數(shù)值模型的耦合也較為欠缺,在未來(lái)的工作中,應(yīng)加強(qiáng)上述2個(gè)方面的工作,為建立完整統(tǒng)一的紫色土坡耕地養(yǎng)分流失機(jī)制提供參考。
[1] 謝俊奇. 中國(guó)坡耕地[M]. 北京:中國(guó)大地出版社,2005.
[2] Ma X, Li Y, Li B, et al. Nitrogen and phosphorus losses by runoff erosion: Field data monitored under natural rainfall in three gorges reservoir area, china[J]. Catena, 2016, 147: 797-808.
[3] 賈海燕,雷阿林,雷俊山,等. 紫色土地區(qū)水文特征對(duì)硝態(tài)氮流失的影響研究[J]. 環(huán)境科學(xué)學(xué)報(bào),2006,26(10):1658-1664.Jia Haiyan, Lei Alin, Lei Junshan, et al. Nitrate loss effected by the runoff process in purple soil[J]. Acta Scientiae Circumstantiae, 2006, 26(10): 1658-1664. (in Chinese with English abstract)
[4] Armstrong A, Quinton J N, Francis B, et al. Controls over nutrient dynamics in overland flows on slopes representative of agricultural land in north west europe[J]. Geoderma, 2011, 164(1/2): 2-10.
[5] 夏立忠,馬力,楊林章,等. 植物籬和淺壟作對(duì)三峽庫(kù)區(qū)坡耕地氮磷流失的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(14):104-111.Xia Lizhong, Ma Li, Yang Linzhang, et al. Effects of hedgerows and ridge cultivation on losses of nitrogen and phosphorus of slope land in Three Gorges Reservoir area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(14): 104-111. (in Chinese with English abstract)
[6] Manevski K, Borgesen C D, Li X, et al. Optimising crop production and nitrate leaching in china: measured and simulated effects of straw incorporation and nitrogen fertilization[J]. European Journal of Agronomy, 2016, 80: 32-44.
[7] Deng J, Zhu B, Zhou Z, et al. Modeling nitrogen loadings from agricultural soils in southwest china with modified DNDC[J]. Journal of Geophysical Research Biogeosciences, 2011, 116(G2): 1602.
[8] 李其林,魏朝富,曾祥燕,等. 自然降雨對(duì)紫色土坡耕地氮磷流失的影響[J]. 灌溉排水學(xué)報(bào),2010,41(2): 76-80.Li Qilin, Wei Chaofu, Zeng Xiangyan, et al. Run-off character of nitrogen and phosphorus on slope land in Three Gorges Reservoir[J]. Chinese Journal of Soil Science, 2010, 41(2): 76-80. (in Chinese with English abstract)
[9] 丁文峰,張平倉(cāng). 紫色土坡面壤中流養(yǎng)分輸出特征[J]. 水土保持學(xué)報(bào),2009,23(4):15-19.Ding Wenfeng, Zhang Pingcang. Characteristics of nutrient transportation of subsurface flow of purple soil slope[J]. Journal of Soil and Water Conservation, 2009, 23(4): 15-19. (in Chinese with English abstract)
[10] Ding X, Xue Y, Lin M, et al. Influence mechanisms of rainfall and terrain characteristics on total nitrogen losses from regosol[J]. Water, 2017, 9: 167.
[11] Jia H, Lei A, Lei J, et al. Effects of hydrological processes on nitrogen loss in purple soil[J]. Agricultural Water Management, 2007, 89(1/2): 89-97.
[12] 汪濤,朱波,羅專(zhuān)溪,等. 紫色土坡耕地硝酸鹽流失過(guò)程與特征研究[J]. 土壤學(xué)報(bào),2010,47(5):962-970.Wang Tao, Zhu Bo, Luo Zhuanxi, et al. Nitrate loss from sloping cropland of purple soil[J]. Acta Pedologica Sinica, 2010, 47(5): 962-970. (in Chinese with English abstract)
[13] Ahuja L R. Release of a soluble chemical from soil to runoff[J]. 1982, 25(4): 948-953.
[14] 王全九,楊婷,劉艷麗,等. 土壤養(yǎng)分隨地表徑流流失機(jī)理與控制措施研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(6):67-82.Wang Quanjiu, Yang Ting, Liu Yanli, et al. Review of soil nutrient transport in runoff and its controlling measures[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 67-82. (in Chinese with English abstract)
[15] 張興昌,邵明安. 坡地土壤氮素與降雨、徑流的相互作用機(jī)理及模型[J]. 地理科學(xué)進(jìn)展,2000,19(2):128-135.Zhang Xingchang, Shao Ming'an. The interacting models and mechanisms of soil nitrogen with rainfall and runoff[J]. Progress in Geography, 2000, 19(2): 128-135. (in Chinese with English abstract)
[16] Yang T, Wang Q, Liu Y, et al. A comparison of mathematical models for chemical transfer from soil to surface runoff with the impact of rain[J]. Catena, 2016, 137: 191-202.
