• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      地表滴灌水氮耦合對毛白楊幼林生長及土壤水氮分布的影響

      2018-10-19 01:13:14賀曰林張宏錦席本野戴騰飛李豆豆扈明媛賈黎明
      農(nóng)業(yè)工程學報 2018年20期
      關(guān)鍵詞:毛白楊水氮三倍體

      賀曰林,王 燁,張宏錦,席本野,戴騰飛,李豆豆,扈明媛,賈黎明

      ?

      地表滴灌水氮耦合對毛白楊幼林生長及土壤水氮分布的影響

      賀曰林1,王 燁2,張宏錦1,席本野1,戴騰飛1,李豆豆1,扈明媛1,賈黎明1※

      (1. 北京林業(yè)大學省部共建森林培育與保護教育部重點實驗室,北京 100083;2. 中國林業(yè)科學研究院林業(yè)研究所,北京 10009 1;國家林業(yè)局林木培育重點實驗室,北京 100091)

      為探究地表滴灌水氮耦合對毛白楊生長及土壤水氮分布的影響,以2年生三倍體毛白楊人工林為研究對象,研究2種灌水處理(W20、W45)和3種施氮水平(80、150、220 kg/(hm2·a))下滴頭正下方0~80 cm土層土壤含水率(soil water content,SWC)和無機氮(min)的動態(tài)變化規(guī)律,結(jié)合林木生長情況,明確2年生三倍體毛白楊最佳水氮耦合策略。結(jié)果表明:W20處理能顯著促進4-7月林木胸徑生長(<0.05),水氮因子尚未表現(xiàn)出交互作用(>0.05)。灌溉能顯著影響SWC,旱季(4月底至6月中旬)W20處理平均SWC達到11.3%,較空白對照(CK)提高37.5%;雨季(6月下旬至8月初)SWC受降雨影響整體提升,處理間差異不顯著(>0.05)。旱季min在0~80 cm土層逐漸積累,集中分布在0~20 cm表土層,且隨施氮量增加而增加;雨季min向深土層移動,W20處理min出現(xiàn)深層淋溶,W45處理各土層min分布均勻,其中W45N150處理0~80 cm土層min平均質(zhì)量分數(shù)達到44.27 mg/kg,顯著高于其他處理(<0.05)。生長季末各處理min均增加,在土層中產(chǎn)生積累。綜上,N150處理能保證整個生長季內(nèi)0~80 cm土層充足的氮素含量,結(jié)合林木生長情況判斷,4-7月W20處理能顯著促進毛白楊幼林生長(<0.05),8月份開始W45處理即可滿足林木生長對水分的需求。

      土壤;水;氮;生長;三倍體毛白楊幼林;地表滴灌

      0 引 言

      水分和養(yǎng)分是影響林木生長的關(guān)鍵因子,適宜的水肥管理策略是促進林木生長和提高林地生產(chǎn)力的重要途徑[1-6]。水肥耦合是將灌水和施肥措施結(jié)合起來,實現(xiàn)水肥一體化,達到“以水促肥、以肥調(diào)水”的目的,以提高水肥利用效率,其中以水氮耦合最為普遍。水肥因子具有協(xié)同作用,水分虧缺能抑制林木的養(yǎng)分吸收[7-8],而過量灌水又易造成養(yǎng)分的淋失[9-13];過量施肥雖能在一定條件下提高林木水氮利用效率[14-15],但土壤中殘留的大量N素勢必對環(huán)境造成污染且降低經(jīng)濟效益[16-18]。因此,在實際生產(chǎn)中提高水氮利用效率的同時,避免環(huán)境污染等負面作用是制定適宜的水氮耦合策略的關(guān)鍵。

      滴灌是一種能有效實現(xiàn)水肥耦合的灌溉施肥技術(shù)。目前已有許多學者通過室內(nèi)土柱試驗模擬滴灌條件下土壤水分和N素的運移規(guī)律[19-22];大田條件下土壤水氮運移規(guī)律的研究多集中于農(nóng)業(yè)、園藝領域,且重點監(jiān)測硝態(tài)氮淋失及N素平衡[23-31],如柑橘、西紅柿及冬小麥-夏玉米耕作制度下的植物-土壤N素平衡研究。在林業(yè)領域,由于大田條件的復雜性及評價指標的單一化,研究多集中于不同水肥耦合策略對林木生長及生理指標的影響[32-34],關(guān)于水肥施入土體后土壤“黑箱”內(nèi)水氮分布的研究幾乎為空白[35]。

      楊樹作為林業(yè)栽培上最具備潛力的速生豐產(chǎn)樹種之一[36-37],是中國木材戰(zhàn)略儲備林建設的先鋒軍。目前通過滴灌系統(tǒng)進行水肥管理已在中國楊樹人工林上有一定應用和發(fā)展[2-3,38],但關(guān)于滴灌條件下林木根區(qū)水氮動態(tài)變化規(guī)律研究不足[35]。農(nóng)業(yè)領域的相關(guān)研究表明,滴灌條件下,養(yǎng)分溶于水中易隨水流動,灌溉施肥策略選擇不當,不僅會造成水資源及N素的浪費,而且還會對環(huán)境產(chǎn)生負面影響[39-40]。因此,明確滴灌水肥耦合條件下水氮運移與再分布規(guī)律,是制定人工林合理灌溉施肥策略、防止地下水污染的重要理論依據(jù)。

      因此,本文以中國鄉(xiāng)土楊樹品種三倍體毛白楊幼林為研究對象,開展滴灌條件下林木生長和林地土壤水氮分布規(guī)律的研究,研究目標為:1)明確大田滴灌條件下毛白楊人工林不同水氮耦合處理土壤含水率(SWC)、無機氮(min)的年度變化規(guī)律;2)明確水氮耦合對毛白楊幼林林木生長的作用規(guī)律;3)結(jié)合氣象因子,為毛白楊幼林篩選最佳水氮耦合處理。研究將為三倍體毛白楊速生豐產(chǎn)林綜合水氮耦合策略的制定提供數(shù)據(jù)支撐與理論依據(jù)。

      1 材料與方法

      1.1 試驗地概況

      試驗地位于山東省聊城市高唐縣國有舊城林場(36°48′47″N,116°5′25″E)。該地氣候為暖溫帶半干旱季風區(qū)域大陸性氣候,四季分明,光照充足,熱量豐富。全年日照總時數(shù)達2 651.9 h,無霜期204 d。年均氣溫12.0~14.1 ℃,極端最高氣溫達41.2 ℃,極端最低氣溫?20.8 ℃。年均降水量544.7mm,降水主要集中在7-8月;年均蒸發(fā)量1 880 mm。地下水位6 m左右。海拔30 m。試驗地土壤為砂壤土,0~80 cm土層平均飽和含水率為0.44 cm3/cm3,田間持水量為0.33 cm3/cm3。試驗地土壤基本理化性質(zhì)見表1。

      表1 試驗地土壤理化性質(zhì)

      注:a美國農(nóng)部制。

      Note:aUnited States Department of Agriculture Classification.

