• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental Study on Dwell-fatigue of Titanium Alloy Ti-6AL-4V for Offshore Structures

    2018-10-12 06:28:00
    船舶力學(xué) 2018年9期

    (School of Naval Architecture and Ocean Eng,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Abstract:The fatigue peak holding load has an obvious influence on the crack growth rate of titanium alloy Ti-6Al-4V at room temperature.Therefore,the fatigue and dwell-fatigue test of titanium alloy Ti-6Al-4V under room temperature are studied in this paper,and based on the prediction model of dwell-fatigue crack growth rate,the fatigue and dwell-fatigue crack growth rate of this material are predicted as well.The results show that the stress peak holding load for 60s significantly accelerated the fatigue crack growth rate of titanium alloy Ti-6Al-4V,which is consistent with other research results of materials at home and abroad;The difference between the dwell-fatigue crack growth rate and the fatigue crack growth rate increases with the increase of stress intensity factor range.That is to say,the effect of holding load on crack growth rate increases under high stress intensity factor.The fatigue and dwell-fatigue crack growth rate of titanium alloy Ti-6Al-4V are predicted based on the prediction model that research group put forward,the predicted results are in good agreement with the experimental results.

    Key words:titanium alloy;fatigue;crack growth rate;holding time

    0 Introduction

    The results of application and basic research at home and abroad show that Titanium alloys not only have high specific strength,local and uniform corrosion resistance in seawater,high fatigue performance and corrosion fatigue limit,but also have high fracture toughness and resistance to seawater stress corrosion cracking.It is an excellent marine material[-2].The research of α+ β titanium alloy Ti-6Al-4V is relatively mature,its dosage is more than half of all titanium alloys,ultra-low interstitial alloy Ti-6Al-4V has attracted wide attention.The U-nited States applies the Ti-6Al-4V to the horizontal tail shaft of the F-16 fighter.Titanium alloy Ti-6Al-4V is also used in the structure of pressure-resistant shell of deep-sea submersible.Japan’s ‘Deepwater 6 500’ uses the Titanium alloy Ti-6Al-4V,its depth of diving is 6 500 m.The Ti-6Al-4V titanium alloy is also used in the pressure resistant shell structure of‘Jiaolong’ in China,Its depth of diving is 7 062 m[3].The failure of these submersibles during service is mainly fatigue failure.In the course of actual work,the pressure-resistant shell structure bears in addition to floating and submerged load,the structure also bears the load of the working process under sea.That is,the fatigue problem of the pressure-resistant shell structure is actually a dwell-fatigue problem.

    Many studies have shown that dwell-fatigue at room temperature has a certain effect on fatigue crack growth behavior of titanium alloy.The general fatigue crack growth rate increases with the increase of maximum stress level and holding time of load,therefore,the life of dwellfatigue structure is obviously lower than that of fatigue life.Researchers at home and abroad have given many explanations for the causes of these phenomena,for example,peak stress,holding time,microstructure,temperature and hydrogen content can affect the sensitivity of titanium alloy to dwell-fatigue.This is still an inconclusive research hotspot.Therefore,it is of great engineering significance to carry out the dwell-fatigue test of titanium alloy materials.

    1 Study on prediction method of fatigue crack growth behavior

    Domestic and foreign researchers have done a lot of research on fatigue life prediction of offshore structures using fatigue crack propagation theory.Many prediction models of fatigue crack growth rate are proposed.Based on the exponential power law of fatigue crack growth rate(Paris formula)put forward by Paris in 1963,some new crack growth theories are put forward in combination with experiments by McEvily.Aiming at the limitation of Paris formula,McEvily formula is proposed,which can explain more fatigue phenomena,as Eq.(1):

    where ΔKeffthis the effective range of the stress intensity factor at the threshold level,ΔKeffis the effective range of the stress intensity factor,MPa

    On the basis of a large number of related experiments,the McEvily crack growth prediction model based on fatigue crack growth theory can not only predict the fatigue growth behavior of long cracks,but also be applicable to the fatigue small crack propagation behavior,as Eqs.(2)-(4):

    where da/dN is fatigue crack growth rate,m/cycle;KCis the plane stress fracture toughness of the material,σmaxis the maximum stress,MPa;Kmaxis the maximum stress intensity factor under cyclic fatigue loading,R is the stress ratio;Kopmaxis the maximum stress intensity factor of macroscopic long crack at crack opening level,k is the parameters of crack closure level varying with crack length;reis the material inherent defect size;σYis the yield strength of materials;Y(a)is the geometric correction coefficients related to the shape and position of cracks.