[17] 王全九,王輝. 黃土坡面土壤溶質(zhì)隨徑流遷移有效混合深度模型特征分析[J]. 水利學(xué)報(bào),2010,41(6):671-676.Wang Quanjiu, Wang Hui. Analysis on the feature of effective mixing depth model for soil solute transporting with surface runoff on loess slope[J]. Shuili Xuebao, 2010, 41(6): 671-676. (in Chinese with English abstract)
[18] Philip J R. The theory of infiltration: 1. The infiltration equation and its solution[J]. Soil Science, 1957, 83(5): 345-347.
[19] Tonitto C, Li C, Seidel R, et al. Application of the dndc model to the rodale institute farming systems trial: Challenges for the validation of drainage and nitrate leaching in agroecosystem models[J]. Nutrient Cycling in Agroecosystems, 2010, 87(3): 483-494.
[20] 朱波,周明華,況福虹,等. 紫色土坡耕地氮素淋失通量的實(shí)測(cè)與模擬[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2013,21(1):102-109.Zhu Bo, Zhou Minghua, Kuang Fuhong, et al. Measurement and simulation of nitrogen leaching loss in hillslope cropland of purple soil[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 102-109. (in Chinese with English abstract)
[21] Ahuja L R. Characterization and modeling of chemical transfer to runoff[M]. New York: Springer New York, 1986.
[22] Jr D A S, Beyerlein D C, Jr D H H, et al. Agricultural runoff management (ARM) model. Version II: Refinement and testing[M]. Athens: Environmental Protection Agency, 1977.
[23] ?im?nek J, van Genuchten M T, ?ejna M. Development and applications of the hydrus and stanmod software packages and related codes[J]. Vadose Zone Journal, 2008, 7(2): 587-600.
[24] Mohammed D, Kohl R A. Infiltration response to kinetic energy[J]. Transactions of the Asae-American Society of Agricultural Engineers (USA), 1987, 30(1): 108-111.
[25] Yang T, Wang Q, Wu L, et al. A mathematical model for soil solute transfer into surface runoff as influenced by rainfall detachment[J]. Science of the Total Environment, 2016, 557: 590-600.
[26] 傅斌,王玉寬,朱波,等. 紫色土坡耕地降雨入滲試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(7):39-43.Fu Bin, Wang Yukuan, Zhu Bo, et al. Experimental study on rainfall infiltration in sloping farmland of purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(7): 39-43. (in Chinese with English abstract)
[27] 徐佩,王玉寬,傅斌,等. 紫色土坡耕地壤中產(chǎn)流特征及分析[J]. 水土保持通報(bào),2006,26(6):14-18.Xu Pei, Wang Yukuan, Fu Bin, et al. Interflow occurrence characters and their analysis on slope cropland with purple soil[J]. Bulletin of Soil and Water Conservation, 2006, 26(6): 14-18. (in Chinese with English abstract)
[28] Peterson E W, Davis R K, Brahana J V, et al. Movement of nitrate through regolith covered karst terrane, northwest arkansas[J]. Journal of Hydrology, 2002, 256(1/2): 35-47.
[29] Zakari S, Liu H, Li Y, et al. Transport and sorption behavior of individual phthalate esters in sandy aquifer: Column experiments[J]. Environmental Science and Pollution Research, 2016, 23(15): 15749-15756.
[30] 余根堅(jiān),黃介生,高占義. 基于hydrus模型不同灌水模式下土壤水鹽運(yùn)移模擬[J]. 水利學(xué)報(bào),2013,44(7):826-834.Yu Genjian, Huang Jiesheng, Gao Zhanyi. Study on water and salt transportation of different irrigation modes by the simulation of HYDRUS model[J]. Shuili Xuebao, 2013, 44(7): 826-834. (in Chinese with English abstract)
[31] 霍洪江,汪濤,魏世強(qiáng),等. 三峽庫(kù)區(qū)紫色土坡耕地氮素流失特征及其坡度的影響[J]. 西南大學(xué)學(xué)報(bào):自然科學(xué)版,2013,35(11):112-117.Huo Hongjiang, Wang Tao, Wei Shiqiang, et al. Characteristics of nitrogen loss from hillslope croplands of purple soil in the Three Gorges Reservoir Area and impacts of slope gradients [J]. Journal of Southwest University: Natural Science Edition, 2013, 35(11): 112-117. (in Chinese with English abstract)
[32] Veizaga E A, Rodriguez L, Ocampo C J. Water and chloride transport in a fine-textured soil in a feedlot pen[J]. Journal of Contaminant Hydrology, 2015, 182: 91-103.