      1.2 研究對象

      供試材料為三倍體毛白楊無性系S86((×) ×(×)),2016年春季采用2年根2年干苗木植苗造林,林木采用均勻配置模式,株距2 m,行距3 m,林木平均胸徑2.68 cm,平均樹高3.30 m。2016年10月完成試驗地滴灌系統(tǒng)的安裝及鋪設,并于2017年4月全面投入使用。滴灌系統(tǒng)采用以色列耐特菲姆公司生產(chǎn)的滴灌管,滴頭流量1.6 L/h,滴頭間距50 cm,置于地表,沿樹行方向一行二帶式(滴灌管分別位于樹體兩側(cè)距樹30 cm處)鋪設。

      1.3 試驗設計

      試驗采用雙因素完全隨機區(qū)組試驗設計,5次重復,設置4個施N量(N0、N80、N150、N220)和3個灌溉水平(W20、W33、W45)組合成12個水氮耦合處理,另外設置一個空白對照CK,試驗期間無任何灌溉施肥措施。施N量分別為0、80、150、220 kg/(hm2·a),根據(jù)三倍體毛白楊先快后慢的生長節(jié)律[5],前3次施N量占施N總量的3/5,后3次占施N總量的2/5。根據(jù)毛白楊生長與土壤水分有效性(r)間的定量關(guān)系[41]和試驗地土壤特征,設定當?shù)晤^正下方20 cm處的土壤水勢分別達到?20 kPa(即田間持水量(θ)的79%,土壤水分有效性(θ)的73%)、?33 kPa(67%θ,57% r)和?45 kPa(60%θ,48% r)時開始滴灌,當土壤濕潤體(以滴頭為橢球心,長半軸為40 cm,短半軸為25 cm的半橢球體)內(nèi)平均含水率(SWC)達到θ時停止灌溉。滴灌施肥采用以色列泰芬公司(TEEN)研發(fā)的美瑞(MixRite)比例施肥器將一定濃度的尿素溶液(N素質(zhì)量濃度為233.35 g/L)以4%的混合比水力驅(qū)動混入滴灌系統(tǒng),從滴頭勻速流出。滴灌施肥系統(tǒng)的運行方式為“水-肥-水”,灌溉施肥前后均通過20 min灌水沖洗管路,各處理每次施肥均在同一天完成。春季展葉前,所有處理(包括CK)均按照當?shù)毓喔戎贫冗M行灌溉1次,林木展葉后正式開展試驗,試驗期間,定期對林地進行除草。

      2017年試驗期間,由于生長季內(nèi)降雨(圖1)對林地土壤水分的補充,W33和W45灌溉處理未拉開土壤水分梯度,因此本文只針對3個施N量(N80、N150、N220)和2個灌溉水平(W20、W45)下林木生長及土壤水氮分布規(guī)律開展研究,具體施肥時間和單次施N量見表2。

      圖1 2017年生長季日均降雨量

      表2 不同水氮耦合處理單次施N量

      1.4 測定項目與方法

      1)胸徑測定:在5個區(qū)組內(nèi)各試驗處理的每個試驗小區(qū)選取除保護行外的16株林木作為樣樹,生長季內(nèi)每月對其測定1次胸徑。

      2)土樣采集與分析:土樣采集時間分別為滴灌施肥后第1天,各試驗小區(qū)隨機選取3個距離樹體最近的滴頭為取樣點,使用內(nèi)徑4 cm、長20 cm的土鉆采集滴頭正下方0~20、>20~40、>40~60和>60~80 cm的土樣,CK隨機選擇行間3個距離樹體30 cm的位置為取樣點(與滴灌帶布設位置相同),采集相同土層土樣。將采集土樣分為2份,1份裝于鋁盒中,烘干法測定各土層SWC;1份放入自封袋于?4 ℃冰箱冷凍保存,采用1 mol/L氯化鉀溶液浸提(土水比1:5),用連續(xù)流動分析儀AA3測定土樣中min含量。

      1.5 數(shù)據(jù)處理與分析

      采用Excel 2013軟件處理數(shù)據(jù)及繪制圖表,Origin 9.0軟件作圖,用SPSS 18.0軟件(v. 18.0,SPSS Inc.,Chicago IL,USA)的ANOVA和Duncan(=0.05)法對數(shù)據(jù)進行方差分析和多重比較。

      2 結(jié)果與分析

      2.1 胸徑生長

      在生長季內(nèi),5-8月為毛白楊生長速生期,各處理平均胸徑月增量達到0.63 cm,其中W20處理4-7月平均胸徑月增量極顯著高于W45處理(<0.01),分別高出25.9%、39.4%、16.7%和19.7%(表3)。水氮雙因素交互作用不顯著(>0.05),不同施N處理差異不顯著(>0.05)。數(shù)據(jù)分析結(jié)果表明,水分是影響2 a生三倍體毛白楊林木生長的關(guān)鍵因子,施肥作用則不明顯。

      表3 胸徑月增量對比

      Table 3 ΔDBH (increment of diameters at breast height) of different treatments

      注:同組數(shù)據(jù)的不同字母表示差異顯著(<0.05),根據(jù)Duncan檢驗;NS, 差異不顯著,下同。

      Note: Different letters in the same treatment indicate significant difference (<0.05), according to the Duncan test. NS, no significant difference, the same as below.