    Although the McEvily crack propagation rate model can explain many phenomena in fatigue tests,it can be used not only for macroscopic long cracks but also for physical small cracks.But the model can only be used in the near threshold region and ideal elastic-plastic materials.It can not reflect the phenomenon of crack instability and can not predict the loadpreserving fatigue process.The results of dwell-fatigue tests[4-5]at home and abroad show that the dwell-fatigue life of titanium alloy decreases significantly compared with the fatigue life of titanium alloy when the peak stress is introduced for a period of time.The cause of this effect is still a hot research topic,but it is generally agreed that stress and loading time have great influence on crack growth behavior of titanium alloy at room temperature according to the domestic and foreign research results.Therefore,it is no longer suitable to predict the life of titanium alloy material for pressure-resistant shell of submersible only by traditional method.In order to ensure the safety of the pressure resistant structure of the submersible,it is necessary to predict the fatigue crack propagation behavior of titanium alloy at room temperature more accurately[13].In 1980,Munz innovatively divided the load-preserving and fatigue processes into load preservation processes with peak stress peaks and pure fatigue load processes with load holding time.Therefore,there are two terms in its load-preserving fatigue crack growth rate model,one is fatigue term related to cyclic load,the other is load protection term related to peak loading time and load,as Eq.(5):

    Based on the above mentioned series of prediction methods for crack propagation behavior,in order to predict the life of the hull structure of the submersible vehicle more accurately,a prediction model of loading and fatigue crack growth rate considering small crack effect is proposed[7].The prediction model divides the fatigue crack propagation process into fatigue loading process and peak load retention process,that is,the prediction model is divided into two parts:fatigue term associated with cyclic load and time-dependent load protection term.The loading time is introduced into the model,so that the influence of different loading time on the load-keeping fatigue crack growth rate can be considered.as Eqs.(6)-(8):

    where A1is a material and environmentally sensitive constant of dimensions,is the modified crack length,m;m1is a constant representing the slope of the corresponding fatigue crack propagation rate curve;n1is the parameters affecting capacity of fatigue cycle part Kmax/Kmin;Kmaxis the maximum stress intensity factor under cyclic fatigue loading,Kminis the minimum stress intensity factor under cyclic fatigue loading,KCis the plane stress fracture toughness of the material,F is the crack tip elastoplastic correction factor;A2is the material and environmental constants related to the load-preserving part,MPa-mm1-m/2;m2is a constant of slope of crack growth rate curve related to load-preserving part;n2is a parameters that affect the capacity of the dwell-fatigue part Kmax/Kmin;tholdis the holding time under maximum stress.

    2 Experimental study on fatigue crack growth rate

    2.1 Test materials

    Due to the strength,plasticity,corrosion resistance and biocompatibility of titanium alloy Ti-6Al-4V are good,Ti-6Al-4V becomes the ace alloy in the titanium alloy industry.Many other types of titanium alloys can be considered as modification of titanium alloy Ti-6Al-4V.In recent years,the development of titanium alloys in China has become more and more rapid,and a set of titanium alloy system which is more suitable for the application and development of titanium alloys in China has been gradually formed.According to national standards GB/T 3620.1-2007,the standard chemical constituents of titanium alloy Ti-6Al-4V in China are listed in Tab.1.

    Tab.1 Chemical constituents of Ti-6Al-4V

    The density of titanium alloy Ti-6Al-4V is generally 4.5 g/cm3,60%of steel only;The standard yield strength of titanium alloy after Ti-6Al-4V annealing is also higher,which is 930 MPa,the ratio of fracture strength to density is about 210.Therefore,titanium alloy Ti-6Al-4V has the advantages of light material and high strength.In this paper,titanium alloy Ti-6Al-4V(TC4)forgings are used for dwell-fatigue crack growth rate test,and the chemical composition is shown in Tab.2.

    Tab.2 Chemical constituents of Ti-6Al-4V(TC4)(mass fraction,%)

    2.2 Fracture toughness test

    In fracture mechanics,the criterion of stress intensity factor K is widely used.The socalled K criterion is that when the stress intensity factor K of the crack reaches the fracture toughness KC,the crack will be unstable and propagate.Because the fracture toughness KCis difficult to be measured,the plane strain fracture toughness KICof the material is generally replaced.

    In the process of preparing and testing the plane strain fracture toughness KIC,it is necessary to preform the crack on the standard test piece first,and then to gradually increase the load during the loading process until the specimen breaks.The curve(P-V)between the load and the opening displacement of the crack nozzle should be recorded during the test.The standard specifies that the PQand KQare defined by using the intersection of the cut line and the curve that deviates from the curve tangent 5%(Conditional fracture toughness).The theoretical basis of the experiment is linear elastic fracture mechanics(LEFM).Therefore,the size and results of the specimen should meet the applicable range of LEFM.

    Fig.1 Tensile specimen standard

    Standard compact tensile specimen(CT test sample)were machined according to the GB/T 4161-2007 Plane Strain Fracture Toughness Test Method of Metallic Materials.The specific dimensions are shown in Fig.1.W=50 mm,B=12.5 mm,H=60 mm,S=62.5 mm,force hole diameter D=12.6 mm.