Law of nitrate transfer and loss in purple sloping farmland and its numerical simulation
Xie Meixiang1, Zhang Zhanyu1※, Zhang Pingcang2, Xu Jinxin2, Lin Qingming2
(1.210098,; 2.430010,)
The nitrate transfer and loss plays a critical role in groundwater contamination. Specially, the purple soil sloping field accounts for large areas of farmlands in China and the nitrate transport and loss in purple soils causes serious pollution towards waterbodies. To research the transfer and loss of nitrate in sloping field of purple soil, we conducted laboratory experiments using soil tanks and artificial rainfall device to study nitrate loss features by surface flow (SF) and subsurface flow (SSF) subjected to various precipitation intensities and slope gradients. In this study, 3 precipitation intensities (0.4, 1.0, 1.8 mm/min) coupled with 3 slope gradients (5°, 15°, 20°) were used, and totally 9 treatments were conducted with 2 repetition. Besides, numerical modelling approach was also applied to investigate the nitrate transfer and loss characteristics of purple soil in sloping field. The modified effective mixing depth model and convective-dispersion equation were applied in simulations of nitrate loss via SF and SSF, respectively, with the effective mixing model was modified by a time-increasing effective mixing depth and convective-dispersion equation was solved by HYDRUS-2D software. The results showed: 1) exponential decrease between nitrate concentration and time through SF and linear increment through SSF. 2) The loss concentration of nitrate in SSF was 19-72 folds more than that in SF, and the nitrate loss cumulative loss loads through SF and SSF both presented linear increments with time. Additionally, the variabilities of measured nitrate concentration in SSF were much larger than that in SF. 3) The nitrate loss load presented linear increment over time subjected to all treatments and the proportion of nitrate loss load in SF increased with increasing precipitation intensities. As a result, the loss load of nitrate was mainly through SF in response to large precipitation intensity, but nitrate loss was mainly through SSF subjected to low precipitation intensity. In detail, the proportion of nitrate loss through SF increased from 17.3% to 66.0% as response to increasing rainfall intensity from 0.4 to 1.8 mm/min. 4) The precipitation intensity was a very influential factor for nitrate nitrogen loss, while the impact of slope gradient on nitrate loss showed no consistent pattern. 5) The linear regressions between model prediction results and experimental data and evaluation index of accuracy for simulation results both revealed good agreements for nitrate transfer and loss through SF and SSF, respectively. The mean absolute error (MAE), root mean square error (RMSE), coefficient of Nash-SuttcliffeNSand2reached 0.872 mg/L, 1.009 mg/L, 0.590 and 0.826 7, respectively, for nitrate loss via SF. Similarly, the MAE, RMSE,NSand2of prediction for subsurface nitrate loss reached 9.889 mg/L, 13.084 mg/L, 0.792 and 0.842 6, respectively. This study provided better understanding for nitrate transfer and loss mechanism of purple soil in sloping farmland.
nitrates; runoff; models; subsurface flow; concentration; load; effective mixing depth; advection-dispersion
10.11975/j.issn.1002-6819.2018.19.019
S157
A
1002-6819(2018)-19-0147-08
2018-02-07
2018-07-08
江蘇省研究生科研與實(shí)踐創(chuàng)新計(jì)劃項(xiàng)目(KYCX18_0596);國(guó)家自然科學(xué)基金資助項(xiàng)目(51579069;41101521)
謝梅香,博士生,主要從事污染物遷移研究。 Email:jsdyxmx@163.com
張展羽,博士生導(dǎo)師,主要從事灌溉排水理論及技術(shù)研究。Email:zhanyu@hhu.edu.cn
謝梅香,張展羽,張平倉(cāng),徐金鑫,林慶明. 紫色土坡耕地硝態(tài)氮的遷移流失規(guī)律及其數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(19):147-154. doi:10.11975/j.issn.1002-6819.2018.19.019 http://www.tcsae.org
Xie Meixiang, Zhang Zhanyu, Zhang Pingcang, Xu Jinxin, Lin Qingming. Law of nitrate transfer and loss in purple sloping farmland and its numerical simulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 147-154. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.19.019 http://www.tcsae.org
農(nóng)業(yè)工程學(xué)報(bào)2018年19期