      2.2 0~80 cm土層SWC變化規(guī)律

      如圖2a、b、c、d所示,灌溉能引起SWC的明顯變化。旱季(4月底至6月中旬)W20處理0~80 cm各土層SWC明顯高于W45處理和CK,與CK相比,W20處理4-6月平均SWC分別較CK增加10.7%、107.1%和15.7%,W45與CK差異不明顯。灌溉能顯著影響SWC,旱季(4月底至6月中旬)W20處理平均SWC達到11.3%,較空白對照(CK)提高37.5%;隨著雨季(6月下旬至8月初)來臨,各處理SWC整體提高,W20、W45和CK平均SWC分別達到12.8%、11.7%和11.7%,其中6月下旬取樣前強降雨導致0~80 cm土層SWC整體增加,但受地表蒸發(fā)的影響,0~20 cm表土層SWC增加不明顯,20~80 cm明顯提高;7月18日取樣當天降雨(12.3 mm)能快速提高各處理0~80 cm土層SWC。如圖2e、f、g、h所示,整個生長季除7月18日取樣當天降雨導致N150和N220處理SWC明顯高于其他處理外,其他時期不同施N水平下SWC差異不明顯。數(shù)據(jù)分析表明旱季SWC受灌溉影響明顯,而雨季SWC主要受氣象因子影響,且在不同土層均有影響。整個生長季不同施N處理SWC差異不明顯。生長季結(jié)束后,水氮耦合處理0~80 cm土層的SWC略高于生長季初,其中40~80 cm土層SWC與CK對比增加明顯。

      圖2 不同灌水處理和不同施N處理0~80 cm土層土壤含水率(SWC)變化

      2.3 0~80 cm土層Nmin變化規(guī)律

      與CK相比,水氮耦合能顯著提高土壤m(xù)in質(zhì)量分數(shù),整個生長季水氮處理0~80 cm土層min質(zhì)量分數(shù)總體呈現(xiàn)先增后降的變化趨勢(圖3)。數(shù)據(jù)分析表明,旱季施肥后各處理0~80 cm Nmin逐漸升高,且在相同灌水條件下min均隨施N量增加而增大,并在第3次施肥后達到峰值,其中W20N220和W45N220min質(zhì)量分數(shù)分別達到144.12和164.48 mg/kg;6月下旬受強降雨影響,SWC明顯增加(圖2),0~80 cm土層min明顯降低。雨季W(wǎng)20N220處理的min仍較高且相對穩(wěn)定,分別比W20N80和W20N150高50.0%和58.4%;W45N80和W45N150處理的min呈先增后降的趨勢且W45N150處理min最高,而W45N220相對穩(wěn)定,W45N150處理0~80 cm土層min平均質(zhì)量分數(shù)達44.27 mg/kg,W45N150處理0~80 cm土層min質(zhì)量分數(shù)分別較W45N220和W45N80增加19.7%和55.2%。8月施肥結(jié)束后,各處理0~80 cm土層min大幅下降,至10月時,各水氮處理0~80 cm土層min仍比4月初試驗開始前要高164.1%~732.9%,表明各處理0~80 cm土層min均發(fā)生積累。生長季內(nèi)CK處理min變化不明顯,只在6月表現(xiàn)為受降雨影響。

      對生長季內(nèi)各試驗處理0~80 cm土層min含量進行雙因素方差分析(表4),整個生長季內(nèi),不同施N水平能引起土壤m(xù)in的明顯變化。除第1次施肥后低肥處理min含量較高外,其他時期中高肥處理均高于(>0.05)或顯著高于低肥處理(<0.05),5月中旬至8月初,中、高肥處理平均min含量分別較低肥處理高22.9%、40.9%、38.1%、26.9%和55.2%。

      圖3 生長季內(nèi)不同水氮耦合處理0~80 cm土層Nmin動態(tài)變化

      除N因素外,水分因素也能引起土壤m(xù)in含量的明顯變化。旱季不同水分處理雖差異不顯著(>0.05),但總體而言W45處理的min較高,其在4月底至6月中旬分別較W20處理增加39.0%、24.6%和26.7%;雨季W(wǎng)45處理的min顯著高于W20處理(<0.05),6月下旬至8月初分別較其高出46.8%、82.3%和65.1%。整個生長季內(nèi)水氮對土壤m(xù)in含量的交互作用不顯著(>0.05)。

      表4 生長季內(nèi)0~80 cm土層Nmin含量雙因素方差分析表

      2.4 不同土層Nmin變化規(guī)律

      如圖4所示,各處理Nmin在不同土層變化規(guī)律不同。除試驗因素外,水肥處理土壤m(xù)in呈現(xiàn)明顯的季節(jié)變化,旱季(4月-6月中旬)各土層min均呈增加趨勢且集中分布于0~20 cm表土層,不同土層min質(zhì)量分數(shù)差異明顯,W20和W45處理0~20 cm土層各施N水平平均min質(zhì)量分數(shù)分別為>20~80 cm土層的5.42倍和4.33倍。雖然旱季不同水分梯度在各土層差異不顯著(>0.05),但均表現(xiàn)出W45處理min較高的規(guī)律,其中0~20 cm土層W20和W45min平均含量分別為50.49和56.96 mg/kg,>20~80 cm土層達到9.31和13.14 mg/kg,W45處理表土層(0~20 cm)和深土層(>20~80 cm)min分別比W20處理高12.8%和41.1%(表5)。隨著雨季的來臨(6月下旬-8月初),第4次(6月25日)施肥前強降雨導致不同土層min分布發(fā)生變化,其中W20N150和W20N220處理0~20 cm土層min明顯降低,60~80 cm土層明顯升高,W45水平下各處理0~40 cm土層min明顯降低,>40~80 cm土層明顯升高。雨季SWC升高(圖1),min由0~20 cm土層向>20~80 cm土層移動,其中W45灌溉條件下各施N處理>20~80 cm土層min較高且分布均勻,平均min含量較W20處理顯著增加216.7%(<0.05,表5),W20灌溉條件下各施N處理>20~80 cm土層min較低,且與CK對比無明顯差異(>0.05,表5)。