    The fracture toughness test samples of titanium alloy Ti-6Al-4V are 4 and the effective samples are 3.Marked A-1,A-2,A-3,respectively.Therefore,the fracture toughness of titanium alloy Ti-6Al-4V is calculated as the average of three.That is KIC≈76.5

    2.3 Fatigue/dwell-fatigue crack growth rate test

    The testing of crack growth rate is generally divided into two categories:one is crack propagation in elastic range;the other is crack propagation in plastic range.The zero member with high cycle and low load belongs to the former category,while the zero member with low cycle and high load belongs to the latter class.This paper focuses on a test of fatigue and dwell-fatigue crack growth rate in elastic range.A compact tensile specimen with severe stress concentration was used in the test(CT test sample).The sample has the advantages of small volume,light weight and long crack propagation distance.Empirical formula of stress intensity factor at crack tip of CT specimenas Eqs.(9)~(10):

    Before carrying out fatigue and load fatigue tests,the test specimens are uniformly prefabricated and tested.The IST 8802 type high and low temperature fatigue testing machine is adopted in the test.According to the requirements of relevant codes,the constant K method is adopted in the test.On the basis of 3-5 group pre-tests,K value is determined to be 18.6 in order to ensure the loading cycle number of precast crack is about 20 000,the best prefabrication effect can be achieved.The initial crack length is 22.5 mm,and the prefabricated crack length is 2 mm.The crack length of finished sample is 24.5 mm.

    Fig.2 Loading diagram

    Fig.3 Connection diagram between test machine and CT specimen

    IST 8802 high and low temperature fatigue testing machine is used in the fatigue crack growth rate test system.The dynamic and static load capacity of the testing machine is equal to that of the sampling rate of 10 kHz.Creep fatigue testing system is used for dwell-fatigue crack growth rate.The test process was carried out according to GB/T 6398-2000 The Fatigue Crack Growth Rate Test Method of Metal Materials[15].The load spectrum used in fatigue and dwellfatigue tests[8]is shown in Fig.2.The maximum load is set at 8 kN and the stress ratio R is 0.03.Means of connection between test equipment and CT specimens and fixtures are shown in Fig.3.The precision of testing machine and extensometer are all up to the national standard GB/T 6398-2000 The Fatigue Crack Growth Rate Test Method of Metal Materials and American standard ASTME647 Standard Test Method for Measurement of Fatigue Crack Growth Rates.

    3 Results and analysis

    Based on the theoretical knowledge of compliance method,the length of crack propagation a is measured,and the corresponding cycle number N is determined,that is the a-N curve is obtained.By using the seven point incremental polynomial method to process the experimental data,the double logarithmic da/dN curves of fatigue and dwellfatigue crack growth rate of titanium alloy Ti-6Al-4V were made according to the treated data.The curves are shown in Figs.4-6.

    Fig.4 Experimental results of fatigue crack growth rate of titanium alloy Ti-6Al-4V

    The curve of Ti-6Al-4V fatigue crack growth rate test for titanium alloy is shown in Fig.4.It can be seen from the figure that the fatigue crack growth rate test has two sets of valid data,marked as 1#,2#,respectively.The coincidence between the two groups of test data is high.From the point of view of test,it can be considered that the test data of fatigue crack growth rate is more reliable.With the increase of the range of stress intensity factor,the growth rate of fatigue crack in both groups shows an increasing trend,and in the region with larger stress intensity factor,the increasing rate of crack growth rate is faster.Fracture occurred at the fracture toughness of 76.5.

    Fig.5 is the test data of dwell-fatigue test for 30 s and 60 s.There are two valid groups of data for each group,marked as 1#,2#,respectively.It can be seen from the diagram that the two groups of data have good coincidence and strong reliability.From the da/dN-ΔK logarithmic curves in the diagram,it is shown that the crack growth rate da/dN increases with the increase of the stress intensity ΔK factor range.For the crack growth rate after the loading time is introduced,the crack growth is stable in the range of stress intensity factor ΔK<45and the rate is increasing slowly.When the range of stress intensity factor ΔK reaches 76.5it is in the stage of instability and propagation,and the crack growth rate accelerates obviously in this stage.

    Fig.5 Experimental results of Ti-6Al-4V dwell-fatigue crack growth rate for titanium alloys

    Fig.6 Summary of fatigue and dwell-fatigue crack growth rate of titanium alloy Ti-6Al-4V

    In order to compare and analyze the effect of different holding time on fatigue crack growth rate of titanium alloy Ti-6Al-4V,the double logarithmic curves da/dN-ΔK of Ti-6Al-4V fatigue and dwell-fatigue crack growth rate of titanium alloy under holding time of 30 s and 60 s are given in Fig.6.It is found from Fig.6 that the holding time has a significant effect on the fatigue crack growth rate of titanium alloy Ti-6Al-4V.The dwell-fatigue crack growth rate at 30 s and 60 s is higher than that of fatigue crack propagation.When holding time is introduced,with the increasing of holding time,the dwell-fatigue crack growth rate increases linearly in the same stress intensity factor range.With the increase of the range of stress intensity factor,the difference between fatigue and dwell-fatigue crack growth rate under holding time increases gradually.It is found that the material has lower resistance to dwell-fatigue crack propagation.That is,under the same stress intensity factor ΔK,the fatigue crack growth rate of the holding time 30 s and 60 s is higher than that of the fatigue crack growth rate.In the whole stress intensity factor range,the dwell-fatigue crack growth rate is about 4-5 times higher than that of fatigue crack growth rate.Therefore,this experiment can reflect the effect of dwell-fatigue on fatigue crack growth rate.

    4 Reliability verification of prediction model for dwell-fatigue crack growth behavior

    The fatigue crack growth rate test of titanium alloy Ti-6Al-4V under different holding time is predicted by using the dwell-fatigue crack growth rate prediction model mentioned above,and the predicted crack growth rate is compared with the experimental results.The corresponding prediction model parameters[16]are shown in Tab.3.The double logarithmic curves da/dN-ΔK of forecast result and test result based on forecast model,as shown in Fig.7.

    Tab.3 Model parameters

    Fig.7 Comparison of fatigue and dwell-fatigue crack growth rates of titanium alloy Ti-6Al-4V under different holding times

    It can be seen from Fig.7 that the prediction results of Ti-6AL-4V dwell-fatigue of titanium alloy by using the dwell-fatigue crack growth rate prediction model are in good agreement with the corresponding experimental results,and the experimental values are all distributed in the predicted values.With the increase of the stress intensity factor range,the fatigue crack growth rate also increases.When the range of stress intensity factor exceeds 50the prediction results of fatigue crack growth rate are in good agreement with the experimental results.When the stress intensity factor is larger than 50the experimental results are slightly different from the predicted ones.The reason may be that the crack growth rate is in the stage of unstable growth in the middle and late stage of the experiment,and the crack growth rate fluctuates slightly,which leads to a slight deviation from the predicted results.

    With the increase of holding time,the dwell-fatigue crack propagation rate of the material increases obviously.The test results and forecast results at 60 s are higher than those when holding time is 30 s.Compared with the results of two groups of dwell-fatigue prediction,the difference between the predicted values of 60 s and 30 s is about 1.5 to 2 times.Under the same stress intensity factor range,the difference between the experimental values of 60 s and 30 s of dwell-fatigue is about 1.7 to 2.5 times.In general,the prediction formula can be used to predict the dwell-fatigue crack growth rate of Ti-6Al-4V.

    5 Conclusions

    The fatigue problem of pressure-resistant shell structure is a hot topic in recent years.In this paper,the fatigue and dwell-fatigue crack propagation rate of titanium alloy Ti-6Al-4V has been studied experimentally and predicted.The fatigue of titanium alloy Ti-6Al-4V and the holding time of 30 s and 60 s were studied.The data are classified,calculated and analyzed after the test.And the forecasting model was put forward by our research group.The prediction value of the model is compared with the test value.The following conclusions are obtained:

    (1)The fatigue and dwell-fatigue of titanium alloy Ti-6Al-4V materials were studied.The holding time of dwell-fatigue was 30 s and 60 s,respectively.According to the experimental results,with the increase of the stress intensity factor range,the fatigue and dwell-fatigue crack growth rate increased in the same trend,and in the region with larger stress intensity factor,the increasing rate of crack growth rate is faster.Fracture occurred at the fracture toughness of 76.5;

    (2)The crack propagation rate curves of fatigue and dwell-fatigue were compared and analyzed.It is known that the dwell-fatigue crack growth rate is higher than the fatigue crack growth rate under the same stress intensity factor ΔK,in the whole stress intensity factor range,the dwell-fatigue crack growth rate is about 4-5 times higher than that of fatigue crack growth rate.With the increase of holding time,the crack growth rate increases obviously.The results show that the dwell has a significant effect on the fatigue crack growth rate of titanium alloy Ti-6Al-4V;

    (3)Based on the prediction model of dwell-fatigue crack propagation proposed by our group,the dwell-fatigue crack propagation behavior of titanium alloy Ti-6Al-4V was predicted and compared with the experimental results.It is found that with the increase of holding time,the Ti-6Al-4V dwell effect of titanium alloy is obvious.The predicted crack growth rate of titanium alloy Ti-6Al-4V is in good agreement with the experimental data,which indicates that the prediction model has a good ability to predict the dwell-fatigue crack growth behavior of titanium alloy Ti-6Al-4V.Therefore,the dwell-fatigue crack growth rate prediction model proposed in this paper,considering the dwell effect,has a strong ability to predict the crack growth rate of titanium alloy Ti-6Al-4V under dwell-fatigue condition.It provides a theoretical basis for studying the fatigue life prediction of marine structures under cyclic dwell-loading.