      圖4 生長季內(nèi)不同處理0~80 cm各土層Nmin質(zhì)量分數(shù)變化

      表5 不同水分處理各土層Nmin質(zhì)量分數(shù)對比

      根據(jù)生長季內(nèi)不同土層min分布情況(圖3),將變化規(guī)律一致的土層數(shù)據(jù)進行合并,對比不同施N梯度下min變化規(guī)律(表6)。在生長季內(nèi),各土層min受施N量影響明顯。數(shù)據(jù)分析表明,旱季W(wǎng)20N150和W20N220處理0~20 cm土層min含量顯著高于W20N80(<0.05),分別提高31.3%和50.0%;雨季W(wǎng)20N220處理0~20 cm土層min顯著高于W20N80和W20N150(<0.05),較中低肥處理平均min含量增加89.2%。旱季W(wǎng)45灌溉條件下各施N處理min差異不明顯(>0.05),但W45N150min含量最高;雨季W(wǎng)45N150處理0~20 cm土層min含量顯著高于W45N80和W45N220(<0.05),分別增加53.7%和51.1%。通過對比W20和W45處理>20~80 cm土層min含量可知,W20整個生長季內(nèi)min保持在較低水平;雨季W(wǎng)45處理>20~80 cm土層min明顯積累。

      表6 不同水分處理不同施N水平下各土層Nmin含量對比

      3 討 論

      3.1 林木生長及土壤水分變化規(guī)律

      研究結(jié)果顯示,灌溉和降雨均是影響林地SWC的關(guān)鍵因子,整個生長季內(nèi)SWC均呈現(xiàn)先增后減的年度變化規(guī)律,灌溉使得林地SWC的變化更為明顯(圖2)。郭迎新等[41]研究表明降雨前后SWC的變化主要受到土壤特性、土壤初期含水率和降水的影響,其中降水的主效應達到85%,且0~10 cm土層是含水率速變層。在本研究中,降雨對土壤水分有明顯的補充作用,但是灌溉處理對毛白楊胸徑生長仍產(chǎn)生顯著影響,尤其是充分灌溉(W20)處理,說明水分是限制毛白楊幼林生長的主要因素之一。

      結(jié)合2年生三倍體毛白楊林木胸徑月增量年度變化規(guī)律(表3)分析,4-7月是運用灌溉措施調(diào)控林木生長的關(guān)鍵時期。Xi等[42]研究結(jié)果表明,不同土層水分有效性(r)對三倍體毛白楊林木生長的作用程度不同,其中0~10 cm表土層r對林木生長變化的解釋程度達到70.8%,但在10~90 cm土層降低至58.4%~61.1%,90 cm以下土層中該解釋程度降低至48.7%,且當0~30 cm土層r高于0.7時,毛白楊生長最快。不同研究中水分對林木生長貢獻的差異主要與根系分布及根系吸水能力有關(guān),Xi等[42]研究表明0~20 cm淺土層細根是1 m土層范圍內(nèi)根系吸水的主力軍。結(jié)合本研究生長季內(nèi)SWC變化規(guī)律可知,旱季(4-6月)灌溉施肥能顯著增加0~80 cm土層SWC(圖2),為毛白楊林木生長及時補充水分;雨季來臨后,各處理0~80 cm土層SWC整體增加,水分在80 cm以下土層可能發(fā)生深層滲漏。雨季林地SWC雖整體提升,但7月份林木蒸騰仍消耗大量水分[8],結(jié)合本研究7月份林木生長速率分析,僅依靠降雨對處于生長高峰期的毛白楊進行水分補充風險較大,因此仍需要依靠灌溉補充林木生長耗水。

      在目前水氮耦合策略下,雖然增加灌溉量能增大水氮深層淋溶的風險[10,43],但提高林木根區(qū)SWC仍是促進毛白楊林木生長的關(guān)鍵,尤其在旱季加強灌溉顯得尤為重要。因此,應加強4-7月份林地灌溉,促進毛白楊生長。

      3.2 土壤Nmin變化規(guī)律

      旱季隨著施N量增加及溫度升高,土壤礦化速率升高[44-45],0~80 cm土層min逐漸積累;雨季來臨降雨量增加,過量水分補充必然會導致min深層淋溶[10,43]。大量室內(nèi)研究已證明點源滴灌施肥條件下土壤NO3--N的運移規(guī)律,NO3--N具有易隨水移動的特性,導致其在濕潤體邊緣聚集[20-21],滴灌施肥后尿素首先在0~20 cm土壤表層聚集水解為NH4+-N,進一步發(fā)生硝化反應生成NO3--N,灌水等因素不易造成NH4+-N在土壤中二次分布[46-47],由此推斷本試驗條件下雨季min深層移動主要由NO3--N 移動造成。

      生長季內(nèi)各處理施肥后min集中分布在0~20 cm表土層,表層min占0~80 cm土層min總量的70%。雨季W(wǎng)45處理min明顯向40~80 cm土層移動,而在整個生長季內(nèi)W20處理20~80 cm土層min均較低,與CK對比無顯著差異(表5)。通過對比雨季W(wǎng)20與W45處理不同土層min質(zhì)量分數(shù)變化,結(jié)合W20處理SWC變化(圖2),初步推斷隨著降雨的增多,W20處理min有淋溶至80 cm以下土層的風險,但80 cm以下土層min變化規(guī)律有待進一步研究確定。戴騰飛等[35]對不同施肥方式及施N量下土壤N素垂向運移規(guī)律研究發(fā)現(xiàn),N素在深土層的積累量隨施N量增加而增加,滴灌施肥下土壤中尿素的水解、硝化速率和運移速率均較高;葉優(yōu)良[48]等研究發(fā)現(xiàn)灌水能明顯影響0~200 cm土壤硝態(tài)氮積累量,土壤硝態(tài)氮積累量隨灌水次數(shù)增加而降低。商放澤[49]等通過對深層包氣帶土壤N素淋溶積累研究發(fā)現(xiàn),砂質(zhì)壤土下施N對min的影響深度主要為0~145 cm土層,且N素易隨水分淋溶至下層。此外,有研究表明5a生三倍體毛白楊寬窄行栽植模式下細根主要分布在0~20 cm和70~110 cm土層[50],細根是林木養(yǎng)分吸收的主要器官,同時基于W20處理林木胸徑月增量顯著高于W45處理的研究結(jié)果,推斷W20處理下林木根系對0~80 cm土層min的吸收與利用也可能是導致旱季min質(zhì)量分數(shù)較低的原因之一。

      通過分析雨季施肥后各處理min變化規(guī)律可知,W20N220處理min變化趨勢穩(wěn)定且含量較高(圖3),初步推斷在充分灌溉(W20)條件下,提高施肥量水平對雨季N素淋溶起一定的補償作用,但過高的施N量也必然加劇min淋失[49,51];虧缺灌溉(W45)條件下中肥處理(N150)min質(zhì)量分數(shù)維持在較高水平,高肥處理(N220)min反而有所下降,推斷提高施肥量加劇W45處理N素淋失。通過0~80 cm土層min含量變化規(guī)律分析,在目前水氮耦合策略下,W45N150處理能為0~80 cm土層提供較高的min。

      3.3 2a生三倍體毛白楊人工林水氮耦合策略選擇

      從楊樹人工林栽培角度考慮,提高林木生長速率和林地生產(chǎn)力是楊樹人工林培育的重要目標[52-53],結(jié)合各試驗處理林木胸徑生長情況,W20處理是提高林木生長速率的重要手段(表3),且席本野等[8,42,54]研究表明在華北平原三倍體毛白楊栽培技術(shù)上灌溉因子是調(diào)節(jié)林木生長的關(guān)鍵因子,因此應在保證旱季水分供應充足的條件下,減少N素淋失。7月份雨季來臨,W20處理林木胸徑增長量仍顯著高于W45處理,通過對比W45和W20灌溉條件下20~80 cm土層的min含量,可推斷雨季W(wǎng)20處理min淋溶至80 cm以下土層。如何調(diào)節(jié)水氮供應的矛盾是下一步研究的重點。從土壤養(yǎng)分角度考慮,N150處理是整個生長季最佳施N水平,結(jié)合林木需水狀況分析,4-7月應采取W20灌溉措施保證林木生長,8-10月正常降雨即能滿足林木生長對水分的需求。此外,考慮生長季末min在0~80 cm土層積累的現(xiàn)象,在下一步水氮耦合策略的制定上,應加強80 cm以下根區(qū)min動態(tài)監(jiān)測,結(jié)合根系分布及水養(yǎng)吸收特性,提高N肥利用效率,防止地下水污染。

      4 結(jié) 論

      在毛白楊幼林期,水分是影響林木生長的關(guān)鍵因素,?20 kPa灌水處理能顯著提高4―7月林木胸徑月增量,較?45 kPa灌水處理提高25.4%。水氮耦合措施對林木生長及林地水氮分布的影響無明顯交互作用,外部降雨及不同灌溉策略是影響土壤水氮運移的重要因子,其中,SWC受降雨等氣象因子影響明顯,4-6月份適時灌溉能及時補充旱季林木快速生長對水分的需求;土壤無機氮min質(zhì)量分數(shù)呈現(xiàn)旱季積累、雨季向深土層移動的規(guī)律,150 kg/(hm2·a)的施氮量水平能維持整個生長季內(nèi)0~80 cm土層較高無機氮含量。綜上,應加強4―7月林地水分調(diào)控,高水中肥處理(W20N150)能保證充足的水氮供應,8月份開始低水中肥處理(W45N150)能維持較高無機氮含量。

      [1] Stanturf J A, Oosten C V,et al. Poplar Culture in North America[M]. NRC Research Press, 2002.

      [2] Coyle D R, Coleman M D. Forest production responses to irrigation and fertilization are not explained by shifts in allocation[J]. Forest Ecology & Management, 2005, 208(1): 137-152.

      [3] Driessche R V D, Thomas B R, Kamelchuk D P. Effects of N, NP, and NPKS fertilizers applied to four-year old hybrid poplar plantations[J]. New Forests, 2008, 35(3): 221-233.

      [4] Martínez-Alcántara Belén, Qui?ones Ana, Forner-Giner M ángeles, et al. Impact of fertilizer-water management on nitrogen use efficiency and potential nitrate leaching in citrus trees[J]. Soil Science & Plant Nutrition, 2012, 58(5): 659-669.

      [5] 王燁. 毛白楊速生紙漿林地下滴灌施肥效應研究[D]. 北京:北京林業(yè)大學,2015.

      Wang Ye. Research on Effects of Nitrogen Fertigation on Tree-growth and its Mechanisms of Action inplantation[D]Beijing:Beijing Forestry University, 2015. (in Chinese with English abstract)

      [6] 席本野,王燁,賈黎明. 滴灌施肥下施氮量和施氮頻率對毛白楊生物量及氮吸收的影響[J]. 林業(yè)科學,2017,53(5):63-73.

      Xi Benye, Wang Ye, Jia Liming. Effects of nitrogen application rate and frequency on biomass accumulation and nitrogen uptake ofunder drip fertigation[J]. Scientia Silvae Sinicae, 2017, 53(5): 63-73. (in Chinese with English abstract)

      [7] Dickmann D I, Isebrands J G. Poplar Culture in North America[M]. NRC Research Press, 2001.

      [8] 席本野,王燁,邸楠,等. 地下滴灌下土壤水勢對毛白楊紙漿林生長及生理特性的影響[J]. 生態(tài)學報,2012,32(17):5318-5329.

      Xi Benye, Wang Ye, Di Nan, et al. Effects of soil water potential on the growth and physiological characteristics ofpulpwood plantation under subsurface drip irrigation[J]. Acta Ecologica Sinica, 2012, 32(17): 5318-5329. (in Chinese with English abstract)

      [9] Chen X Y, Mulder J. Indicators for nitrogen status and leaching in subtropical forest ecosystems, South China[J]. Biogeochemistry, 2007, 82(2): 165-180.

      [10] 張玉銘,張佳寶,胡春勝,等. 水肥耦合對華北高產(chǎn)農(nóng)區(qū)小麥-玉米產(chǎn)量和土壤硝態(tài)氮淋失風險的影響[J]. 中國生態(tài)農(nóng)業(yè)學報,2011,19(3):532-539.

      Zhang Yuming, Zhang Jiabao, Hu Chunsheng, et al. Effect of fertilization and irrigation on wheat-maize yield and soil nitratenitrogen leaching in high agricultural yield region in North China Plain[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3): 532-539. (in Chinese with English abstract)

      [11] Miao Y, Stewart B A, Zhang F. Long-term experiments for sustainable nutrient management in China. A review[J]. Agronomy for Sustainable Development, 2011, 31(2): 397-414.

      [12] Liu X, Duan L, Mo J, et al. Nitrogen deposition and its ecological impact in China: An overview[J]. Environmental Pollution, 2011, 159(10): 2251.