    亚洲少妇的诱惑av| 桃花免费在线播放| 桃花免费在线播放| 又黄又粗又硬又大视频| 丝瓜视频免费看黄片| 少妇被粗大的猛进出69影院 | 只有这里有精品99| 免费av中文字幕在线| 人妻人人澡人人爽人人| av线在线观看网站| 少妇高潮的动态图| 日韩不卡一区二区三区视频在线| 在线观看免费高清a一片| a级毛色黄片| 秋霞伦理黄片| 日韩人妻精品一区2区三区| 18禁裸乳无遮挡动漫免费视频| 国产成人免费无遮挡视频| 日韩一区二区三区影片| 国产一区亚洲一区在线观看| 18禁在线无遮挡免费观看视频| 欧美 日韩 精品 国产| 久久亚洲国产成人精品v| 美女大奶头黄色视频| 成人国产av品久久久| 国产一区二区三区av在线| 欧美另类一区| 国产精品国产三级国产专区5o| 日韩欧美一区视频在线观看| 伊人亚洲综合成人网| 五月玫瑰六月丁香| 在线 av 中文字幕| 成年女人在线观看亚洲视频| 久久精品人人爽人人爽视色| 亚洲伊人久久精品综合| 亚洲欧美清纯卡通| 久久国产精品男人的天堂亚洲 | 少妇熟女欧美另类| 宅男免费午夜| 制服诱惑二区| 日本av手机在线免费观看| 人妻系列 视频| 欧美变态另类bdsm刘玥| 久久99蜜桃精品久久| 久久热在线av| 中文字幕制服av| 捣出白浆h1v1| 精品久久久久久电影网| 欧美人与性动交α欧美软件 | 多毛熟女@视频| 国产片特级美女逼逼视频| 欧美精品高潮呻吟av久久| 九九在线视频观看精品| 中文精品一卡2卡3卡4更新| 人妻人人澡人人爽人人| 在线观看免费视频网站a站| 亚洲av日韩在线播放| 国产精品人妻久久久影院| 亚洲欧美清纯卡通| 80岁老熟妇乱子伦牲交| 日本与韩国留学比较| 中文字幕最新亚洲高清| 亚洲成人一二三区av| 尾随美女入室| 少妇被粗大猛烈的视频| videossex国产| 国产爽快片一区二区三区| 五月开心婷婷网| 精品国产乱码久久久久久小说| 91在线精品国自产拍蜜月| 欧美亚洲日本最大视频资源| 亚洲人成77777在线视频| 免费播放大片免费观看视频在线观看| 成人无遮挡网站| 国产乱人偷精品视频| 大陆偷拍与自拍| 美女国产视频在线观看| 久久久久精品性色| 中国美白少妇内射xxxbb| 日韩一本色道免费dvd| 国产成人91sexporn| 一本大道久久a久久精品| av黄色大香蕉| 伊人亚洲综合成人网| 国产视频首页在线观看| 女人被躁到高潮嗷嗷叫费观| 国产在线免费精品| 欧美日韩精品成人综合77777| 天美传媒精品一区二区| 在线观看www视频免费| 亚洲久久久国产精品| 婷婷色麻豆天堂久久| 黑人猛操日本美女一级片| 黄色视频在线播放观看不卡| 午夜福利,免费看| 亚洲精品乱码久久久久久按摩| 亚洲成人av在线免费| 51国产日韩欧美| 性色av一级| 高清在线视频一区二区三区| 亚洲人成网站在线观看播放| 久久人妻熟女aⅴ| 日韩一本色道免费dvd| 成人国产av品久久久| 国产亚洲最大av| 性色avwww在线观看| 九色亚洲精品在线播放| 熟妇人妻不卡中文字幕| 欧美xxxx性猛交bbbb| 校园人妻丝袜中文字幕| 中文乱码字字幕精品一区二区三区| 九九爱精品视频在线观看| 精品人妻熟女毛片av久久网站| 插逼视频在线观看| 婷婷色综合大香蕉| 香蕉丝袜av| 欧美日韩精品成人综合77777| 国产男女内射视频| 久久国产亚洲av麻豆专区| 国产精品国产三级国产专区5o| 在线观看免费视频网站a站| 国产白丝娇喘喷水9色精品| 丝袜人妻中文字幕| 一本色道久久久久久精品综合| 国精品久久久久久国模美| 97人妻天天添夜夜摸| videos熟女内射| 亚洲精品美女久久av网站| 母亲3免费完整高清在线观看 | 女人久久www免费人成看片| 啦啦啦在线观看免费高清www| 久久久久久久精品精品| 欧美丝袜亚洲另类| 免费观看性生交大片5| 晚上一个人看的免费电影| 欧美日韩综合久久久久久| 国产一区亚洲一区在线观看| 国产精品一二三区在线看| 少妇高潮的动态图| 国产激情久久老熟女| 亚洲五月色婷婷综合| 人妻一区二区av| 最新中文字幕久久久久| a 毛片基地| 久久亚洲国产成人精品v| 视频区图区小说| 精品久久久精品久久久| 国产成人一区二区在线| 视频区图区小说| 欧美国产精品va在线观看不卡| 18+在线观看网站| 美女主播在线视频| www日本在线高清视频| 考比视频在线观看| 婷婷色综合大香蕉| 黄色视频在线播放观看不卡| 