      [13] Sylvesterbradley R, Kindred D R, Wynn S C,et al. Efficiencies of nitrogen fertilizers for winter cereal production, with implications for greenhouse gas intensities of grain[J]. Journal of Agricultural Science, 2014, 152(1): 3-22.

      [14] 祁有玲,張富倉,李開峰. 水分虧缺和施氮對冬小麥生長及氮素吸收的影響[J]. 應用生態(tài)學報,2009,20(10):2399-2405.

      Qi Youling, Zhang Fucang, Li Kaifeng. Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake[J]. Chinese Journal of Applied Ecology, 2009, 20(10): 2399-2405. (in Chinese with English abstract)

      [15] Wang L, Palta J A, Chen W, et al. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling[J]. Agricultural Water Management, 2018, 197: 41-53.

      [16] Dinnes D L, Karlen D L, Jaynes D B,et alNitrogen management strategies to reduce nitrate leaching in tile-drained midwestern soils[J]. Agronomy Journal, 2002, 94(1): 153-171.

      [17] Guo S L, Wu J S, Dang T H, et al. Impacts of fertilizer practices on environmental risk of nitrate in semiarid farmlands in the Loess Plateau of China[J]. Plant & Soil, 2010, 330(1/2): 1-13.

      [18] Zhang T Q, Liu K, Tan C S, et al. Processing tomato nitrogen utilization and soil residual nitrogen as influenced by nitrogen and phosphorus additions with drip-fertigation nutrient management & soil & plant analysis[J]. Soil Science Society of America Journal, 2011, 75(2): 738-745.

      [19] 李久生,張建君,任理. 滴灌點源施肥灌溉對土壤氮素分布影響的試驗研究[J]. 農(nóng)業(yè)工程學報,2002,18(5):61-66.

      Li Jiusheng, Zhang Jianjun, Ren Li. Nitrogen distributions in soil underfertigation from a point source[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2002, 18(5): 61-66. (in Chinese with English abstract)

      [20] 李久生,張建君,饒敏杰. 滴灌施肥灌溉的水氮運移數(shù)學模擬及試驗驗證[J]. 水利學報,2005,36(8):932-938.

      Li Jiusheng, Zhang Jianjun, Rao Minjie. Model verification of water and nitrate transport from a surface point source[J]. Journal of Hydraulic Engineering, 2005, 36(8): 932-938. (in Chinese with English abstract)

      [21] 張建君,李久生,任理. 滴灌施肥灌溉條件下土壤水氮運移的研究進展[J]. 灌溉排水學報,2002,21(2):75-78.

      Zhang Jianjun, Li Jiusheng, Ren Li. A review on water and nitrogen transport in soil under fertigationthrough drip irrigation system[J]. Irrigation and Drainage, 2002, 21(2): 75-78. (in Chinese with English abstract)

      [22] Li J, Liu Y. Water and nitrate distributions as affected by layered-textural soil and buried dripline depth under subsurface drip fertigation[J]. Irrigation Science, 2011, 29(6): 469-478.

      [23] Westerman R L, Boman R K, Raun W R, et al. Ammonium and nitrate nitrogen in soil profiles of long-term winter wheat fertilization experiments[J]. Agronomy Journal, 1994, 86(1): 94-99.

      [24] 劉學軍,趙紫娟,巨曉棠,等. 基施氮肥對冬小麥產(chǎn)量、氮肥利用率及氮平衡的影響[J]. 生態(tài)學報,2002,22(7):1122-1128.

      Liu Xuejun, Zhao Zijuan, Ju Xiaotang, et al. Effect of N application as basal fertilizer on grain yield of winter wheat, fertilizer N recovery and N balance[J]. Acta Ecologica Sinica, 2002, 22(7): 1122-1128. (in Chinese with English abstract)

      [25] Liu X, Ju X, Zhang F,et al. Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain[J]. Field Crops Research, 2003, 83(2): 111-124.

      [26] 石玉,于振文. 施氮量及底追比例對小麥產(chǎn)量、土壤硝態(tài)氮含量和氮平衡的影響[J]. 生態(tài)學報,2006,26(11):3661-3669.

      Shi Yu, Yu Zhenwen.Effects of nitrogen fertilizer rate and ratio of base and topdressing on yield of wheat,content of soil nitrate and nitrogen balance[J]. Acta Ecologica Sinica, 2006, 26(11): 3661-3669. (in Chinese with English abstract)

      [27] 范亞寧,李世清,李生秀. 半濕潤地區(qū)農(nóng)田夏玉米氮肥利用率及土壤硝態(tài)氮動態(tài)變化[J]. 應用生態(tài)學報,2008,19(4):799-806.

      Fan Yaning, Li Shiqing, Li Shengxiu. Utilization rate of fertilizer N and dynamic changes of soil NO3--N in summer maize field in semi-humid area of Nothwest China[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 799-806. (in Chinese with English abstract)

      [28] Wang H Y, Ju X T, Wei Y P, et al. Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain[J]. Agricultural Water Management, 2010, 97(10): 1646-1654.

      [29] 楊啟良,周兵,劉小剛,等. 虧缺灌溉和施氮對小桐子根區(qū)硝態(tài)氮分布及水分利用的影響[J]. 農(nóng)業(yè)工程學報,2013,29(4):142-150.

      Yang Qiliang, Zhou Bing, Liu Xiaogang,et alEffect of deficit irrigation and nitrogen fertilizer application on soilnitrate-nitrogen distribution in root-zone and water use ofL.[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2013, 29(4): 142-150. (in Chinese with English abstract)

      [30] Filipovi? V, Romi? D, Romi? M, et al. Plastic mulch and nitrogen fertigation in growing vegetables modify soil temperature, water and nitrate dynamics: Experimental results and a modeling study[J]. Agricultural Water Management, 2016, 176: 100-110.

      [31] Morgan K T, Wheaton T A, Castle W S,et al. Response of young and maturing citrus trees grown on a sandy soil to irrigation scheduling, nitrogen fertilizer rate, and nitrogen application method[J]. Hortscience, 2009, 44(1): 145-150.

      [32] McLaughlin R A, Hansen E A, Pope P E. Biomass and nitrogen dynamics in an irrigatedhybrid poplar plantation[J]. Forest Ecology and Management, 1987, 18: 169-188.