国产精品一区二区在线观看99| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲一区二区精品| 你懂的网址亚洲精品在线观看| 国国产精品蜜臀av免费| 久久久久久人妻| 大话2 男鬼变身卡| 欧美精品av麻豆av| 涩涩av久久男人的天堂| 在线观看免费日韩欧美大片| 在现免费观看毛片| 国产欧美亚洲国产| 国国产精品蜜臀av免费| 丁香六月天网| 日本午夜av视频| 一级毛片我不卡| 男女无遮挡免费网站观看| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 少妇精品久久久久久久| 亚洲熟女精品中文字幕| 熟女人妻精品中文字幕| 免费av不卡在线播放| 高清av免费在线| 亚洲av综合色区一区| 黑丝袜美女国产一区| 高清av免费在线| 久热久热在线精品观看| 交换朋友夫妻互换小说| 一区二区三区四区激情视频| 国产又色又爽无遮挡免| 日本vs欧美在线观看视频| 9热在线视频观看99| 人人妻人人爽人人添夜夜欢视频| 中文精品一卡2卡3卡4更新| 妹子高潮喷水视频| 最近中文字幕2019免费版| 夫妻午夜视频| 涩涩av久久男人的天堂| 最黄视频免费看| 男人爽女人下面视频在线观看| 99国产精品免费福利视频| 女人精品久久久久毛片| 欧美丝袜亚洲另类| 精品人妻偷拍中文字幕| 成人无遮挡网站| 亚洲精华国产精华液的使用体验| 18禁裸乳无遮挡动漫免费视频| 国产精品一二三区在线看| 熟女电影av网| 亚洲色图综合在线观看| 国产成人午夜福利电影在线观看| 中国三级夫妇交换| 女人被躁到高潮嗷嗷叫费观| 这个男人来自地球电影免费观看 | 国产综合精华液| 男女午夜视频在线观看 | 内地一区二区视频在线| 18在线观看网站| 丝袜美足系列| 99re6热这里在线精品视频| 色婷婷av一区二区三区视频| 婷婷成人精品国产| 成年美女黄网站色视频大全免费| 日日摸夜夜添夜夜爱| 国产色婷婷99| 亚洲av.av天堂| 天堂俺去俺来也www色官网| 国产av码专区亚洲av| 国产精品一区二区在线不卡| 久久国产精品男人的天堂亚洲 | 久久国产精品男人的天堂亚洲 | 国产免费又黄又爽又色| 国产精品一国产av| 亚洲五月色婷婷综合| 大陆偷拍与自拍| 9色porny在线观看| 精品一品国产午夜福利视频| 美女国产视频在线观看| 久久久久久人妻| 婷婷色麻豆天堂久久| 人妻人人澡人人爽人人| videosex国产| av在线播放精品| 80岁老熟妇乱子伦牲交| 啦啦啦在线观看免费高清www| 亚洲精品国产av蜜桃| 久久久久久久久久久久大奶| 最近手机中文字幕大全| 亚洲av电影在线进入| 亚洲欧洲精品一区二区精品久久久 | av有码第一页| 日韩成人av中文字幕在线观看| 精品国产一区二区三区四区第35| 极品人妻少妇av视频| 欧美丝袜亚洲另类| 国产精品国产三级专区第一集| 午夜福利影视在线免费观看| 国产成人精品在线电影| 国精品久久久久久国模美| 另类亚洲欧美激情| 又粗又硬又长又爽又黄的视频| 天天躁夜夜躁狠狠躁躁| 婷婷色综合大香蕉| 成人二区视频| 丝袜人妻中文字幕| 亚洲欧美一区二区三区国产| 国产女主播在线喷水免费视频网站| 人人妻人人添人人爽欧美一区卜| 两个人免费观看高清视频| www.色视频.com| 久久精品久久久久久久性| 寂寞人妻少妇视频99o| 亚洲欧美日韩卡通动漫| 精品人妻熟女毛片av久久网站| 97在线视频观看| 精品人妻一区二区三区麻豆| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 日本与韩国留学比较| 9热在线视频观看99| 99精国产麻豆久久婷婷| 嫩草影院入口| av有码第一页| 亚洲欧美日韩卡通动漫| 日韩,欧美,国产一区二区三区| 国产精品三级大全| 国产色婷婷99| 国产成人免费观看mmmm| 自线自在国产av| 一区二区三区精品91| 免费日韩欧美在线观看| 免费高清在线观看日韩| 国产1区2区3区精品| 亚洲精华国产精华液的使用体验| 激情五月婷婷亚洲| 97在线人人人人妻| 国产欧美日韩综合在线一区二区| 丝袜在线中文字幕| 久久99蜜桃精品久久| 九色亚洲精品在线播放| 欧美精品人与动牲交sv欧美| 在线 av 中文字幕| 国产免费一级a男人的天堂| 王馨瑶露胸无遮挡在线观看| 亚洲经典国产精华液单| 一二三四中文在线观看免费高清| 九草在线视频观看| 亚洲 欧美一区二区三区| 国产精品国产av在线观看| 