      [33] Rennenberg H, Wildhagen H, Ehlting B. Nitrogen nutrition of poplar trees[J]. Plant Biology, 2010, 12(2): 275-291.

      [34] 閆娟. 氮素對歐美楊苗木光合及養(yǎng)分利用的影響[D]. 北京:北京林業(yè)大學,2013.

      Yan Juan. Effects of Nitrogen on Photosynthetic and Nutrient Utilization of[D]Beijing:Beijing Forestry University, 2013. (in Chinese with English abstract)

      [35] 戴騰飛,席本野,閆小莉,等. 施肥方式和施氮量對歐美108楊人工林土壤氮素垂向運移的影響[J]. 應用生態(tài)學報,2015,26(6):1641-1648.

      Dai Tengfei, Xi Benye, Yan Xiaoli, et al. Effects of fertilization method and nitrogen application rate on soil nitrogen vertical migration in×cv.‘Guariento’ plantation[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1641-1648. (in Chinese with English abstract)

      [36] Perry C H, Miller R C, Brooks K N. Impacts of short-rotation hybrid poplar plantations on regional water yield[J]. Forest Ecology & Management, 2001, 143(1/2/3): 143-151.

      [37] Dickmann D I. Silviculture and biology of short-rotation woody crops in temperate regions: Then and now[J]. Biomass & Bioenergy, 2006, 30(8/9): 696-705.

      [38] O’Neill M K, Allen S C, Heyduck R F, et al. Hybrid poplar () adaptation to a semi-arid region: Results from Northwest New Mexico (2002-2011)[J]. Agroforestry Systems, 2014, 88(3): 387-396.

      [39] Gruber N, Galloway J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293.

      [40] Castellanos M T, Tarquis A M, Ribas F, et al. Nitrogen fertigation: An integrated agronomic and environmental study[J]. Agricultural Water Management, 2013, 120(1): 46-55.

      [41] 郭迎新,秦大庸,劉家宏,等. 黑龍港地區(qū)降雨與土壤含水率的動態(tài)變化[J]. 灌溉排水學報,2011,30(1):80-83.

      Guo Yingxin, Qin Dayong, Liu Jiahong, et al. Characteristics of soil moisture dynamic changes underrainfall infiltration in Heilonggang region[J]. Journal of Irrigation and Drainage, 2011, 30(1): 80-83. (in Chinese with English abstract)

      [42] Xi Benye, Bloomberg M, Watt M S,et al. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid, plantation located on the North China Plain[J]. Agricultural Water Management, 2016, 176: 243-254.

      [43] Fang Q, Yu Q, Wang E, et al. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat–maize double cropping system in the North China Plain[J]. Plant & Soil, 2006, 284(1/2): 335-350.

      [44] 囤興建,曲宏輝,田野,等. 間伐對長江灘地楊樹人工林土壤有效氮素的影響[J]. 南京林業(yè)大學學報:自然科學版,2013,37(4):45-50.

      Tun Xingjian, Qu Honghui, Tian Ye, et al. Effect of thinning treatments on soil available nitrogen of the poplar plantations in flooding land of Yangtze River[J]. Journal of Nanjing Forestry University: Natural Science Edition, 2013, 37(4): 45-50. (in Chinese with English abstract)

      [45] 燕亞飛,田野,方升佐,等. 不同密度楊樹人工林的外源無機氮輸入及土壤無機氮庫研究[J]. 南京林業(yè)大學學報:自然科學版,2015(4):69-74.

      Yan Yafei, Tian Ye, Fang Shengzuo, et al. External nitrogen input and soil inorganic nitrogen pool in differentstands of poplar plantations[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2015(4): 69-74. (in Chinese with English abstract)

      [46] Rajput T B S, Patel N. Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments[J]. Agricultural Water Management, 2006, 79(3): 293-311.

      [47] 黃耀華,王侃,楊劍虹. 滴灌施肥條件下土壤水分和速效氮遷移分布規(guī)律[J]. 水土保持學報,2014,28(5):87-94.

      Huang Yaohua, Wang Kan, Yang Jianhong. Distribution of soil water and available nitrogen in purple soil under drip fertilization[J]. Journal of Soil and Water Conservation, 2014, 28(5): 87-94. (in Chinese with English abstract)

      [48] 葉優(yōu)良,李隆,張福鎖,等. 灌溉對大麥/玉米帶田土壤硝態(tài)氮累積和淋失的影響[J]. 農(nóng)業(yè)工程學報,2004,20(5):105-109.

      Ye Youliang, Li Long, Zhang Fusuo,et al.Effect of irrigation on soil NO3--N accumulation and leaching in maize /barley intercropping field[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(7): 105-109. (in Chinese with English abstract)

      [49] 商放澤,楊培嶺,李云開,等. 不同施氮水平對深層包氣帶土壤氮素淋溶累積的影響[J]. 農(nóng)業(yè)工程學報,2012,28(7):103-110.

      Shang Fangze, Yang Peiling, Li Yunkai,et al.Effects of different chemical nitrogenous fertilizer application rates on soil nitrogen leaching and accumulation in deep vadose zone[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(7): 103-110. (in Chinese with English abstract)

      [50] 邸楠,席本野,Pinto R,等. 寬窄行栽植下三倍體毛白楊根系生物量分布及其對土壤養(yǎng)分因子的響應[J]. 植物生態(tài)學報,2013,37(10):961-971.

      Di Nan, Xi Benye, Pinto R, et al. Root biomass distribution of triploidunder wide- and narrow-row spacingplanting schemes and its responses to soil nutrients[J]. Chinese Journal of Plant Ecology, 2013, 37(10): 961-971.(in Chinese with English abstract)

      [51] Jia X, Shao L, Liu P, et al. Effect of different nitrogen and irrigation treatments on yield and nitrate leaching of summer maize (L.) under lysimeter conditions[J]. Agricultural Water Management, 2014, 137(1385): 92-103.

      [52] 沈國舫. 對發(fā)展我國速生豐產(chǎn)林有關(guān)問題的思考[J]. 世界林業(yè)研究,1992,5 (4):67-74.

      Shen Guofang. Considerations on the development of fast-growing and high-yield plantations in China[J].World Forestry Research, 1992, 5(4): 67-74. (in Chinese with English abstract)

      [53] 齊力旺,陳章水. 中國楊樹栽培科技概論[M]. 北京:科學出版社,2011.