亚洲天堂av无毛| 啦啦啦视频在线资源免费观看| 国产又色又爽无遮挡免| 99久久中文字幕三级久久日本| 曰老女人黄片| 大话2 男鬼变身卡| 成年人午夜在线观看视频| 色网站视频免费| 久久精品久久精品一区二区三区| 日韩,欧美,国产一区二区三区| 两个人看的免费小视频| a级片在线免费高清观看视频| 又粗又硬又长又爽又黄的视频| 乱码一卡2卡4卡精品| 精品国产乱码久久久久久小说| 侵犯人妻中文字幕一二三四区| 人体艺术视频欧美日本| 国产在视频线精品| 精品国产露脸久久av麻豆| 嫩草影院入口| 亚洲成人av在线免费| 少妇猛男粗大的猛烈进出视频| 91精品三级在线观看| 亚洲国产精品一区三区| 欧美老熟妇乱子伦牲交| 久久久久人妻精品一区果冻| 久久久欧美国产精品| 久久久国产一区二区| 国产成人精品一,二区| 亚洲av男天堂| 日本91视频免费播放| 成人国产麻豆网| 三上悠亚av全集在线观看| 男人操女人黄网站| 亚洲精品中文字幕在线视频| 91aial.com中文字幕在线观看| 亚洲精品第二区| 日韩一本色道免费dvd| 亚洲欧美中文字幕日韩二区| 一级,二级,三级黄色视频| 中文乱码字字幕精品一区二区三区| 午夜福利在线观看免费完整高清在| 99九九在线精品视频| 国产精品一区二区在线观看99| 美女福利国产在线| 人人妻人人澡人人爽人人夜夜| 亚洲精品av麻豆狂野| 国产探花极品一区二区| 看免费av毛片| 黄色配什么色好看| 亚洲婷婷狠狠爱综合网| 香蕉丝袜av| 日韩免费高清中文字幕av| 国产男女超爽视频在线观看| 亚洲精品国产av成人精品| 久久国产精品大桥未久av| 国产免费一区二区三区四区乱码| 精品国产露脸久久av麻豆| 午夜老司机福利剧场| 亚洲经典国产精华液单| 最近手机中文字幕大全| 成人毛片60女人毛片免费| av不卡在线播放| 你懂的网址亚洲精品在线观看| 亚洲精品国产av成人精品| 欧美日韩一区二区视频在线观看视频在线| 久久国内精品自在自线图片| 国产免费福利视频在线观看| 国产成人aa在线观看| 天天躁夜夜躁狠狠久久av| 亚洲人与动物交配视频| 最新的欧美精品一区二区| 麻豆精品久久久久久蜜桃| 久久99蜜桃精品久久| 国产精品久久久久久精品古装| 国产精品偷伦视频观看了| 妹子高潮喷水视频| 99香蕉大伊视频| 熟妇人妻不卡中文字幕| 最近最新中文字幕免费大全7| 极品少妇高潮喷水抽搐| 777米奇影视久久| 日韩电影二区| av天堂久久9| 色5月婷婷丁香| 美女xxoo啪啪120秒动态图| 亚洲久久久国产精品| 久久青草综合色| 五月开心婷婷网| 国产免费一区二区三区四区乱码| 免费女性裸体啪啪无遮挡网站| 婷婷色综合www| 日本免费在线观看一区| 久久国内精品自在自线图片| 日韩人妻精品一区2区三区| 99热6这里只有精品| 亚洲精品,欧美精品| 韩国高清视频一区二区三区| 欧美bdsm另类| 国产乱人偷精品视频| 18禁裸乳无遮挡动漫免费视频| 国产免费又黄又爽又色| 亚洲欧洲精品一区二区精品久久久 | 精品第一国产精品| 国产一区二区三区综合在线观看 | 国产免费福利视频在线观看| 狂野欧美激情性bbbbbb| 如日韩欧美国产精品一区二区三区| 香蕉精品网在线| 中文字幕人妻熟女乱码| 狠狠精品人妻久久久久久综合| 成人国产麻豆网| 精品亚洲成a人片在线观看| 国产精品人妻久久久影院| 午夜福利乱码中文字幕| 中国国产av一级| 欧美人与善性xxx| 精品少妇久久久久久888优播| 国产精品.久久久| 最后的刺客免费高清国语| 制服丝袜香蕉在线| 一级黄片播放器| 两性夫妻黄色片 | 国产精品国产三级专区第一集| 成人二区视频| 久久久久久伊人网av| 久久久久久久亚洲中文字幕| 色哟哟·www| 人妻一区二区av| 一二三四中文在线观看免费高清| av.在线天堂| 午夜激情av网站| 婷婷色麻豆天堂久久| 美女视频免费永久观看网站| 国产精品秋霞免费鲁丝片| 亚洲国产毛片av蜜桃av| √禁漫天堂资源中文www| 97超碰精品成人国产| 亚洲色图综合在线观看| av.