      [54] Xi Benye, Di Nan, Wang Ye, et al. Modeling stand water use response to soil water availability and groundwater level for a mature, plantation located on the North China Plain[J]. Forest Ecology & Management, 2017, 391: 63-74.

      Coupling effects of water and nitrogen on tree growth and soil water-nitrogen distribution in youngplantations under surface drip irrigation

      He Yuelin1, Wang Ye2, Zhang Hongjin1, Xi Benye1, Dai Tengfei1, Li Doudou1, Hu Mingyuan1, Jia Liming1※

      (1.100083,; 2.100091,;,100091,)

      Soil water and nitrogen nutrients are key factors affecting forest growth, especially for young triploid.Water and fertilizer factors have synergistic effects, water deficit can inhibit the absorption of nutrients in forests, and excessive irrigation can easily cause nutrient leaching. Although excessive fertilization can improve the water and nitrogen use efficiency under certain conditions, the large amount of nitrogen remaining in the soil is bound to pollute the environment. At present, many scholars have simulated the soil moisture and nitrogen transport under drip irrigation through indoor soil column simulation test. The research on soil water and nitrogen transport in the field is mainly concentrated in the agricultural and horticultural field, and the key is to monitor nitrogen leaching and nitrogen balance. In the field of forestry, due to the complexity of field conditions and the simplification of evaluation indicators, most studies focus on the effects of different water-nitrogen coupling strategies on tree growth and physiological indicators, few researches were on the distribution of water and nitrogen in root zone. In order to explore the effects of water and nitrogen coupling treatments on growth ofand water-nitrogen distribution in soil, a field experiment was conducted about 2-year-old triploidto investigate the effects of two irrigation levels (W20, W45) and three fertilizer levels (N80, N150, N220) coupling treatments on increment of diameter at breast height (DBH), dynamic distribution of soil water content (SWC) and mineral nitrogen content (min) in 0-80 cm soil depth under drip emitter in growing season. Results showed that W20treatment promoted the growth of DBH during April to July significantly (<0.05), the interaction of irrigation and fertilizer factors was not significant (>0.05). SWC was influenced greatly by irrigation treatment, which showed that the SWC of W20treatmenthad reached 11.3% in dry season (from the end of April till the middle of June), 37.5% higher than blank control. There was no significant difference in different treatment (>0.05)in rainy season (from the late June to early August), because SWC was influenced greatly by precipitation.minwas accumulated in 0 - 80 cm soil layer during dry season, especially in 0-20 cm soil layer, which showed positive correlation with fertilization.minmoved from topsoil towards deep soil in rainy season, which leached below 80 cm soil layer in W20treatment and increased uniformly in 20-80 cm soil layers in W45. The averageminin 0-80 cm soil layer reached to 44.27 mg/kg in W45N150treatment in rainy season, which was significant higher than other treatments (<0.05).minaccumulated in 0-80 cm soil layer at the end of growing season. To sum up, N150treatment can provide adequate nitrogen content in 0-80 cm soil layer in growing season. Combined with the growth of young trees, W20treatment can promote the growth significantly during April to July (<0.05), and W45treatment can meet the water demand for growth of the tree after July.

      soils; water; nitrogen; growth; young triploid; surface drip irrigation

      10.11975/j.issn.1002-6819.2018.20.012

      S792.117

      A

      1002-6819(2018)-20-0090-09

      2018-03-01

      2018-09-01

      國家自然科學基金資助項目:水肥耦合對黃泛平原砂地毛白楊水氮吸收與利用的調(diào)控機制(31670625);“十二五”國家科技支撐計劃資助(2015BAD09B02):三倍體毛白楊速生紙漿林精準根區(qū)水養(yǎng)調(diào)控及修枝技術(shù)研究。

      賀曰林,博士生,主要研究方向為三倍體毛白楊林木及林地土壤水氮吸收與利用的調(diào)控機制。Email:HYLhelen@163.com

      賈黎明,博士,教授,博士生導師,主要從事楊樹水肥管理等方面的研究。Email:jlm@bjfu.edu.cn

      賀曰林,王 燁,張宏錦,席本野,戴騰飛,李豆豆,扈明媛,賈黎明. 地表滴灌水氮耦合對毛白楊幼林生長及土壤水氮分布的影響[J]. 農(nóng)業(yè)工程學報,2018,34(20):90-98. doi:10.11975/j.issn.1002-6819.2018.20.012 http://www.tcsae.org

      He Yuelin, Wang Ye, Zhang Hongjin, Xi Benye, Dai Tengfei, Li Doudou, Hu Mingyuan, Jia Liming. Coupling effects of water and nitrogen on tree growth and soil water-nitrogen distribution in youngplantations under surface drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 90-98. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.20.012 http://www.tcsae.org

      猜你喜歡
      毛白楊水氮三倍體
      水產(chǎn)動物三倍體育種技術(shù)研究綜述
      我國三倍體牡蠣育苗、養(yǎng)殖現(xiàn)狀及發(fā)展對策
      伐根嫁接毛白楊生長規(guī)律與木材質(zhì)量研究
      細數(shù)你吃的那些“不孕不育”食物
      三倍體湘云鯽2號線粒體DNA含量與其不育的相關(guān)性研究
      毛白楊
      毛白楊優(yōu)良無性系生長性狀數(shù)量分析
      油菜素內(nèi)酯合成基因DWF1、DET2影響毛白楊木質(zhì)部形成(內(nèi)文第51~56頁)圖版
      水氮耦合對煙株生長、產(chǎn)量及主要化學成分的影響
      水氮交互作用對棉花產(chǎn)量的影響研究
      宜丰县| 乐山市| 左贡县| 叙永县| 克拉玛依市| 南部县| 布拖县| 五家渠市| 永宁县| 定结县| 得荣县| 乐亭县| 江北区| 台江县| 雷州市| 湛江市| 洛阳市| 龙里县| 通城县| 霍邱县| 大足县| 凤城市| 青神县| 和平县| 前郭尔| 瑞昌市| 江陵县| 汉沽区| 铜陵市| 馆陶县| 安远县| 和田市| 南宁市| 民丰县| 房产| 治县。| 镇宁| 临沭县| 鹿泉市| 沈阳市| 五莲县|