在线天堂| 亚洲人与动物交配视频| av福利片在线| videos熟女内射| 国产精品免费大片| 午夜福利,免费看| 国产免费视频播放在线视频| 一级毛片黄色毛片免费观看视频| 9热在线视频观看99| 国产精品偷伦视频观看了| 熟妇人妻不卡中文字幕| 中文精品一卡2卡3卡4更新| 国产又色又爽无遮挡免| 一二三四中文在线观看免费高清| 一边摸一边做爽爽视频免费| 国产国语露脸激情在线看| 国产乱人偷精品视频| 成人国产av品久久久| 亚洲欧美日韩另类电影网站| 欧美bdsm另类| 巨乳人妻的诱惑在线观看| 国产高清国产精品国产三级| 性高湖久久久久久久久免费观看| 女性被躁到高潮视频| 亚洲一码二码三码区别大吗| 在线观看www视频免费| 一区二区av电影网| 亚洲伊人色综图| 777米奇影视久久| 18禁国产床啪视频网站| xxxhd国产人妻xxx| 肉色欧美久久久久久久蜜桃| 人妻系列 视频| 人人妻人人澡人人看| tube8黄色片| 久久ye,这里只有精品| 亚洲中文av在线| 婷婷色综合www| 亚洲av国产av综合av卡| 纯流量卡能插随身wifi吗| 一本—道久久a久久精品蜜桃钙片| 国产av一区二区精品久久| 啦啦啦中文免费视频观看日本| 在线天堂最新版资源| 国产 精品1| 国产一区二区三区av在线| 亚洲少妇的诱惑av| 精品一区在线观看国产| 久久久久精品人妻al黑| 亚洲综合精品二区| 只有这里有精品99| 男女午夜视频在线观看 | 看十八女毛片水多多多| 曰老女人黄片| 美女主播在线视频| 在线观看一区二区三区激情| 亚洲精品国产色婷婷电影| 女性生殖器流出的白浆| 欧美日韩av久久| 欧美日韩精品成人综合77777| 精品亚洲成国产av| 亚洲av电影在线观看一区二区三区| 久久精品人人爽人人爽视色| 熟女人妻精品中文字幕| 国产国语露脸激情在线看| 免费少妇av软件| 色视频在线一区二区三区| 亚洲成人av在线免费| 亚洲欧美日韩另类电影网站| 精品一区二区三区四区五区乱码 | 亚洲精品色激情综合| 亚洲精品一二三| 午夜福利视频精品| 日韩av不卡免费在线播放| 熟妇人妻不卡中文字幕| 日韩av免费高清视频| 亚洲在久久综合| 一本久久精品| 免费高清在线观看视频在线观看| 男女午夜视频在线观看 | 大陆偷拍与自拍| 99热全是精品| 国产成人免费观看mmmm| 色5月婷婷丁香| 日韩免费高清中文字幕av| 久久99精品国语久久久| 免费黄频网站在线观看国产| 久久久久人妻精品一区果冻| 插逼视频在线观看| 国产69精品久久久久777片| 一本色道久久久久久精品综合| 国产毛片在线视频| 一本久久精品| 国产精品一国产av| 日韩视频在线欧美| 一二三四中文在线观看免费高清| 精品人妻偷拍中文字幕| 国产在线一区二区三区精| 国产视频首页在线观看| 欧美日韩综合久久久久久| 人妻系列 视频| 最近最新中文字幕免费大全7| 国产毛片在线视频| 在现免费观看毛片| 国产欧美日韩综合在线一区二区| 人妻 亚洲 视频| 精品国产国语对白av| 91午夜精品亚洲一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 少妇高潮的动态图| 一二三四在线观看免费中文在 | 超碰97精品在线观看| 日日撸夜夜添| 在线精品无人区一区二区三| 欧美人与性动交α欧美软件 | 一级爰片在线观看| 国产av国产精品国产| 日本-黄色视频高清免费观看| 美女视频免费永久观看网站| 免费久久久久久久精品成人欧美视频 | av在线观看视频网站免费| 日本91视频免费播放| 日韩成人av中文字幕在线观看| 满18在线观看网站| 午夜精品国产一区二区电影| 激情五月婷婷亚洲| 日本免费在线观看一区| 欧美日韩亚洲高清精品| 激情五月婷婷亚洲| 香蕉丝袜av| 丝袜在线中文字幕| 国产亚洲午夜精品一区二区久久| 国产精品.久久久| 少妇熟女欧美另类| 国产欧美另类精品又又久久亚洲欧美| 在线天堂中文资源库| 九色亚洲精品在线播放| 国产成人免费观看mmmm| 不卡视频在线观看欧美| 国产片特级美女逼逼视频| 一区二区av电影网| 国产成人一区二区在线| 国产精品久久久久久精品电影小说| 精品国产一区二区久久| 午夜福利,免费看| 久久久久网色| 搡女人真爽免费视频火全软件| 两个人免费观看高清视频| 人妻人人澡人人爽人人| 五月伊人婷婷丁香| 热99久久久久精品小说推荐| 高清欧美精品videossex| 欧美bdsm另类| 18禁国产床啪视频网站| 老司机亚洲免费影院| 久久精品国产自在天天线| 成人午夜精彩视频在线观看| 午夜91福利影院| 大香蕉久久成人网| 日韩精品免费视频一区二区三区 | 在线天堂中文资源库| 五月天丁香电影| 日本色播在线视频| 少妇精品久久久久久久| av天堂久久9| videosex国产| 成年人午夜在线观看视频| 制服诱惑二区| 国产高清三级在线| 久久综合国产亚洲精品|